首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在城市污泥模拟堆肥过程的高温期通过平板培养法筛选出一组强化菌群.该组菌群不但可以分解污泥有机质,还可以分解淀粉、蛋白质、油脂、纤维素等大分子有机物.经鉴定,筛选出的菌种分别为地衣芽孢杆菌(B.licheniformis)、短小芽孢杆菌(B.pumilus)、高温放线菌(Thermoactinomyces)、凝结芽孢杆菌(B.coagulans)、枯草芽孢杆菌(B.subtilis);将菌株两两接种到平板,发现各菌株间可以共存.将上述菌种混合后添加到堆肥样品中,其有机质去除率、脱氢酶增加率、比耗氧速率SOUR增加率均高出不加菌样品40%以上,表明该组菌群具有使堆肥腐熟进程加快的应用潜力.  相似文献   

2.
一株黄杆菌及其粗酶液对芘降解的动力学特征研究   总被引:11,自引:0,他引:11  
实验研究了一株黄杆菌FCN2对芘降解的动力学特性,以及该菌株对芘的好氧氧化具有催化作用的酶的分布特征、芘在胞内酶存在下酶促降解的动力学特征研究结果表明,本实验室经驯化、筛选、分离所得的FCN2菌株对芘有良好的降解性能;反应后10 h内,降解反应近似表现为一级动力学特性,且随着芘初始浓度的增加,反应速度加快;当芘的初始浓度达到200 mg·L-1时,菌体的降解活性被抑制;菌体的初始浓度越大,芘的降解转化速率越快;当菌量达到3.0×108CFUs·mL-1(CFUs colony-forming units)时,芘的降解转化速度不再随着起始菌量的增加而增加在本实验的好氧条件下,最适初始菌量为1.0×108~2.0×108 CFUs·mL-1范围内.FCN2菌株对芘好氧降解起催化作用的活性酶为胞内酶,它对芘降解的催化作用迅速、有效,短时间内即达到分解平衡;胞内酶最适pH值为5,在pH 5.0~6 0之间均有较高的催化活性;胞内酶最适温度为32℃,在30~50℃之间能保持较高的催化活性;粗提胞内酶催化芘的好氧降解过程中,米氏常数较小,为1×10-4mol·L-1,最大反应速率为2×10-6mol·L-1·min-1,说明酶与芘的亲和力大.  相似文献   

3.
纤维素降解细菌的筛选及其产酶条件优化   总被引:6,自引:0,他引:6  
以羧甲基纤维素钠为碳源,从秸秆堆腐物及牛粪中分出到8株能降解纤维素的细菌菌株,分别对其进行了滤纸崩解、CMC相对酶活、CMCase、滤纸失重率等的测定,从中筛选出N-12菌株分解纤维素的能力最强,初步鉴定为枯草芽孢杆菌(Bacillus subtilis).通过测定不同培养条件下N-12菌株的产酶能力,初步确定其最佳产酶条件为:最适氮源为蛋白胨,最适pH为8.0,最适温度为37℃,接种量4%,培养72h,CMCase最高.  相似文献   

