首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Strait of Otranto is the connection between the Adriatic and Ionian Seas. Low nutrient concentrations, high transparency, and low phytoplankton cell density and biomass reflect the oligotrophic character of the area. Enrichment of the euphotic layer with nutrients is mainly due to discharge of Albanian and Greek rivers, as well as mixing and upwelling in winter/early spring. Following phytoplankton bloom in April, a progressive decrease of phytoplankton cell density is due to the consumption of nutrients throughout the proceeding summer and autumn. Nitrogen was a strong limiting factor for phytoplankton growth in summer. Deep biomass maxima were detected in the 50 to 100 m layer and corresponded mostly to cells smaller than 20 m. The eastern part of the strait is mostly influenced by the northerly inflowing current from the Ionian Sea, and the western part by the southerly outflowing current from the Adriatic Sea. This typical circulation could be disturbed by inertial oscillations in the current field, generated by the strong oscillating winds and cyclonic eddies. The type of circulation determined the distribution of thermohaline characteristics, abundance, biomass, as well as taxonomic composition of phytoplankton, across the strait. Ecological characteristics of the water masses on two sides of the strait were significantly different during the formation of a longitudinal thermohaline front in May 1990.  相似文献   

2.
An anticyclonic slope water oceanic eddy (SWODDY), named AE6, was sampled in the southern Bay of Biscay from 12 to 31 August 1998 to assess changes in the abundance and composition of phytoplankton assemblages related to the mesoscale feature. SWODDY AE6 showed characteristic biological signatures. A twofold increase in chlorophyll a concentration was found at the eddy centre relative to surrounding waters. Picoplankton cells accounted for a lower fraction of total chlorophyll a values at the eddy centre (44–50%) than outside the eddy (54–61%). Microscopic cell counts and HPLC pigment analysis showed that diatoms were almost entirely confined to the eddy centre, but both techniques yielded different results when studying other phytoplankton groups. Microscopic cell counts indicated that the spatial distribution of diatoms, dinoflagellates and unidentified flagellates was significantly influenced by SWODDY AE6, showing maximum abundance inside the mesoscale feature. HPLC pigment analysis provided more detailed information about the composition of pico–nanoplanktonic organisms. Pigment data processed by means of the CHEMTAX program showed "chlorophytes", "haptophytes" and "dinoflagellates II" (having haptophyte-like pigments and gyroxanthin-diester) as the more abundant "pigment classes" at the eddy centre, whereas dominance of "chlorophytes" and higher contribution of "cyanobacteria" (type Synechococcus) were estimated in the surrounding waters.Communicated by S.A. Poulet, Roscoff  相似文献   

3.
A distinctive chlorophyll maximum was detected around 60-m depth in the western North Pacific Ocean and the South China Sea, and almost 55% of the total chlorophyll in the entire water column was found within 50 m around the subsurface chlorophyll maximum (SCM) layer. More than 70% of the chlorophyll was contained in picoplankton which passed through a 3-m Nuclepore but retained on 0.22-m Millipore filters at the SCM as well as the surface layers. By transmission electron microscopic observations, the picoplankton were identified as aChlorella-like coccoid green alga having a section size of 1.2 to 1.5 m and cyanobacteria of 0.5 to 2 m. No obvious difference in these two dominant groups was observed in the SCM and the surface samples except in numerous and heavily stacked thylakoids in the former samples.  相似文献   

