首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical recycling of waste poly(ethylene terephthalate) (PET) using phosphoric acid–modified silica gel as a solid catalyst is reported. Advantageously, microwave irradiation was used to progress the depolymerization of PET. In this study, depolymerization of PET with a small amount of water is suggested as a suitable method. The depolymerized product, terephthalic acid was obtained and assigned by 1H NMR and FT-IR spectroscopy. Finally, over 90 % conversion to terephthalic acid was achieved when waste plastic bottles were treated with the method. This results confirm the importance of the microwave power technique as a promising recycling method for plastic bottles made from PET, resulting in monomer recovery in addition to substantial energy saving.  相似文献   

2.
The synthesis of recycled plastics from recovered monomeric materials obtained from the depolymerization reaction of fiber-reinforced plastics (FRP) was examined. The depolymerization reaction of FRP in the presence of N,N-dimethylaminopyridine (DMAP) smoothly yielded the corresponding monomers, which mainly consisted of dimethyl phthalates. The polymerization reaction with this monomer failed to form the corresponding unsaturated polyesters due to contamination by N-methyl-4-pyridone, a decomposition product of DMAP. An efficient purification of the recovered monomer was achieved by washing with water, and the purified monomer successfully yielded the corresponding polymers. A hardness test revealed that the polymers were as hard as the polyester made from virgin materials. The present modification provides a practical method for the preparation of recycled plastics from depolymerized plastics.  相似文献   

3.
We have achieved major improvements in the efficient chemical recycling of waste fiber-reinforced plastics (FRPs). The effects of reduction in the amounts of dimethylaminopyridine (DMAP) used for depolymerization were examined. The treatment of waste FRP in the presence of 1 or 2 wt% DMAP resulted in the successful recovery of monomeric materials that could be employed in the polymerization process to produce recycled plastic. The separation of linker units from glass fiber, however, was unsuccessful. The purity of the recovered monomeric material, when treated with activated charcoal, was improved to about 70%. This resulted in effective decoloration of the recovered monomer. Finally, the purified material, after undergoing repolymerization, provided high-quality recycled plastic comparable to new plastics produced from new monomers.  相似文献   

4.
Poly(lactic acid) (PLA) is increasingly utilized as an alternative to petroleum-based polymers in order to reduce their impact on the environment. The monomer of PLA is mainly produced from corn, which, in addition to its food utilization, can be also used for the production of bioethanol or biofuels. In this work the depolymerization (chemical recycling) of PLA pellets in a batch reactor at temperatures near the melting temperature of solid PLA has been investigated to produce lactic acid. New experimental data are presented and a kinetic model is provided for a first analysis. With a residence time less than 120 min, a yield of lactic acid greater than 95 % has been obtained at temperatures of 160 and 180 °C for pressure equal to water vapour pressure and a water/PLA ratio by weight equal ~10.  相似文献   

5.
Biodegradation of Agricultural Plastic Films: A Critical Review   总被引:5,自引:0,他引:5  
The growing use of plastics in agriculture has enabled farmers to increase their crop production. One major drawback of most polymers used in agriculture is the problem with their disposal, following their useful life-time. Non-degradable polymers, being resistive to degradation (depending on the polymer, additives, conditions etc) tend to accumulate as plastic waste, creating a serious problem of plastic waste management. In cases such plastic waste ends-up in landfills or it is buried in soil, questions are raised about their possible effects on the environment, whether they biodegrade at all, and if they do, what is the rate of (bio?)degradation and what effect the products of (bio?)degradation have on the environment, including the effects of the additives used. Possible degradation of agricultural plastic waste should not result in contamination of the soil and pollution of the environment (including aesthetic pollution or problems with the agricultural products safety). Ideally, a degradable polymer should be fully biodegradable leaving no harmful substances in the environment. Most experts and acceptable standards define a fully biodegradable polymer as a polymer that is completely converted by microorganisms to carbon dioxide, water, mineral and biomass, with no negative environmental impact or ecotoxicity. However, part of the ongoing debate concerns the question of what is an acceptable period of time for the biodegradation to occur and how this is measured. Many polymers that are claimed to be ‘biodegradable’ are in fact ‘bioerodable’, ‘hydrobiodegradable’, ‘photodegradable’, controlled degradable or just partially biodegradable. This review paper attempts to delineate the definition of degradability of polymers used in agriculture. Emphasis is placed on the controversial issues regarding biodegradability of some of these polymers.  相似文献   

