首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The HBV-N model was used for a scenario analysis of changes in nitrogen retention and transport caused by alterations of wetness due to land drainage, lowering of lakes, building of dams and climatic variability in a river basin in south-central Sweden (1885–1994). In general, dams were situated in locations more favourable for retention, compared to the lowered lakes. Rather modest conversions of water bodies only changed nitrogen transport by about 3%. The 180-times-larger increase of (mainly) tile-drained agricultural land had, according to simulations, increased the nitrogen transport by 17%, due to reduced retention. However, compared to human-induced alteration of the landscape N retention, the choice of 10-year periods of climatological data had the overriding effect on the calculated nitrogen transport. Weather-induced variations resulted in a 13% difference in nitrogen retention between various 10-year periods. When the model was driven by climatological data from the driest 10-year period (1905–1914), the estimated average annual load was only half of that obtained with climatological data from the wettest 10-year period (1975–1984). Electronic Publication  相似文献   

2.
Meteorological-driven processes exert large and diverse impacts on lakes and their water quality; these impacts can be hydrologic, thermal, hydraulic, chemical, biochemical, or ecological. The impact of climate change on Lake Tahoe (California–Nevada) was investigated here as a case study of climate change effects on the physical processes occurring within lakes. The already published trends of meteorological variables were used to assess the effects of global warming on Lake Tahoe dynamics. Records from the period 1969–2002 show that Lake Tahoe has became warmer and more stable. A series of simulation years into the future (i.e., 2000–2040) was established using flows, loads, and meteorology data sets for the period 1994–2004. Results of 40-year simulations show that the lake continues to become warmer and more stable, and mixing is reduced. Possible changes in water quality because of global warming are discussed through inference, although these are not specifically simulated. Many existing problems may be exacerbated due to climate change, yet extreme uncertainty depends on the rate and magnitude of climate change. Therefore, shifts in water quality and quantity due to climate change should be integrated into contemporary planning and management in an adaptive manner, and the research and development of impact assessment methodology should focus on approaches that can handle extreme uncertainty. The general alternatives for lake management due to climate change are discussed. Depending on the specific case, further intensive research is suggested to restore lake water quality.  相似文献   

3.
Three soil carbon models (RothC, CANDY and the Model of Humus Balance) were used to estimate the impacts of climate change on agricultural mineral soil carbon stocks in European Russia and the Ukraine using detailed spatial data on land-use, future land-use, cropping patterns, agricultural management, climate and soil type. Scenarios of climate were derived from the Hadley Centre climate Version 3 (HadCM3) model; future yields were determined using the Soil–Climate–Yield model, and land use was determined from regional agricultural and economic data and a model of agricultural economics. The models suggest that optimal management, which entails the replacement of row crops with other crops, and the use of extra years of grass in the rotation could reduce Soil organic carbon (SOC) loss in the croplands of European Russia and the Ukraine by 30–44% compared to the business-as-usual management. The environmentally sustainable management scenario (SUS), though applied for a limited area within the total region, suggests that much of this optimisation could be realised without damaging profitability for farmers.  相似文献   

4.
We present climate change projections and apply indices of weather extremes for the Mediterranean island Cyprus using data from regional climate model (RCM) simulations driven by the IPCC A1B scenario within the ENSEMBLES project. Daily time-series of temperature and precipitation were used from six RCMs for a reference period 1976–2000 and for 2026–2050 (‘future‘) for representative locations, applying a performance selection among neighboring model grid-boxes. The annual average temperatures of the model ensemble have a ±1.5°C bias from the observations (negative for maximum and positive for minimum temperature), and the models underestimate annual precipitation totals by 4–17%. The climatological annual cycles for the observations fall within the 1σ range of the 6-model average, highlighting the strength of using multi-model output. We obtain reasonable agreement between models and observations for the temperature-related indices of extremes for the recent past, while the comparison is less good for the precipitation-related extremes. For the future, the RCM ensemble shows significant warming of 1°C in winter to 2°C in the summer for both maximum and minimum temperatures. Rainfall is projected to decrease by 2–8%, although this is not statistically significant. Our results indicate the shift of the mean climate to a warmer state, with a relatively strong increase in the warm extremes. The precipitation frequency is projected to decrease at the inland Nicosia and at the coastal Limassol, while the mountainous Saittas could experience more frequent 5–15 mm/day rainfall. In future, very hot days are expected to increase by more than 2 weeks/year and tropical nights by 1 month/year. The annual number of consecutive dry days shows a statistically significant increase (of 9 days) in Limassol. These projected changes of the Cyprus climate may adversely affect ecosystems and the economy of the island and emphasize the need for adaptation strategies.  相似文献   