4.
Suspended matter sampled in 1982 in the North Equatorial Current, in the open Atlantic to the west of West Africa, was analyzed by high performance liquid chromatography. The pigment fingerprint of samples taken in the surface mixed layer was dominated by zeaxanthin and chlorophyll a, in agreement with observed dominance of coccoid cyanobacteria. Near the bottom of the euphotic zone the fingerprint was more complicated, with a sharp transition at the depth of the deep chlorophyll maximum layer to dominance of chlorophyll b, 19-hexanoyloxyfucoxanthin and an unknown fucoxanthin derivative in the lower part of this layer; this fingerprint suggests dominance of eukaryotes (green algae, Prymnesiophyceae and Chrysophyceae) at depth. Up to 90% of the chl a was contained in particles smaller than 8 m, and in the surface mixed layer even more than 50% in particles smaller than 1 m. The high concentration of zeaxanthin relative to chl a near the surface suggests adaptation of the cyanobacteria to exposure to high irradiance. Evidence of this adaptation was the very high specific phytoplankton growth rate between sunrise and sunset (=0.16 h-1), measured by recording 14C incorporation into organic carbon and into chl a carbon after isolation of the latter by HPLC. The high concentration of chl b relative to chl a at depth was possibly caused by shade-adapted green algae containing more chl b than chl a. The specific growth rate of the deep shade community was low (<0.04 h-1), yet net primary production, calculated on the basis of chl a increase during incubation, was greatest at depth.  相似文献   

5.
The study was carried out in the Skagerrak during late summer when population development in the pelagic cycle culminated in the yearly maximum in zooplankton biomass. The cyclonic circulation of surface water masses created the characteristic dome-shaped pycnocline across the Skagerrak. The large dinoflagellate Ceratium furca dominated the phytoplankton biomass. Ciliates and heterotrophic dinoflagellates were the major grazers and, potentially, consumed 43–166% of daily primary production. The grazing impact of copepods was estimated from specific egg production rates and grazing experiments. The degree of herbivory differed between species (14–85%), but coprophagy (e.g. feeding on fecal pellets) and ingestion of microzooplankton were also important. The appendicularian Oikopleura dioica was present in lower numbers than copepods, but cleared a large volume of water. The grazing impact of copepods and O. dioica was estimated to 57±24% and 12±12% of daily primary production, respectively. Sedimentation of organic material (30 m) varied between 169 and 708 mg C m–2 day–1, and the contribution from the mesozooplankton (copepod fecal pellets and mucus houses with attached phytodetritus of O. dioica) was 5–33% of this sedimentation. Recycling of fecal pellets and mucus houses in the euphotic zone was 59% and 36%, respectively. However, there was a high respiration of organic material by microorganisms in the mid-water column, and 34% of the sedimenting material actually reached the benthic community in the deep, central part of the Skagerrak.  相似文献   

6.
Fluorometric determination of chlorophyll a and pheopigments was carried out in the sea area off southern Japan. Maximum concentration of chlorophyll pigments was determined to be at or below the lower limit of the euphotic zone, namely from 50 to 150 m depth. To estimate the activity of phytoplankton in this maximum chlorophyll layer, changes of chlorophyll concentration and number of cells were measured in samples taken from this layer before and after exposure to different light intensities. It was concluded that the growth of shade-adapted phytoplankton and the deterioration of chlorophyll pigments by light are the main factors causing the chlorophyll maximum to occur in a rather deep oceanic layer.  相似文献   

7.
The distribution of cyanobacteria in the surface waters of the North Sea was measured during July 1987. Numbers of cyanobacteria ranged from 2.5x106 to 1.7x108 cells 1-1. In the majority of stations, cyanobacterial numbers were highest in the near-surface water and a subsurface maximum was found at only one station. The distribution of 14C among the end-products of photosynthesis was determined for picoplankton (<1 m) and other phytoplankton >1 m throughout the North Sea. The majority of label was found in the protein fraction of both picoplankton and >1 m phytoplankton; incorporation into lipids and polysaccharides plus nucleic acids was much lower. We interpret the large incorporation into protein to be a consequence of nutrient limitation of these natural assemblages. Photosynthetic parameters of the two size fractions were also determined. Assimilation number (P m B ) and initial slope were greater for the picoplankton fraction than for phytoplankton >1 m but there was no evidence of significant photoinhibition of either fraction at irradiances up to 1 000 E m-2 s-1.  相似文献   