6.
Polyethylene terephthalate (PET) waste fibers were initially depolymerized using a glycolysis route in the presence of sodium sulfate as a catalyst, which is a commonly used chemical and ecofriendly as compared to heavy metal catalysts. Good yield of the pure monomer bis(2-hydroxyethylene terephthalate) (BHET) was obtained. Further, to attempt its reuse, the purified BHET was converted to different fatty amide derivatives to obtain quaternary ammonium compounds that have a potential for use as softener in the textile finishing process. The products were characterized by infrared spectroscopy. Application of these synthesized compounds was carried out on cotton fabric; they were evaluated for performance and were found to give good results. The chemicals used during depolymerization and reuse of PET are inexpensive and comparatively less harmful to the environment, and thus offer advantages in the chemical recycling of polyester waste fibers.  相似文献   

7.
Vacuum pyrolysis of polymeric wastes containing hazardous cyano groups was studied using low temperature pyrolysis mass spectrometry. Specifically, the study analyzed the presence of toxic compounds among the pyrolysis products. The polymers were pyrolyzed directly in the solid probe of a quadruple mass spectrometer within an ion source at a pressure of 10?6 Torr and then sorted by quadrupole mass analyzer. Polyethyl cyanoacrylate degrades by depolymerization, mostly into the ethyl cyanoacrylate monomer units. The degradation of polyurethane produces nonpolymeric urethane, isocyanates, amines and ethers. Polyacrylonitrile degrades via a depolymerization pathway into oligonitriles, acrylonitrile, ammonia and hydrogen cyanide.  相似文献   

8.
To develop a new method for the chemical recycling of plastics, we examined the formation of recycled polymers from the recovered monomeric materials of solubilized waste fiber-reinforced plastics (FRP) under supercritical alcoholic conditions. Treatment of waste FRP with supercritical MeOH resulted in the formation of monomeric organic compounds that mainly contained dimethyl phthalate (DMP) and propylene glycol. The presence of these materials was confirmed by gas chromatography and nuclear magnetic resonance analyses and they were mixed with new DMP and glycols in various ratios to form unsaturated polyesters. The polymerization progressed successfully for all mixing ratios of the recovered and new DMP. Hardness tests on these recycled polymers indicated that the polymer made from a 1:1 mixture of recovered and new dimethyl phthalate had almost the same level of hardness as the polymers made from new materials. We also examined the formation of recycled FRP by using glass fibers and monomeric materials recovered through the present depolymerization method. Chemical Feedstock Recycling & Other Innovative Recycling Techniques 6  相似文献   

9.
Thermal cracking of oils from waste plastics   总被引:2,自引:0,他引:2  
Thermal cracking of decomposed waste plastic oil produces a good yield of olefins. The solvent extraction of such waste plastic oil seems to be efficient for increasing gas yields and recycling monomers. To assess the potential of monomer recovery from municipal waste plastics, the oils were cracked using a laboratory-scale quartz-tube reactor. The waste plastic oils were provided by two commercial plants of the Sapporo Plastic Recycle Co. and the Dohoh Recycle Center Co. in Japan. A model waste plastic oil made in a laboratory was also examined. Yields of ethene, propene, and other products were measured at different temperatures. Two-step pyrolysis reduces coking compared with the direct thermal degradation of plastics. The raffinates from waste plastic oils extracted by sulfolane were also cracked. The primary products were almost the same as those from nontreated oils. The maximum total gas yield was 78wt%–85wt% at 750°C, an increase of about 20wt% compared with that of nonextracted oil. Solvent extraction removes stable aromatic hydrocarbons such as styrene, which is more coked than cracked.  相似文献   