4.
一株苯酚降解菌的筛选鉴定及响应面法优化其降解   总被引:6,自引:3,他引:3  
从某化工厂污水处理车间活性污泥中分离、筛选到一株能以苯酚为唯一碳源和能源生长的菌株YH8.基于形态特征、生理生化特性、BIOLOG细菌自动鉴定系统、16S rDNA和gyrB基因序列同源性分析鉴定菌株YH8,鉴定菌株YH8为Acinetobacter guillouiae.在苯酚浓度低于1200 mg·L-1,温度为26~34℃,pH为7.0~10.0时,菌株YH8培养60 h对苯酚的降解率达70%以上.运用单因素实验初步确定苯酚降解的最适外加碳源和氮源分别为山梨醇和NaNO3,最适温度为30℃,最适初始pH为9.0,最适接种量为5%.为了提高菌株YH8的降解率,首先利用Plackett-Burman实验设计评估并筛选出影响苯酚降解的3个关键因素为初始pH、苯酚浓度、山梨醇浓度.用最陡爬坡实验逼近以上3个因子的最大响应区域,采用Box-Behnken实验设计及响应面法分析,确定其最优降解条件为初始pH 9.26、苯酚浓度1163.63 mg·L-1、山梨醇浓度7.81%、接种量5%、NaNO_3浓度2%、温度30℃、培养时间96 h,在此条件下苯酚降解率可达98.95%.苯酚降解酶活性及酶定域实验表明,菌株YH8相关降解酶为胞内酶,且苯酚可诱导苯酚羟化酶(LmPH)和邻苯二酚1,2-双加氧酶(C_(12)O)的合成.通过降解酶特异性引物从菌株YH8扩增得到LmPH和C12O基因片段,经质粒检测和消除实验发现菌株YH8相关降解基因位于质粒上.此外,菌株YH8能耐受高浓度NaCl和多种重金属离子,对多种抗生素具有抗性.  相似文献   

5.
农药阿维菌素酶促降解的初步研究   总被引:3,自引:0,他引:3       下载免费PDF全文
从受阿维菌素长期污染土壤中分离到一株高效降解菌株,研究了其最适产酶条件:培养温度35℃,培养液起始pH值7.0,培养时间96h, Hg2+对该菌株产酶有显著的抑制作用.从该降解菌中提取的粗酶液在pH值7.5和37.5℃时显示最大的降解活性,其米氏常数(Km)为6.78nmol/mL,最大降解速率为81.5nmol/(minmg).  相似文献   

6.
用海藻酸钠包埋法对壬基酚(NP)降解酶进行了固定化研究,并对固定化酶的最适反应温度和最适pH、及其稳定性进行了探讨。实验结果表明,用3%海藻酸钠、2%CaCl2溶液固定化的酶活力最高;固定化NP降解酶的最适反应温度为35℃,最适pH为7.0,其热稳定性和pH稳定性都有一定程度的提高。。  相似文献   

7.
久效磷降解菌的分离及其酶促降解特性研究   总被引:5,自引:1,他引:4  
从某农药厂废水处理池的污泥中分离到1株久效磷高效降解菌株M-1,经过对其形态特征、生理生化、以及16S rDNA序列分析,该菌株初步鉴定为Paracoccus sp..M-1能以久效磷作为唯一碳源生长,24 h对100 mg·L-1久效磷的降解效率为92.47%.久效磷降解酶定域表达试验表明该酶为胞内酶,组成表达.久效磷酶促降解的最适反应pH为8.0,最适反应温度为25 ℃;其米氏常数(Km)为0.29 μmol·mL-1,最大降解速率(Vmax)为682.12 μmol·(min·mg)-1.久效磷降解酶热稳定性差,碱性条件下能够保持较高降解活性.  相似文献   

8.
细菌HB-5对除草剂莠去津的酶促降解研究   总被引:3,自引:1,他引:3  
研究了从高效降解细菌HB-5(Arthrobacter)中提取的降解酶的分离条件及酶对莠去津的降解性能.研究证明,对莠去津的降解主要是胞内酶在起作用.从高效降解菌HB-5中提取到的降解酶,在不含有莠去津的培养基中连续转接7次,会逐渐丧失对莠去津的降解代谢活性,由此判断该降解酶不是组成酶,而是诱导酶.以牛血清白蛋白为标准蛋白测得粗提酶中可溶性蛋白含量为0.65 mg·mL-1;在pH 8.0~9.5之间,酶活力均能保持在最高酶活力的89%以上,该酶降解莠去津的最适pH为8.5;在25~45℃的温度范围内能保持较好的降解活性,最适温度为35℃;进一步研究发现,该酶具有较好的热稳定性和pH稳定性,暴露在温度30~40℃,pH 6.0~9.0的条件下2h仍能保持较高的酶活力;该酶与底物莠去津结合力强,对莠去津具有较好的降解效果,其米氏常数Km为0.7034 mmol·L-1,最大降解速率为0.1863μmol·mg-1·min-1.  相似文献   