8.
The distribution of phycoerythrin-richSynechococcus spp. relative to eukaryotic algae and the contribution ofSynechococcus spp. toin situ primary production were compared at a neritic front, in warm-core eddy 84-E, and at Wilkinson's Basin, during a cruise to the Northwest Atlantic Ocean in July/August 1984. Immunofluorescence analyses ofSynechococcus strains demonstrated the restricted distribution of the tropical oceanic serogroup to the warm-core eddy, while strains of the neritic serogroup and those labelled by antiserum directed against a motile strain, were abundant in all three water masses. Although the majority ofSynechococcus spp. cells were observed in the 0.6 to 1 m fraction, an increasing proportion of the totalSynechococcus spp. cells were found in the 1 to 5 m fraction as nitrate concentrations increased near the base of the thermocline. From immunofluorescence analyses, we determined that the increasing proportion of largerSynechococcus spp. cells at depth was not the result of a change in strain composition, and may therefore be associated with increasing cell volume due to the enhanced nutrient supply. The contribution of the different size fractions to the total standing crop of chlorophyll and thein situ rate of photosynthesis was distincty different for the three water masses. At the neritic front, the larger photoautotrophs of the 1 to 5 m and >5 m fractions were the major contributors to chlorophyll concentrations and primary production.Synechococcus spp. appeared to provide only 6% of the dawn-to-duskin situ primary production at the neritic front. In modified Sargasso water in the warm-core eddy,Synechococcus spp. contributed 25% to thein situ rate of integrated primary production. In this warm-core eddy, the 0.2 to 0.6 m fraction made a major contribution to the standing crop of chlorophyll and primary production that equalled or exceeded that of the larger sze categories. Furthermore, at the bottom of the euphotic layer, eukaryotes numerically dominated the 0.2 to 0.6 m fraction, which contributed 61% of the primary productivity. At Wilkinson's Basin, theSynechococcus spp.-dominated 0.6 to 1.0 m fraction made the greatest contribution to the standing crop of chlorophyll an primary production, while smaller photoautotrophs (0.2 to 0.6 m) accounted for little of the chlorophyll or photosynthetic rates measured over the euphotic layer. Largest numbers ofSynechococcus spp. (2.9x108 cells l-1) occurred at the 18% isolume, coincident with a shoulder in the chlorophyll fluorescence profile and the site of maximumin situ primary productivity. At Wilkinson's Basin,Synechococcus spp. contributed 46% to thein situ photosynthesis integrated over the water-column.  相似文献   

9.
黄海春季表层叶绿素和初级生产力及其粒径结构研究   总被引:1,自引:0,他引:1  
张江涛  殷克东 《生态环境》2010,19(9):2107-2111
根据2006年4月对黄海浮游植物分级叶绿素及初级生产力的调查,研究了黄海叶绿素及初级生产力的水平分布及粒级结构特征,并分析了其主要影响因素。黄海海域调查站位表层叶绿素a质量浓度变化范围为0.20~4.94μg·L-1,平均值为0.96μg·L-1。叶绿素最大值出现在临近长江口的站位。叶绿素分级结果表明黄海春季以粒径〉5μm的浮游植物占优势。黄海表层初级生产力的变化范围为2.03~15.64mg·m-3·h-1,平均值为6.08mg·m-3·h-1。其中南黄海海域初级生产力平均为6.58mg·m-3·h-1,北黄海海域初级生产力平均为4.92mg·m-3·h-1。高值区分布在南黄海中部。受水体透明度的影响,低值区出现在临近长江口的站位。断面站位分析表明浮游植物初级生产力由北向南逐步升高,温度随纬度的变化是南北海域初级生产力水平差异的主要原因。由于粒径较小(〈5μm)的浮游植物单位叶绿素具有较高的碳固定能力,调查期间整个海区初级生产力以粒径〈5μm的浮游植物贡献为主。  相似文献   