10.
Hydrolytic depolymerization of polyamide waste in water was studied using 0.5 L high pressure autoclave at temperatures of 235, 240, 245, 250 °C and at autogenious pressure 480, 500, 520, and 600 psi (pound per square inch).The reaction rate constant, energy of activation, enthalpy of activation, entropy of activation and equilibrium constant were calculated from the experimental data obtained. The maximum depolymerization (59.2%) of polyamide waste into monomer caprolactum was obtained at 250 °C and 600 psi pressure. The reaction rate constant was obtained on basis of measurement of amine value and residual weight. The depolymerization reaction was found to be pseudo first order with reaction rate constant of the order of 10−3 min−1. The enthalpy, entropy and free energy of activation were recorded as 85.75, −0.1354 and 156.59 kJ mol−1 respectively at the experimental conditions for maximum depolymerization of polyamide waste. The thermodynamic equilibrium constant for this hydrolysis reaction was found to be 2.3 × 10−16.  相似文献   

11.
The huge increase in the generation of post-consumer plastic waste has produced a growing interest in eco-efficient strategies and technologies for their appropriate management and recycling. In response to this, PROQUIPOL Project is focused on developing, optimizing and adapting feedstock recycling technologies as an alternative for management for the treatment of complex plastic waste. Among the different plastic wastes studied, PROQUIPOL Project is working on providing a suitable treatment to the highly colored and complex multilayered post-consumer waste fractions of polyethylene terephthalate (PET) by chemical depolymerisation methods. Glycolysis and alkali hydrolysis processes have been studied with the aim of promoting the transformation of PET into the bis(2-hydroxyethyl) terephthalate monomer and terephthalic acid, respectively. In both cases operational conditions such as temperature, reaction time, catalyst to PET rate and solvent to PET rate have been considered to optimize product yield, achieving values near to 90 % and monomer purities over 95 % in both processes. This paper presents results obtained for each treatment as well as a simplified comparison of technical, economic and environmental issues.  相似文献   

12.
Packaging waste is a contributing factor to the large quantity of waste that is sent to landfill in the UK. This research focuses on waste from the secondary packaging sector in the UK. In particular, supermarkets were investigated as they supply a large section of consumers with their grocery and other requirements and generate high quantities of packaging waste due to the high turnover within the store. In general, supermarkets use either metal cages or wooden pallets to transport products from depot to store. Investigation shows that packaging waste produced when using the wooden pallets is greater than for metal cages but the use of wooden pallets allows for greater versatility when in the store. The type of transit packaging used depends on what the products are initially packaged in and how the supermarket supply chain works. All cardboard and high-grade plastic is recycled but, depending on the facilities at the stores, the low-grade plastic can be recycled as well. This paper details types of packaging used within the supermarket secondary packaging sector and how waste can be reduced. To reduce the amount of packaging waste produced by the supermarkets, the products will have to be wrapped differently by the producers so that less packaging is needed in transit.  相似文献   

