首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
北京大气PM10中水溶性金属盐的在线观测与浓度特征研究   总被引:1,自引:0,他引:1  
研究了北京大气可吸入气溶胶(PM10)中水溶性金属盐的变化特征,并对其来源进行了分析.钠盐、钾盐、镁盐和钙盐浓度的变化范围分别为:0.5~1.4、0.5~2.5、0.1~0.5和0.6~5.8 μg/m3,不同水溶性金属盐最高值和最低值出现季节不同.水溶性金属盐没有明显的采暖期和非采暖期的差异,说明冬季采暖不是它们的主要来源.海盐和土壤源是北京大气PM10中Na 的主要来源,K 的主要来源包括秸秆燃烧和生物质排放,土壤源是Mg2 和Ca2 的重要来源.水溶性金属盐的日变化规律不同.降水对Na 、K 、Mg2 、Ca2 的清除分别为10%~70%、20%~80%、10%~77%、5%~80%.  相似文献   

2.
选取梅州市典型污染日(2015年7月8日至29日)进行实际测量,在梅州市环境监控中心站楼顶每天连续采集PM_(10)和PM_(2.5)样品,利用离子色谱仪分析样品中Na+、NH4+、K+、Mg~(2+)、Ca~(2+)、Cl~-、NO_2~-、NO_3~-、SO_4~(2-)离子的质量浓度,结果表明,PM_(10)日均质量浓度为(54±19)μg/m~3,PM_(2.5)日均质量浓度为(35±14)μg/m~3。PM10和PM2.5中水溶性无机离子平均浓度分别为(19.7±4.4)μg/m~3、(10.8±5.0)μg/m3,分别占PM_(10)和PM_(2.5)质量的(42±20)%和(31±9.7)%。其中S0_4~(2-)、NO_3~-、NH_4~+是梅州市PM_(10)和PM_(2.5)中最主要的水溶性无机离子。采样期间SO42-浓度较高的可能原因是煤炭在梅州市的能源结构中占有较高比例。S0_4~(2-)、NO_3~-主要以(NH_4)_2SO_4的形式存在气溶胶体系中。  相似文献   

3.
北京夏末秋初不同天气形势对大气污染物浓度的影响   总被引:20,自引:0,他引:20       下载免费PDF全文
根据2007~2008年地面、850hPa和500hPa天气图,结合主要气象要素将夏末秋初(8月和9月)影响北京地区的主要天气系统分为高污染的积累天气型(包括槽前无降水、槽后脊前、脊、副高4种基本型)和清洁的清除天气型(包括槽或槽前有降水、槽后有降水或偏北风2种基本型).北京地区4站2007年在积累天气型控制时NOx、O3(日小时均值最大值)、PM2.5和PM10浓度分别为38.1×10-9(体积分数),115.2×10-9(体积分数),90.6μg/m3,212.5μg/m3,清除天气型控制时4种污染物浓度分别为36.3×10-9(体积分数),68.9×10-9(体积分数),39.3μg/m3,125.4μg/m3;2008年施行北京奥运空气质量保障措施期间,上述4种污染物在积累天气型控制时分别为19.3×10-9(体积分数),87.1×10-9(体积分数),66.3μg/m3,99.6μg/m3,清除天气型控制时分别为19.0×10-9(体积分数),62.5×10-9(体积分数),41.0μg/m3,65.2μg/m3;尽管施行了源减排措施,积累天气型控制时北京地区污染物浓度仍相对较高,因此需关注此天气形势下污染物的变化.  相似文献   

4.
济南秋季大气PM_(2.5)中水溶性离子的在线观测   总被引:4,自引:1,他引:4  
2008年9月29日—10月15日使用大气细颗粒物快速捕集系统实时、在线分析了济南秋季PM2.5中水溶性离子的质量浓度,并结合气象资料和部分前体物(SO2,NOx和O3)浓度进行了相关分析.结果表明:济南秋季燃煤污染严重,SO42-,NO3-和NH4+是大气PM2.5中水溶性离子的主要组分,三者质量浓度之和占总水溶性离子(TW SI)质量浓度的90%以上;SO42-污染物主要受远距离传输的影响,NO3-和NH4+污染物主要受局地源的影响;SO42-和NO3-的昼夜形成机理不同,它们的形成过程主要受相对湿度、温度和O3浓度的影响.周边地区生物质燃烧导致了济南重污染天气的产生,降水对污染物的清除作用较强.对比土壤和海盐中各种离子的质量浓度比可知,济南秋季PM2.5中的K+受生物质燃烧的影响较大,C l-主要来源于海盐和生物质燃烧,Na+主要来源于海盐.  相似文献   