5.
The Model of Humus Balance was used to estimate the influence of climate effects and changing agricultural practices on carbon (C) levels in soddy–podzolic soils in the Russian Federation for the years 2000–2050. The model was linked with a spatial database containing soil, climate and farming management layers for identification of spatial change of C sequestration potential. Analysis of relationships between C, soil texture and climate indicated that compared with a business-as-usual scenario, adaptation measures could increase the number of polygons storing soil organic carbon (SOC) by 2010–2020. The rate of possible C loss is sensitive to the different climate scenarios, with a maximum potential for SOC accumulation expected in 2030–2040, thereafter decreasing to 2050. The effect is most pronounced for the arid part of the study area under the emission scenario with the highest rate of increase in atmospheric CO2 concentration, supporting findings from the dynamic SOC model, RothC. C sequestration during the study period was permanent for clay and clay loam soils with a C content of more than 2%, suggesting that C sequestration should be focused on highly fertile, fine-textured soils. We also show that spatial heterogeneity of soil texture can be a source of uncertainty for estimates of SOC dynamics at the regional scale. Figures in color are available at  相似文献   

6.
The alpine ecosystems in permafrost regions are extremely sensitive to climate change. The headwater regions of Yangtze River and Yellow River of the Qinghai-Tibet Plateau are on the permafrost area. Aerial photos of the Source Regions of the Yangtze and Yellow River taken in 1968 and three phases of TM images acquired from 1986, 2000, and 2008 were used to analyze the spatial alterations of the land cover and corresponding effects on the environment guided by landscape ecology theory. Firstly, land cover types were divided into three classes and 11 subclasses. Analysis results revealed the trends and magnitude of the eco-environmental changes in the regions over the past four decades and showed a continuous degradation of grasslands and the extension of desertification and salinization. Secondly, five landscape pattern indices (i.e., NP, MPS, PR, SHEI, CONTAG) commonly used in landscape ecological studies were calculated, and results showed that this region had become more centralized and diversified. Finally, the factors causing the degradation of alpine grasslands were analyzed. The regional climate exhibited a tendency toward significant warming and desiccation with the air temperature increased by 0.03 °C per year and relative stable precipitation over the last 40 years. And the temperature of permafrost in 0–20 cm soil layer obviously raised by 0.2–0.3 °C in the last 40 years. The combined effects of climate warming and permafrost variation were the major drivers for the changes of landscape in alpine ecosystems.  相似文献   

7.
Climate change has in the past led to shifts in vegetation patterns; in a future, warmer climate due to enhanced greenhouse-gas concentrations, vegetation is also likely to be highly responsive to such warming. Mountain regions are considered to be particularly sensitive to such changes. In this paper we present an approach to assess the impact of climate change on long-term vegetation plots at the high-elevation site of the Schynige Platte, 2000 m above sea level, in the Bernese Alps (Switzerland). Records of vegetation spanning the period from 1928 to today at two different sites, each with several plots, were considered. The observed change in the species composition was then related to changes in land use and climate. We used daily values of temperature, snow and precipitation from several high-elevation weather stations to conduct these analyses. The correlation between climate and vegetation patterns revealed that species that prefer low thermal conditions move out of the plots, i.e., their frequency of occurrence is negatively correlated with the average number of degree-days over the last six decades. On the other hand, species with higher thermal demands are seen to be invading the plots, i.e., their frequency of occurrence is positively correlated to the average number of degree-days. Nutrient changes – though independent from climate – also play an important role in the observed shifts in species. Received: 20 June 1999 · Accepted: 14 January 2000  相似文献   