13.
The biodegradability (mineralization to carbon dioxide) of acrylic acid oligomers and polymers was studied in activated sludge obtained from continuous-flow activated sludge (CAS) systems exposed to mixtures of low molecular weight (Mw < 8000) poly(acrylic acid)s and other watesoluble polymers [poly(ethylene glycol)s] in influent wastewater. Dilute preparations of activated sludge from the CAS units were tested for their ability to mineralize acrylic acid monomer and dimer, as well as a series of model acrylic acid oligomers and polymers (Mw 500, 700, 1000, 2000, and 4500), as sole carbon and energy sources. Complete mineralization of acrylic acid monomer and dimer was observed in low-biomass sludge preparations previously exposed to the polymer mixture, based on carbon dioxide production and residual dissolved organic carbon analyses. Extensive (though incomplete) degradation was also observed for the low molecular weight acrylic acid oligomers (Mw 500 and 700), but degradation dropped off sharply for the 1000, 2000, and 4500 Mw polymers. Radiochemical (14C) data also confirmed the low degradation potential of the 1000, 2000, and 4500 Mw materials. Degradation of two commercial poly(ethylene glycol)s at 1000 and 3400 Mw was complete and comparable to that of the acrylic acid monomer and dimer. Our results indicate that mixed populations of activated sludge microorganisms can extensively metabolize acrylic acid oligomers of seven units or less. Complete mineralization, however, could be confirmed only for the monomer and dimer material, and carbon mass balance data suggested that the true molecular weight cutoff for complete biodegradation was significantly less than the 500–700 Mw range tested.  相似文献   

14.
During the past decade, plastic solid waste (PSW) has increased drastically in the state of Kuwait, amounting to 13% of the waste load. Most ends up in landfills with only a minor percentage being recycled. In this study, a databank was established to include plastic manufacturers and converters in Kuwait. The aim was to assess the amount of plastic waste being generated from a number of sources. Types, quantities, and recycling information were gathered and fed into the databank. Kuwait was divided into five sectors to ease data gathering. A total of 37 companies and agencies related to plastic were integrated into the work, as well as information from a previously established databank for plastic waste bags. It was noted that most converters of plastic use in-house recycling schemes. Grades of polyethylene and polypropylene, as well as aliginic acid, polyacetals, and poly-styrene, are all considered major imports in the Arabian Gulf market, and especially in Kuwait. These grades possess an import value in excess of 20 million US dollars per year. The conclusions from this study could be used in neighboring countries in order to reduce PSW generated from the region.  相似文献   

15.
More and more polymer wastes are generated by industry and householders today. Recycling is an important process to reduce the amount of waste resulting from human activities. Currently, recycling technologies use relatively homogeneous polymers because hand-sorting waste is costly. Many promising technologies are being investigated for separating mixed thermoplastics, but they are still uneconomical and unreliable. At present, most waste polymers cause serious environmental problems. Burning polymers for recycling is not practiced since poisonous gases are released during the burning process. Particularly, polyvinyl chloride (PVC) materials among waste polymers generate hazardous HCl gas, dioxins containing Cl, etc., which lead to air pollution and shorten the life of the incinerator. In addition, they make other polymers difficult to recycle.Both polyethylene terephthalate (PET) and PVC have densities of 1.30–1.35 g/cm3 and cannot be separated using conventional gravity separation techniques. For this reason, polymer recycling needs new techniques. Among these techniques, froth flotation, which is also used in mineral processing, can be useful because of its low cost and simplicity.The main objective of this research is to recycle PET and PVC selectively from post-consumer polymer wastes and virgin polymers by using froth flotation. According to the results, all PVC particles were floated with 98.8% efficiency in virgin polymer separation while PET particles were obtained with 99.7% purity and 57.0% efficiency in post-consumer polymer separation.  相似文献   

16.
The use of plastic bags and film packaging is very frequent in manifold sectors and film waste is usually present in different sources of municipal and industrial wastes. A significant part of it is not suitable for mechanical recycling but could be safely transformed into a valuable gas by means of thermal valorization. In this research, the gasification of film wastes has been experimentally investigated through experiments in a fluidized bed reactor of two reference polymers, polyethylene and polypropylene, and actual post-consumer film waste. After a complete experimental characterization of the three materials, several gasification experiments have been performed to analyze the influence of the fuel and of equivalence ratio on gas production and composition, on tar generation and on efficiency. The experiments prove that film waste and analogue polymer derived wastes can be successfully gasified in a fluidized bed reactor, yielding a gas with a higher heating value in a range from 3.6 to 5.6 MJ/m3 and cold gas efficiencies up to 60%.  相似文献   