10.
Phytoplankton pigments and species were studied at a coastal station off Sydney (New South Wales, Australia) over one annual cycle. Sudden increases in chlorophyll a (up to 280 mg m-2), due to short-lived diatom blooms, were found in May, July, September, January and February. These were superimposed upon background levels of chlorophyll a (20 to 50 mg m-2), due mostly to nanoplankton flagellates, which occurred throughout the year. The nanoplankton (<15 m) accounted for 50 to 80% of the total phytoplankton chlorophyll, except when the diatom peaks occurred (10 to 20%). The annual cycle of populations of 16 dominant species-groups was followed. Possible explanations as to alternation of diatom-dominated and nanoplankton-dominated floras are discussed. Thin-layer chromatography of phytoplankton pigments was used to determine the distribution of algal types, grazing activity, and phytoplankton senescence in the water column. Chlorophyll c and fucoxanthin (diatoms and coccolithophorids) and chlorophyll b (green flagellates) were the major accessory pigments throughout the year, with peridinin (photosynthetic dinoflagellates) being less important. Grazing activity by salps and copepods was apparent from the abundance of the chlorophyll degradation products pheophytin a (20 to 45% of the total chlorophyll a) and pheophorbide a (10 to 30%). Chlorophyllide a (20 to 45%) was associated with blooms of Skeletonema costatum and Chaetoceros spp. Small amounts of other unidentified chlorophyll a derivatives (5 to 20%) were frequently observed.  相似文献   

11.
Between July 21 and August 8, 1984, phytoplankton were collected from the surface (2 m) and/or chlorophyll maximum of a neritic front, warm-core eddy 84-E and Wilkinson's Basin in the Northwest Atlantic Ocean and incubated up to 38 h in 200-liter vats. Effects of light intensity and nutrient availability on diel patterns of cell metabolism were analyzed in a 0.6- to 1-m fraction, where Synechococcus spp. represented 80 to 100% of the total photoautotrophs. Populations held under in situ conditions exhibited daytime peaks in photosynthetic potential (Pmax) that were an order of magnitude higher than nighttime Pmax values. Daytime phasing of Pmax peaks had no relationship to asynchronous fluctuations in cellular activities of ribulose 1,5 bisphosphate carboxylase (RUBPCase) or phosphoenol pyruvate carboxylase (PEPCase), or to variations in chlorophyll content. Daytime Pmax peaks were about 12 h out of phase with nighttime maxima in the frequency of dividing cells (FDC). The phase relationship between Pmax and FDC could be altered by manipulating environmental conditions. High light exposure of depp populations did not affect timing of the Pmax peak, but its magnitude increased and coincided with increased RUBPCase activity and chlorophyll photobleaching. In the eddy population, a major shift in the timing of peak Pmax was induced when increased light intensity was accompanied by nutrient enrichment. This change coincided with major increases in cellular chlorophyll and carboxylating enzyme activity. Lowering irradiance and/or increasing nutrient availability elicited different diel pattern in cellular metabolism in surface populations from the eddy and from Wilkinson's Basin that appeared linked to differences in the nutrient status of the cells. Rates of cell division estimated from the percentage of dividing cells in preserved samples were 0.83 divisions d-1 in surface warm-core eddy populations, supporting the view that carbon and nitrogen turnover rates in oligotrophic waters can be sufficient to promote near optimal growth of Synechococcus spp.  相似文献   