9.
研究了Delftia sp.T3-6菌株对2',6'-甲乙基-2-氯乙酰苯胺(CMEPA)的降解特性,以及该菌株胞内酶对CMEPA的酶促特性.结果表明,菌株T3-6对CMEPA有很好的降解性能.反应12 h内,随着CMEPA浓度的增加,反应速度加快;当CMEPA浓度达到500 mg·L-1时,菌体的降解活性受到一定程度的抑制;在菌体接种量为0.5%~5%的范围内,接种量越大,CMEPA的降解转化速率越快.菌株T3-6降解CMEPA的最适温度为30℃,且其在pH 7~10的范围内对500 mg·L-1CMEPA的降解率均可达50%以上.T3-6菌株对CMEPA降解起催化作用的活性酶为胞内酶,该酶的最适反应温度和pH分别为25℃和8.0;该酶的温度稳定性较差,需在20℃以下贮存;但其在4℃下,pH 6~9的缓冲液中均可保持很好的稳定性.  相似文献   

10.
利用蜜环菌发酵所得的漆酶粗酶液直接对2种氯酚类污染物2,4-二氯酚(2,4-DCP)和2-氯酚(2-CP)进行催化降解实验,探讨了反应时间、pH值、反应温度、氯酚浓度、以及漆酶酶量对其降解效果的影响,得出了最适降解条件并对其降解动力学进行分析.结果表明,在适宜的条件下,漆酶粗酶液可有效降解2,4-DCP和2-CP且蜜环菌漆酶催化降解2,4-DCP的能力较强,2,4-DCP最适降解温度为40℃,最适浓度为75 mg.L-1,最适酶量为0.1 U.mL-1,最适pH值为6.5,在最优条件下反应10h后,2,4-DCP最高降解率可达97%以上.2-CP最适降解温度为50℃,最适浓度为100 mg.L-1,最适酶量为0.1 U.mL-1,最适pH值为6,在最优条件下反应10 h后,2-CP最高降解率高达93%以上.蜜环菌漆酶粗酶液对2,4-DCP和2-CP的降解反应符合一级动力学特征.结果表明蜜环菌粗漆酶液能有效转化氯酚类化合物,说明该酶在酚类污染物治理和环境保护等方面有潜在应用价值.  相似文献   

11.
曲霉AH625产酶条件与酶液降解制备壳寡糖   总被引:6,自引:0,他引:6  
从特定土壤中分离出一株能分泌胞外甲壳酶的高产菌株曲霉AH62 5 ,在以甲壳素为唯一碳、氮源的平板上长势良好 ,该菌株在生长培养基中振荡培养 72h ,再转移至诱导培养基中培养 2 4h ,酶活力可达 0 .51 2u/mL。研究表明 ,该菌株的最佳产酶条件是 :温度2 8℃ ,起始 pH4 .8,诱导底物为 1 .5 %的水溶性壳聚糖 ,0 .1 %的表面活性剂Tween80能使产酶量提高 2~ 3倍。用粗酶液在 50℃ ,pH5 .0条件下降解壳聚糖 ,得Mw 为 1 1 2 7,Mw/Mn 为 1 .53的壳寡糖。  相似文献   

12.
含黄嘌呤脱氢酶的细胞用可见光固化树脂包埋 ,经可见光照射交联 ,制备了固定化细胞 .可见光照射 3min对细胞的存活和细胞中黄嘌呤脱氢酶的活性没有影响 .固定化细胞的黄嘌呤脱氢酶降解次黄嘌呤的最适温度为 35℃ ,最适pH为 8 0 .在pH6— 8,温度低于 40℃时稳定 .连续使用 10批 ,平均降解次黄嘌呤 99 19%,酶活力保留 94 99%.  相似文献   