17.
Direct waste analysis (DWA) and the material flows approach are the two standard methods to quantify aggregated waste streams and analyze waste composition. Yet, with the increasing application of producer responsibility measures, product-based waste data rather than aggregated waste data are becoming important. It is over this requirement that both approaches fail to some extent in delivering the type and quality of information that is needed. This study uses plastic bag waste as an illustration to show how self-reported questionnaire survey data may be used to assess disposal quantities of product-based waste types. The estimates from a large-scale questionnaire survey with over 4,100 completed cases were verified against DWA data of the same year in Hong Kong. It was found that self-reported data give systematically lower figures (on the order of 1.3-5 times) than those obtained from standard methods such as DWA for Hong Kong and the UK. However, it is demonstrated that self-reported data can be internally consistent. Also, the magnitude of underestimation may not be as considerable as it appears since the data from DWA are not themselves entirely accurate owing to the difficulties in obtaining a pure load of waste for field analysis and the variable moisture contents or contamination levels in waste material.  相似文献   

18.
The use of biodegradable polymers made from renewable agricultural products such as soy protein isolate has been limited by the tendency of these materials to absorb moisture. A straightforward approach for controlling the inherent water absorbency of the biodegradable polymers involves blending special bioabsorbable polyphosphate fillers, biodegradable soy protein isolate, plasticizer, and adhesion promoter in a high-shear mixer followed by compression molding. The procedure yields a relatively water-resistant, biodegradable soy protein polymer composite, as previously reported. The aim of the present study is to determine the biodegradability of the new polyphosphate filler/soy protein plastic composites by monitoring the carbon dioxide released over a period of 120 days. The results suggest that the composites biodegrade satisfactorily, with the fillers having no significant effect on the depolymerization and mineralization of the soy protein plastic, processes that would otherwise result in nonbiodegradable composites. Further, the results indicate that the biodegradation and useful service life of these biocomposites may be controlled by changing the filler concentration, making the biocomposites useful in applications in which the control of water resistance and biodegradation is critical.  相似文献   

19.
This study analyzed the recycling potential of plastic wastes generated by health care facilities. For this study, we obtained waste streams and recycling data from five typical city hospitals and medical centers and three animal hospitals in Massachusetts. We analyzed the sources, disposal costs and plastic content of medical wastes, and also determined the components, sources, types and amounts of medical plastic wastes. We then evaluated the recycling potential of plastic wastes produced by general city hospital departments, such as cafeterias, operating rooms, laboratories, emergency rooms, ambulance service and facilities, and animal hospitals. Facilities, laboratories, operating rooms, and cafeterias were identified as major sources of plastic wastes generated by hospitals. It was determined that the recycling potential of plastics generated in hospital cafeterias was much greater than that in other departments. This was mainly due to a very slight chance of contamination or infection and simplification of purchasing plastic components. Finally, we discuss methods to increase the recycling of medical plastic wastes. This study suggests that a classification at waste generating sources, depending upon infection chance and/or plastic component, could be a method for the improved recycling of plastic wastes in hospitals.  相似文献   

20.
Pyrolysis appears to be a promising recycling process since it could convert the disposed polymers to hydrocarbon based fuels or various useful chemicals. In the current study, two model polymers found in WEEEs, namely polycarbonate (PC) and high impact polystyrene (HIPS) and their counterparts found in waste commercial Compact Discs (CDs) were pyrolysed in a bench scale reactor. Both, thermal pyrolysis and pyrolysis in the presence of two catalytic materials (basic MgO and acidic ZSM-5 zeolite) was performed for all four types of polymers. Results have shown significant recovery of the monomers and valuable chemicals (phenols in the case of PC and aromatic hydrocarbons in the case of HIPS), while catalysts seem to decrease the selectivity towards the monomers and enhance the selectivity towards other desirable compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号