12.
Grazing rates of larger (Calanus finmarchicus) and smaller (Acartia clausii Pseudocalanus elongatus etc.) copepods on naturally occurring phytoplankton populations were measured during a declining spring phytoplankton bloom. During the initial period, dominated by Chaetoceros spp. diatoms, constant ingestion rates were observed in Calanus finmarchicus at suspended particulate concentrations above 300 g carbon l-1. Average daily intake during this time amounted to 35 to 40% of body carbon and reached a maximum of 50%. The feeding response of the smaller copepods was not so well defined, although a maximum daily intake of 56% body carbon was recorded. In both groups, feeding thresholds were at particulate concentrations around 50 g C l-1. The feeding response of C. finmarchicus was correlated with both a change in their own population and in the food cell type. Linear regressions describing the concentration-dependent feeding response were: ingestion rate (IR)=1.16 total particulate volume (TPV)-36.15 during the initial part of the period compared with IR=0.41 TPV-12.18 for the latter period. C. finmarchicus filtered out slightly larger (x 1.2 diameter) particles than the small copepods and, in both groups, some filtering adjustment was made to accomodate to modal changes in the phytoplankton population from 20–30 m to 10 m diameter cells. Particle production during feeding was frequently evident in the smallest size ranges of particles and the ratio of particle production to ingestion rate was greater at low feeding rates.  相似文献   

13.
Microzooplankton grazing and community structure were investigated in the region of the Subtropical Convergence (STC) during three cruises of the South African Antarctic Marine Ecosystem Study (SAAMES) in austral summer (January/February 1993; December 1994/January 1995) and winter (June/July 1993). Chlorophyll a concentrations were consistently dominated by the <20 m size fraction during all three cruises, while the contribution of the microphytoplankton (>20 m) to total chlorophyll a concentrations varied considerably between cruises. Microzooplankton communities were numerically dominated by protozoans comprising ciliates (aloricates and tintinnids) and dinoflagellates. Instantaneous growth coefficients of phytoplankton in the vicinity of the STC showed no seasonal trends. However, marked seasonal differences were observed in the size structure of the phytoplankton. The grazing impact of microzooplankton was highest when the <20 m chlorophyll fraction contributed >95% of the total. Under these conditions, the instantaneous grazing rates ranged between 0.15 and 0.66 d-1. These correspond to daily losses of 14 to 48% of the inntial standing stock and between 45 and 81% of the potential primary production. At stations where microphytoplankton contributed significantly (-20%) to total chlorophyll concentrations, the grazing coefficients were lower, ranging between 0 and 0.53 d-1. This corresponds to a loss of <41% of the initial standing stock, or between 0 and 56% of the potential production. Our data suggest that microzooplankton represent the main grazing sink for production when the <20 m chlorophyll size-class dominates total chlorophyll. These facts suggest that the efficiency of the biological pump may vary over time.  相似文献   

14.
Nanoplankton and picoplankton primary production has been studied at two oceanic stations in the Porcupine Sea-bight and at one shelf station in the Celtic Sea. At both sites, low wind conditions in June and July 1985 resulted in greatly reduced vertical turbulent mixing and a secondary, temporary thermocline developed in what is usually a well-mixed surface layer; as a result, there was physical separation of the phytoplankton within two zones of the surface mixed layer. The photosynthetic characteristics of three size fractions (>5 m, <5 to >1 m and <1 to >0.2 m) of phytoplankton populations from the two zones have been measured. Phytoplankton was more abundant at the oceanic stations and chlorophyll a values were between 1.3 and 2.2 mg chlorophyll a m-3, compared with 0.3 to 0.6 mg chlorophyll a m-3 at the shelf station; at both stations, numbers of cyanobacteria were slightly higher in the lower zone of the surface mixed layer. There was no effect of the temporary thermocline on the vertical profiles of primary production and most phtosynthesis occurred in the surface 10 m. Photosynthetic parameters of the three size fractions of phytoplankton have been determined; there was considerable day-to-day variation in the measured photosynthetic parameters. Assimilation number (P m B ) of all >5 m phytoplankton was lower for the deeper than for the surface populations, but there was little change in initial slope (a B ). The small oceanic nanoplankton (<5 to >1 m) showed changes similar to the >5 m phytoplankton, but the same size fraction from the shelf station showed changes that were more like those shown by the picoplankton (<1 m) viz, little change in P m B but an increase in a B with depth. Values of a B were generally greater for the picoplankton fraction than for the larger phytoplankton, but values of adaptation parameter (I k )(=P m B /) were not always less. There was little evidence to support the hypothesis that these populations of picoplankton were significantly more adapted to low light conditions than the larger phytoplankton cells. When photosynthetic parameters of the picoplankton were normalised to cell number (P m C /a C ) rather than chlorophyll a, P m C was comparable to other published data for picoplankton, but a C was much lower. The maximum doubling time of the picoplankton at saturating irradiance is calculated to be ca. 8.5 h for the oceanic population and ca. 6.2 h for the shelf population.  相似文献   