13.
聚乙烯醇降解酶酶解聚乙烯醇最优条件研究   总被引:1,自引:0,他引:1  
为了提高聚乙烯醇(PVA)降解酶的催化降解能力,对假单胞菌Pseudomonas.sp XT11-Z90S产生的聚乙烯醇降解酶的降解条件进行了优化.同时,通过单因素实验研究了PVA浓度、温度、缓冲液pH对降解酶活性及PVA降解率的影响.最后,应用响应面分析方法对影响聚乙烯醇降解酶酶活的3个因素进一步优化.结果表明,单因素实验得出的适宜PVA浓度、温度、pH分别为1.0g·L-1、50℃、7.0.响应面分析法得出的最适的降解条件为:PVA浓度0.84g·L-1,温度53.5℃,pH值6.8.在最优条件下,PVA降解酶酶活达到了20.3U.mL-1,比优化前的12.2U.mL-1提高了66.4%.且6h后其降解率达到了52.6%.  相似文献   

14.
从农业固体废物堆肥中分离得到1株高产漆酶的新菌株,通过对其形态特征和ITS序列分析,鉴定该菌株为哈茨木霉(Hypocrea lixii).以Cu1AF和Cu2R为引物对该菌株的漆酶基因进行扩增,PCR产物回收克隆后测序得到长度为148 bp的漆酶基因片段.在液体培养条件下,菌株漆酶活力可达到67.5 U.mL-1.对该菌株的漆酶酶学性质初步研究显示:漆酶相对分子质量大约为60×103,酶反应的最适温度为35℃,最适pH为4.0;在60℃时漆酶半衰期>1 h;漆酶氧化2,2’-联氮双(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS)的米氏常数(Km)值为1.00 mmol.L-1;金属离子对酶活的影响很大,Na+、Fe2+、Fe3+、Pb2+、Zn2+对酶活都有抑制作用.该菌株有很好的应用潜力来作农业废物堆肥处理系统的强化菌剂.  相似文献   

15.
真菌WZ-Ⅰ对有机磷杀虫剂毒死蜱的酶促降解   总被引:15,自引:2,他引:13  
谢慧  朱鲁生  王军  王秀国  刘伟  钱博  王倩 《环境科学》2005,26(6):164-168
从高效降解真菌镰孢霉属WZ-Ⅰ(Fusarium LK.ex Fx)中提取了降解酶,研究了该降解酶的分离条件及对毒死蜱的降解特性,研究表明,其胞内酶对毒死蜱的降解率高达60.8%,细胞碎片对毒死蜱的降解率为48%,但由(NH4)2SO4沉淀提取的胞外酶液对毒死蜱的降解率仅为11.3%,经8次非诱导条件下培养提取粗酶液,酶活力损失较少,判断WZ-Ⅰ菌株的毒死蜱降解酶为胞内酶且属于组成酶.以牛血清白蛋白为标准蛋白测得粗提酶中可溶性蛋白的含量为3.36mg·mL-1;该酶对毒死蜱的酶促降解最适pH为6.8,在pH 6.0~9.0之间都有较高的活性;最适温度为40℃,在实验温度范围(20~50℃)内该降解酶均具有较好的降解活性,但在55℃时,酶活迅速降低,降低到最高酶活力的41%.测得粗提酶中其米氏常数Km为1.049 26mmol·L-1,vmax为0.253 5μmol·(mg·min)-1.研究结果表明该酶具有较好的热稳定性和pH稳定性,对热和pH均具有较好的耐受力,高效降解真菌WZ-Ⅰ所产生的胞内酶对毒死蜱具有较好的降解效果.  相似文献   

16.
以正十六烷为研究对象,通过室内实验,利用细胞静息技术提取了2株菌种的胞外酶、膜周酶及膜内酶对石油烃类污染物质的微生物降解酶定域,并研究了菌株受环境影响的产酶条件和酶的一般性质. 结果发现:蜡状芽孢杆菌DQ01能降解正十六烷的关键酶位于膜周和膜内,芽孢杆菌DQ02降解正十六烷的关键酶是胞外酶和膜内酶. 通过GC-MS对代谢产物进行测定发现,关键酶对十六烷的代谢途径是常见的单末端氧化. 2株菌种产酶的最佳环境条件:ρ(正十六烷)为100 mg/L,c(鼠李糖脂)为2 mmol/L. 另外,关键酶在pH为6.5~8.0的环境中活性较高,在pH为7.0左右时的活性最高. 酶促降解性的最适温度为30 ℃.   相似文献   