8.
It has become increasingly well documented that human activities are enhancing the greenhouse effect and altering the global climate. Identifying strategies to mitigate atmospheric carbon dioxide emissions on the national level are therefore critical. Fossil fuel combustion is primarily responsible for the perturbation of the global carbon cycle, although the influence of humans extends far beyond the combustion of fossil fuels. Changes in land use arising from human activities contribute substantially to atmospheric carbon dioxide; however, land use changes can act as a carbon dioxide sink as well. A soil carbon model was built using STELLA to explore how soil organic carbon sequestration (SOC) varies over a range of values for key parameters and to estimate the amount of global soil carbon sequestration from livestock waste. To obtain soil carbon sequestration estimates, model simulations occurred for 11 different livestock types and with data for eight regions around the world. The model predicted that between 1980 and 1995, United States soils were responsible for the sequestration of 444–602 Tg C from livestock waste. Model simulations further predicted that during the same period, global soil carbon sequestration from livestock waste was 2,810–4,218 Tg C. Our estimates for global SOC sequestration are modest in proportion to other terrestrial carbon sinks (i.e. forest regrowth); however, livestock waste does represent a potential for long-term soil carbon gain. SOC generated from livestock waste is another example of how human activities and land use changes are altering soil processes around the world. Readers should send their comments on this paper to: BhaskarNath@aol.com within 3 months of publication of this issue.  相似文献   

9.
The Kaštela Bay (Croatia) is known, by the use of Fast micromethod, as an area with the highest level of genotoxic agents along the Adriatic Sea. The genotoxic impacts in Kastela Bay and the neighbouring Trogir Bay using micronucleus test and Comet assay with mussel (Mytilus galloprovincialis) haemocytes were assesed during 2003 and 2004. This location received effluents from various industries (brewery, cement plant, etc.), ports (oil and general port), the Split shipyard, Vranjic shipworks along with domestic sewage and agricultural discharge that enters the bay without any treatment. In the meantime, a lot of industries were closed and the input of pollutants were discontinued. The tested mussels from the 2003–2004 confirmed that mussels from Kaštela Bay were affected by genotoxic contaminants. The aim of our study was to assess genotoxic impacts on Mytilus galloprovincialis in the same area after six years using Comet Assay test. Our survey showed decreses of genotoxic damage on mussel haemocytes.  相似文献   

10.
Regional Siberian studies have already registered climate warming over the last several decades. We evaluated ongoing climate change in central Siberia between 1991 and 2010 and a baseline period, 1961–1990, and between 1991 and 2010 and Hadley 2020 climate change projections, represented by the moderate B1 and severe A2 scenarios. Our analysis showed that winters are already 2–3°C warmer in the north and 1–2°C warmer in the south by 2010. Summer temperatures increased by 1°C in the north and by 1–2°C in the south. Change in precipitation is more complicated, increasing on average 10% in middle latitudes and decreasing 10–20% in the south, promoting local drying in already dry landscapes. Hot spots of possible forest shifts are modeled using our Siberian bioclimatic vegetation model and mountain vegetation model with respect to climate anomalies observed pre-2010 and predicted 2020 Hadley scenarios. Forests are predicted to shift northwards along the central Siberian Plateau and upslope in both the northern and southern mountains. South of the central Siberian Plateau, steppe advancement is predicted that was previously non-existent north of 56°N latitude. South of 56°N, steppe expansion is predicted in the dry environments of Khakasiya and Tyva. In the southern mountains, it is predicted that the lower tree line will migrate upslope due to increased dryness in the intermontane Tyvan basins. The hot spots of vegetation change that are predicted by our models are confirmed by regional literature data.  相似文献   

11.
Climate change alters different localities on the planet in different ways. The impact on each region depends mainly on the degree of vulnerability that natural ecosystems and human-made infrastructure have to changes in climate and extreme meteorological events, as well as on the coping and adaptation capacity toward new environmental conditions. This study assesses the current resilience of Mexico and Mexican states to such changes, as well as how this resilience will look in the future. In recent studies (Moss et al. in Vulnerability to climate change: a quantitative approach. Pacific Northwest National Laboratory, Washington DC, 2001; Brenkert and Malone in Clim Change 72:57–102, 2005; Malone and Brenkert in Clim Change 91:451–476, 2008), the Vulnerability–Resilience Indicators Model (VRIM) is used to integrate a set of proxy variables that determine the resilience of a region to climate change. Resilience, or the ability of a region to respond to climate variations and natural events that result from climate change, is given by its adaptation and coping capacity and its sensitivity. On the one hand, the sensitivity of a region to climate change is assessed, emphasizing its infrastructure, food security, water resources, and the health of the population and regional ecosystems. On the other hand, coping and adaptation capacity is based on the availability of human resources, economic capacity, and environmental capacity. This paper presents two sets of results. First, we show the application of the VRIM to determine state-level resilience for Mexico, building the baseline that reflects the current status. The second part of the paper makes projections of resilience under socioeconomic and climate change and examines the varying sources and consequences of those changes. We used three tools to examine Mexico’s resilience in the face of climate change, i.e., the baseline calculations regarding resilience indices made by the VRIM, the projected short-term rates of socioeconomic change from the Boyd–Ibarrarán computable general equilibrium model, and rates of the IPCC-SRES scenario projections from the integrated assessment MiniCAM model. This allows us to have available change rates for VRIM variables through the end of the twenty-first century.  相似文献   