15.
This paper describes a carbon budget for the spring phytoplankton bloom in Auke Bay, a subarctic bay in southeastern Alaska. The budget was constructed using semiweekly data on carbon production, particulate carbon in the water column, and cumulative sedimentation of carbon, chlorophyll a, and pheopigments. From these measured parameters, seasonal carbon consumption, utilization, and import/export terms were derived. The chlorophyll and pheopigment data were used to partition carbon sinking out of the photic zone between phytoplankton cells and fecal material. The difference between total carbon production and carbon available for consumption was attributed primarily to carbon import/export related to advection of water masses into and out of the bay. Separate budgets were developed for each of five sampling years (1985–1989). An average of 130±16 g C/m2 were produced by phytoplankton during each spring. Our model suggests that an average of 70% of this carbon was available for consumption by grazers within the bay; the remaining 30% is assumed to have been exported from the bay by advective transport. Of the available (non-exported) carbon, an average of 55% was consumed by grazers, 34% sank out of the photic zone in the form of uneaten algae, and about 11% remained at the end of the sampling period in the form of phytoplankton standing stocks. Overall, about 27% of the carbon produced each spring in Auke Bay (35 gC/m2) was used for growth and respiration by first-order consumers within the bay.  相似文献   

16.
A 1.8 ha brackish (5 to 15 S) embayment (Osborn Cove) on the Western Shore of Chesapeake Bay (USA) was studied during 1976 to examine some hydrologic and climatic influences on its phytoplankton, bacteria, intertidal benthos, a peripheral salt marsh (equivalent to 20% of the cove surface area), and the surrounding 48 ha forest watershed. Comparisons with 1975 and 1977 for temperature, salinity, rainfall and tidal extremes, show 1976 to have had normal rainfall but a cooler autumn. Sediment moves alongshore into the cove after rainfall, and erosion causes soil breakdowns from nearby cliffs. This movement, ice damage and predators appear to mediate distribution of the intertidal benthos. Phytoplankton density, chlorophyll and photosynthesis are compared with other portions of the Chesapeake Estuary sampled in parallel programs. Phytoplankton chlorophyll oscillations observed in the Bay and Potomac River were not seen in the cove. Cove gross and net photosynthesis averaged about the same as the bay, but the cove had higher rates in spring, a result of significantly higher net assimilation ratios rather than higher biomass. River-contributed nutrients may have produced this stimulation when used by tidally inoculated phytoplankton. Large numbers of small flagellates were not seen after heavy rainfall fluishing. Net phytoplankton production in the cove was estimated at 97.6 g C m-2 yr-1. A portion of the cove having restricted circulation apparently contributed 48% of this production in months when its phytoplankton was dominated by small flagellates. Total estimated net production by cove phytoplankton was 1.75x103 kg C yr-1, compared to 0.75x103 kg C yr-1 for a narrow peripheral zone of Spartina alterniflora growth occupying only 13% as much area. This ratio and circumstantial evidence suggests that leaf litter from the surrounding forest dominated particulate input to the cove. Bacterial plate counts showed increases in total numbers as a function of water temperature, with surface counts exceeding bottom counts. Indigenous bird and mammal waste are suggested as important bacterial inputs. Rainfall pulses resulted in rapid increases of fecal coliform and fecal streptococcus counts.  相似文献   