17.
从实验室自行保藏的一株高效降氰菌株——产碱杆菌Alcaligenes sp.DN25中提取降氰酶,并研究其降解特性。通过分别测定胞内酶、胞外酶和细胞碎片对氰化物的降解率,初步判断该菌株降氰酶主要分布在细胞内。所提取的降氰酶具有较好的保存稳定性和pH稳定性,降解最适条件为温度35℃、pH7.0,并测得该降氰酶的米氏常数Km和最大反应速率分别为267.8mg/L和6.71mg/(L·min)。检测出该酶降解氰化物的产物之一为NH3,降解完全;尿素对酶活有抑制作用,初步可断定此酶中存在氰水合酶。  相似文献   

18.
敌敌畏降解真菌的分离及其特性研究   总被引:6,自引:0,他引:6  
从受过有机磷农药污染的污泥中分离到一株降解敌敌畏的真菌。经初步鉴定为木霉属,并命名为木霉FM10。该菌对敌敌畏的降解是同葡萄糖以共代谢方式进行的。葡萄糖浓度在1000μg/mL时,木霉FM10降解低地畏作用最强;敌敌畏初浓度越大降解率越低;菌株生长的最适pH为8.0,而pH9.0时,菌株降解率更高;37℃是菌株生长和降解敌敌畏的最适温度;增加接种量可以提高降解率;金属离子对所分离菌株一般表现为抑制作用。经分析,木霉FM10降解敌敌畏的酶多分布于胞外,属于分泌性酶。  相似文献   

19.
氟铃脲降解菌FLN-1的分离鉴定及降解特性   总被引:1,自引:0,他引:1  
从农药厂废水处理池的活性污泥中分离到1株能降解氟铃脲的菌株,命名为FLN-1.根据表型特征、生理生化特性及16S rDNA序列同源性分析,将FLN-1初步归类为红球菌属(Rhodococcus sp.).研究结果表明.该菌能在含氟铃脲(50mg·L-1)的基础盐液体培养基中降解氟铃脲,5d降解率达85%,降解最适pH为6.0~9.0,最适温度为25~40℃,降解速率随初始接种量的增加而增大;100mg·L-1的葡萄糖、酵母膏和蛋白胨对菌株降解氟铃脲具有促进作用.酶的定域试验表明,降解氟铃脲的酶为胞内酶.  相似文献   

20.
克雷伯氏菌对三苯基锡的酶促降解特性   总被引:3,自引:2,他引:1  
研究了肺炎克雷伯氏菌对三苯基锡(TPhT)的酶促降解性能,并对酶促反应影响因素的作用机制进行了探讨,以期为阐明有机锡的微生物降解机制提供实验依据.研究证明,菌体、分泌物和胞内降解酶均具有降解TPhT的能力,在30℃转速为130.rm in-1的摇床中避光处理2 h后,对3 mg.L-1TPhT的降解率分别为10.9%、5.3%和47.9%.影响因素实验表明,降解介质、pH、温度、TPhT浓度和金属离子均会对TPhT的酶促降解效果产生影响,其中TPhT酶促反应的最适pH和温度分别为8和50℃.Mg2+、Mn2+、Fe2+和Fe3+在合适的浓度范围内,均会促进TPhT的降解.当Mg2+的浓度为15 mg.L-1时,胞内酶对TPhT的降解率高达73.8%.金属离子的促进效果主要与其对酶的激活、作为电子受体或电子供体参与TPhT酶促降解等作用有关.TPhT的降解速率与其浓度呈现理想的线性关系.该反应的Vm ax和Km分别为0.15 mg.(L.m in)-1和47.1 mg.L-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号