12.
Climate change is the main global challenge of this century; it is therefore imperative to identify its effects on agriculture in developing countries. This research makes spatial assessment of climate change effect on major plantation crops in Sri Lanka, with emphasis on crop suitability of tea, rubber, and coconut. Geo-referenced maps of spatial and temporal changes in crop suitability and production potentials are generated and compared. Data pertaining to six agro-ecological zones under the study area are analyzed for a period of 1980–2007. Crop suitability maps are generated amalgamating yield maps and climatic factors maps using AHP in multi-criteria analysis under two time frames of 1980–1992 and 1993–2007. Percent change in crop suitability and crop yield classes is calculated based on five crop suitability and five crop yield classes during two time frames. Dynamics of climatic parameters and crop yield are recognized using geo-referenced maps. The suitability maps of the two time frames are compared to identify the changes with each crop in conjunction with changes in the prevailing climate and yield. Geographic shift of suitability, yield, and climate classes are examined. Net gain or loss in crop production is quantified. Long-term annual rainfall significantly decreased in mid-country wet zone, whereas the mean temperature of the study area increased by 1.4°C. Results clearly showed that the climate and yield can be meaningfully related to the crop suitability and management.  相似文献   

13.
Environment, Development and Sustainability - This study examined the effects of climate change on rice production in 30 Chinese provinces spanning 1998–2017. The study used the pooled mean...  相似文献   

14.
A simple model of yield was used along with climate scenarios to assess the impact of climate change on grain maize productivity and associated economic risk in Switzerland. In a first application, changes in the precipitation regime alone were shown to affect the distribution of yield considerably, with shifts not only in the mean but also in the standard deviation and the skewness. Production risk was found to respond more markedly to changes in the long-term mean than in the inter-annual variability of seasonal precipitation amounts. In a further application, yield projections were generated with respect to a full climate scenario, with the emission pathway as specified in the IPCC A2 scenario. Anticipation of the sowing date was found to reduce the negative impact of climate change on yield stability, but was not sufficient to ensure average productivity levels comparable to those observed at present. We argued that this was caused by the reduction in the duration of the growing season, which had a stronger impact than suggested by previous studies. Assuming no change in price relations, the results also revealed a strong increase in production risk with climate change, with more than a doubling in the probability of yield falling short of a critical threshold as compared to today’s situation.  相似文献   

15.
Possible climate change will modify snow-cover depth and change the characteristics of winter tourism and skiing districts. Our model describes seasonal snow-cover depth related to altitude in six Alpine climate regions as the best fit of all snow stations. Data cover 30 winter seasons (November to April values) from 1965 to 1995. We modified the data according to a scenario of temperature and precipitation change (2 °C warming, no precipitation change) and achieve a new simulated snow-cover depth. The indicators MARP (mean altitude of resident population) and MASPSL (mean altitude of starting point of ski lifts) serve as references for “critical altitudes” of Austrian districts. A warming implies a reduction of snow in all districts, but the loss is overproportional in lower altitudes. The direction of economic impacts is clear – income losses and adaptation costs – but magnitude and time frames remain uncertain. Received: 24 February 1999 · Accepted: 15 May 1999  相似文献   