17.
C. Guo  W. M. Dunstan 《Marine Biology》1995,122(2):333-339
Chlorophyll a-specific in vivo fluorescence exhibited depth-dependent changes in a Sargasso Sea phytoplankton community, decreasing from a maximum value at the surface to a minimum at 90m, and then increasing again below 90 m. This distribution pattern was not explained by irradiance conditions, diurnal variability, senescence in the deep population, or changes in light-absorption efficiency of chlorophyll a. However, a significant positive correlation was found between mean phytoplankton cell size and fluorescence number in the upper euphotic zone, where nutrient concentrations were low. We hypothesize that the direct cause for this observed correlation was nutrient limitation. In this picoplankton-dominated community, packaging effect was minimal. Under nutrient-limiting conditions, as mean cell size increases photosynthetic efficiency decreases and therefore fluorescence number increases. In the lower euphotic zone where nutrients were not limiting, changes in fluorescence number exhibited weak size-dependence and appeared to be related to species compositional changes.  相似文献   

18.
The photosynthetic characteristics of prokaryotic phycoerythrin-rich populations of cyanobacteriaSynechococcus spp. and larger eukaryotic algae were compared at a neritic frontal station (Pl), in a warm-core eddy (P2), and at Wilkinson's Basin (P3) during a cruise in the Northwest Atlantic Ocean in the summer of 1984.Synechococcus spp. numerically dominated the 0.6 to 1 m fraction, and to a lesser extent the 1 to 5 m size fractions, at most depths at all stations. At P2 and P3, all three size categories of phytoplankton (0.6 to 1 m, 1 to 5 m, and >5 m) exhibited similar depth-dependent chages in both the timing and amplitude of diurnal periodicities of chlorophyllbased and cell-based photosynthetic capacity. Midday maxima in photosynthesis were observed in the upper watercolumn which damped-out in all size fractions sampled just below the thermocline. For all size fractions sampled near the bottom of the euphotic zone, the highest photosynthetic capacity was observed at dawn. At all depths, theSynechococcus spp.-dominated size fractions had lower assimilation rates than larger phytoplankton size fractions. This observation takes exception with the view that there is an inverse size-dependency in algal photosynthesis. Results also indicated that the size-specific contribution to potential primary production in surface waters did not vary appreciably over the day. However, estimates of the percent contribution ofSynechococcus spp. to total primary productivity in surface waters at the neritic front were significantly higher when derived from short-term incubator measurements of photosynthetic capacity rather than from dawn-to-duskin situ measurements of carbon fixation. The discrepancy was not due to photoinhibitory effects on photosynthesis, but appeared to reflect increased selective grazing pressure onSynechococcus spp. in dawn-to-dusk samples. Low-light photoadaptation was evident in analyses of the depth-dependency ofP-I parameters (photosynthetic capacity,P max; light-limited slope, alpha;P max alpha,I k ; light-intensity beyond which photoinhibition occurs,I b ) of the > 0.6 m communities at all three stations and was attributable to stratification of the water column. There was a decrease in assimilation rates andI k with depth that was associated with increases in light-limited rates of photosynthesis. No midday photoinhibition ofP max orI b was observed in any surface station. Marked photoinhibition was detected only in the chlorophyll maximum at the neritic front and below the surface mixed-layer at Wilkinson's Basin, where susceptibility to photoinhibition increased with the depth of the collected sample. The 0.6 to 1 m fraction always had lower light requirements for light-saturated photosynthesis than the > 5 m size fraction within the same sample. Saturation intensities for the 1 to 5 m and 0.6 to 1 m size fractions were more similar whenSynechococcus spp. abundances were high in the 1 to 5 m fraction. The > 5 m fraction appeared to be the prime contributor to photoinhibitory features displayed in mixed samples (> 0.6 m) taken from the chlorophyll maxima. InSynechococcus spp.-dominated 0.6 to 1 and 1 to 5 m size fractions, cellular chlorophylla content increased 50- to 100-fold with depth and could be related to increases in maximum daytime rates of cellularP max at the base of the euphotic zone. Furthermore, the 0.6 to 1 m and > 5 m fractions sampled at the chlorophyll maximum in the warm-core eddy had lower light requirements for photosynthesis than comparable surface samples from the same station. Results suggest that photoadaptation in natural populations ofSynechococcus spp. is accomplished primarily by changing photosynthetic unit number, occuring in conjuction with other accommodations in the efficiency of photosynthetic light reactions.  相似文献   

19.
Lipid class profiles and total fatty acid composition of particulate matter were studied in the northeast Atlantic during the spring bloom and fall. Eddies of known physical and chemical properties were sampled at different depths. HPLC pigment data were used to characterize the phytoplankton communities. In spring, a dominance of prymnesiophytes was recorded at all depths, while in fall prochlorophytes dominated near the surface and prymnesiophytes only at deep chlorophyll maximum. Lipid classes included triglycerides, sterols, glycolipids and phospholipids. A differential relationship between phytoplankton abundance and lipid accumulation was observed: spring lipid concentrations were positively related to phytoplankton biomass, while fall particulate lipid did not show any relationship. The main feature was a northward increase in lipid concentrations unrelated to the mesoscale hydrological structures. Polar lipids dominated over neutral acyl-glycerols with phospholipids dominating over glycolipids in spring, while glycolipids dominated in fall. This resulted from different nutrient availability with a dominance of flagellates associated with mesotrophy in spring and of picophytoplankton associated with oligotrophy in fall. In terms of fatty acids, factorial correspondence analyses illustrate the influence of seasonally changing assemblages: (1) in spring, the main source of variability was the bloom with an opposition between bloom sites characterized by n-3 and n-6 PUFA, and more detrital deep samples characterized by saturated, monoenoic and branched acids; (2) fall fatty acid profiles were similar at all depths and very close to those observed for spring deep samples. Comparison of pigment and fatty acids using redundancy analysis suggested that pelagophytes were linked to saturated and branched acids. It also showed that prymnesiophytes and prochlorophytes were significantly associated with n-6 and n-3 PUFA. The spring period illustrated the complexity of these relationships with dinoflagellates and prymnesiophytes linked with n-3 PUFA, diatoms linked with palmitoleic and myristic acids, and pelagophytes linked with n-6 PUFA and higher-chain-length monoenes.  相似文献   

20.
为了了解贵州高原水库蓝藻群落组成特征和微囊藻毒素分布,于2009年10月对贵州高原2座水库——万峰湖和百花湖采样调查。结果表明:万峰湖以蓝藻为主要优势藻,蓝藻中的拟柱孢藻(Cylindrospermopsis sp.)占绝对优势,浮游植物丰度在13.05×104~55.80×104 cells.L-1之间,蓝藻的丰度值占到了总量的82.55%,6个采样点中有3个(大坝、野鸭滩和革布)检出了微囊藻毒素MC-RR,且有1个点(革布)质量浓度超标,另外3个点(坝艾、坝达章和九里堡)未检出;百花湖以蓝藻、绿藻和硅藻共同构成优势藻,蓝藻中的假鱼腥藻(Pseudanabaena limnetica)是主要优势藻,浮游植物丰度在6.16×104~65.00×104 cells.L-1之间,蓝藻的丰度值在总体中所占比例为33.25%,3个采样点(大坝、岩脚寨和码头)均未检出微囊藻毒素。形成2个高原水库蓝藻群落结构和微囊藻毒素分布差异的原因可能是:2个水库中氮、磷营养盐水平不同引起浮游植物群落组成不同,进而导致了微囊藻毒素的分布出现差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号