16.
The broad climatological features associated with the Asian monsoon circulation, including its mean state and intraseasonal and interannual variability over the Indian subcontinent as simulated in the National Center for Atmospheric Research (NCAR) global coupled climate system model (CSM) in its control reference experiment, are presented in this paper. The CSM reproduces the seasonal cycle as well as basic observed patterns of key climatic parameters reasonably well in spite of some limitations in simulation of the monsoon rainfall. However, while the seasonality in rainfall over the region is simulated well, the simulated area-averaged monsoon rainfall is underestimated to only about 60% of the observed rainfall. The centers of maxima in simulated monsoon rainfall are slightly displaced southward as compared to the climatological patterns. The cross-equatorial flow in simulated surface wind patterns during summer is also stronger than observed with an easterly bias. The transient experiment with a 1% per year compound increase in CO2 with CSM suggests an annual mean area-averaged surface warming of about 1.73 °C over the region at the time of CO2 doubling. This warming is more pronounced in winter than during the monsoon season. A net increase in area-averaged monsoon rainfall of about 1.4 mm day–1, largely due to increased moisture convergence and associated convective activity over the land, is obtained. The enhanced intraseasonal variability in the monsoon rainfall in a warmer atmosphere is confined to the early part of the monsoon season which suggests the possibility of the date of onset of summer monsoon over India becoming more variable in future. The enhanced interannual and intraseasonal variability in the summer monsoon activity over India could also contribute to more intense rainfall spells over the land regions of the Indian subcontinent, thus increasing the probability of extreme rainfall events in a warmer atmosphere. Electronic Publication  相似文献   

17.
This study estimates the consequences of climate change on cropland with and without implementation of adaptation measures, paying special attention to the maintenance of soil organic carbon (C) stocks. We examine the possibility for regional sustainable agricultural management practice that combines both maintenance and gain in soil carbon level with profit maximization. Future scenarios of Regional Agricultural Production Systems (RAPS) were constructed for 2000–2070 based on linking the effects of global climate change, predicted change in productivity parameters for the main agricultural crops, land-use and soil database parameters. The RAPS were used to examine profitability and feasibility of alternative agricultural scenarios, based on an economic model. A number of recommendations for decision making were proposed based on an assessment of the efficiency of adaptation in animal husbandry and in the crop production sector, after analysis of current percentage of perennial grass in rotation in comparison with future economic scenarios. Figures in color are available at  相似文献   

18.
Permafrost wetlands are one of the most sensitive plant communities in response to global warming. Global warming could induce natural plant communities to shift into cooler climate zones, or extirpate. To understand how plant communities in permafrost wetlands are affected by global warming, we examined the patterns of plant species diversity in the 24 permafrost wetlands in the Great Hing’an Mountains along a latitudinal gradient. This gradient was characterized by a northward decline in mean annual temperature (Δ = 3.5°C) and mean annual precipitation (Δ = 38.7 mm). Our results indicated that latitudinal patterns in species diversity existed in the permafrost wetlands. The numbers of family, genus and species, the Gleason index and Shannon-Wiener index for shrubs decreased linearly with decreasing latitude, but increased for herbaceous plants. The latitudinal patterns in species diversity had influenced strongly by temperature. Simple linear regression yielded about 2 decreases in shrub number and 9 increases in herbaceous species number with an increase of mean annual temperature by 1°C, with 0.33 decreases in shrub diversity and 0.29 increases in herbaceous species diversity. If temperature warms 3.7°C by 2100, herbaceous plants might increase in the permafrost wetlands, with species number increasing 48% or 6 times and species diversity increasing 40% or 2 times; and some shrub species might decrease and even disappear in part of the areas with lower latitude, with species number decreasing 50–100% and species diversity decreasing 69–100%. The permafrost wetlands in the Great Hing’an Mountains might continue degenerating and shift northward with global warming over the next century.  相似文献   

19.
Storm surges: perspectives and options   总被引:4,自引:1,他引:3  
This review paper attempts to summarize the scattered and fragmented knowledge about past and possible future changing storm-surge statistics using the particularly well-studied case of the North Sea as an example. For this region, a complete and robust analysis methodology has been developed in recent years. This methodology is based on dynamical and statistical models. Using the concept of dynamical downscaling, development during recent decades, when sufficiently good and homogeneous weather data exist, has been “reconstructed,” and scenarios of possible future change are described. “Localization” allows estimation of changes at specific sites, e.g., harbors. As local water-level statistics depend not only on climate variations but also on local modifications of the local bathymetry, new options for adaptation emerge. For the case of Hamburg, an option for such future adaptations is discussed.  相似文献   

20.
长江源区沙化现象初步探讨   总被引:2,自引:1,他引:1  
长江源区存在不同程度的沙化现象,沙地种类多样,分布广泛。沙化过程在高寒干旱的气候条件,丰富的物源条件,独特的冻土条件和为因素等综合影响下,从晚更新世末期开始,经过几次旋回一直持续到现在,对该区冻土环境、人类活动存在明显影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号