5.
北京大气PM10中水溶性金属盐的在线观测与浓度特征研究   总被引:2,自引:1,他引:2  
研究了北京大气可吸入气溶胶(PM10)中水溶性金属盐的变化特征,并对其来源进行了分析。钠盐、钾盐、镁盐、钙盐浓度的变化范围分别为:0.5~1.4μg/m3、0.5~2.5μg/m3、0.1~0.5μg/m3、0.6~5.8μg/m3,不同水溶性金属盐最高值和最低值出现季节不同。水溶性金属盐没有明显的采暖期和非采暖期的差异,说明冬季采暖不是它们的主要来源。海盐和土壤源是北京大气PM10中Na+的主要来源,K+的主要来源包括秸秆燃烧和生物质排放,土壤源是Mg2+和Ca2+的重要来源。水溶性金属盐的日变化规律不同。降水对Na+、K+、Mg2+、Ca2+的清除分别为10%~70%、20%~80%、10%~77%、5%~80%。  相似文献   

6.
济南春季大气PM2.5水溶性组分的半连续在线观测   总被引:2,自引:1,他引:2       下载免费PDF全文
利用大气细颗粒物(PM2.5)水溶性组分在线分析系统连续监测了2008年3~4月济南市PM2.5水溶性组分的浓度变化,并结合气溶胶部分前体物SO2、NO2、O3等的浓度数据和部分气象资料对监测数据进行了分析.结果表明,SO42-、NO3-和NH4+是PM2.5中水溶性离子的主要成分,分别占总水溶性组分的61.1%、13.4%和16.7%,且PM2.5中总水溶性组分的浓度,特别是SO42-的浓度,明显高于国内其他城市.温度、太阳辐射强度、混合层高度和风速等气象因素对总水溶性离子的浓度变化有重要影响.SO42-浓度白天明显高于夜间,而NO3-和NH4+的浓度昼夜变化幅度较小.SO42-和NO3-主要由SO2和NO2转化而来.后推气流轨迹分析表明,来自东北绕行西南方向和东北方向的混合气团结合济南的特殊地形及局地排放的污染物会加重济南春季PM2.5的污染.  相似文献   

7.
北京大气PM10中水溶性氯盐的观测研究   总被引:5,自引:5,他引:5  
氯盐是大气气溶胶中重要水溶性无机盐,对2004年全年北京大气可吸入颗粒中氯盐的变化进行了监测,结果表明北京大气中可溶性氯盐的年均值在(3.1±1.7)μg·m-3,采暖期平均浓度为(4.6±2.1)μg·m-3,非采暖期平均浓度为(2.6±1.6)μg·m-3.最低值出现在5月,为(1.3±0.8)μg·m-3;最高值出现在12月,为(5.8±5.3)μg·m-3.日变化在秋冬季多为白天浓度低,晚上浓度高,夏春季多呈现上午高,下午低的特征;季节变化呈现秋冬季高,春夏季低的特点.  相似文献   

8.
北京东北部城区大气细粒子与相关气体污染特征研究   总被引:11,自引:0,他引:11       下载免费PDF全文
于2008年7月~2009年4月的4个季节,在北京市朝阳区北部,利用VAPS通用型大气污染物采样仪(URG3000K)对大气细粒子(PM2.5)和环境空气中相关气体进行了同时采集,并利用IC离子色谱仪(DX-600型)分析了PM2.5中水溶性无机离子成分和环境空气中相关气体的含量.结果表明,PM2.5质量浓度春季>夏季>冬季>秋季;SO42-、NO3-和NH4+是PM2.5中最主要的3种水溶性无机离子,年均质量浓度分别为14.82μg/m3、11.57μg/m3和8.35μg/m3,三者浓度之和占PM2.5中总水溶性无机离子浓度的86.28%.SO42-、NH4+浓度占PM2.5浓度百分比均为夏、秋季高于冬、春季; NO3-浓度占PM2.5浓度的百分比为秋季>春季>夏季>冬季.空气中的SO2、NO2和NH3等气态污染物的含量直接影响PM2.5中二次离子SO42-、NO3-和NH4+的浓度, SO2、NO2浓度的季节特征为冬、春季高于夏、秋季,与SO42-、NO3-的季节变化规律相反; NH3浓度在夏季最高,冬季最低. PM2.5酸度在夏、秋季高于冬、春季,且夏、秋季PM2.5样品全部呈酸性,冬、春季PM2.5样品一部分呈酸性,一部分呈碱性.夏季SOR值和NOR值分别为冬季的4.8倍和3倍,表明夏季SO2和NO2更易转化生成SO42-和NO3-.PM2.5中SO42-、NO3-和NH4+主要以(NH4)2SO4、NH4NO3的形式共存于气溶胶体系中.  相似文献   

9.
2009年9月~2010年8月在兴隆大气背景站,利用Andersen分级采样器进行大气气溶胶样品的采集,并利用离子色谱分析了其中的水溶性无机离子的成分含量.结果表明,TSP、PM2.1和PM1.1中总水溶性无机盐的年平均浓度分别为(89.66±47.66)、(54.44±34.08)和(44.39±29.95)μg·m-3,其中SO42-、NO3-、Ca2+和NH4+为兴隆大气气溶胶中最主要的水溶性无机离子.PM2.1中总水溶性无机离子的年平均浓度占TSP的61%.PM1.1总水溶性无机离子的年平均浓度占TSP的50%,占PM2.1的82%.PM1.1、PM2.1和TSP中水溶性无机离子总浓度季节性变化趋势一致,夏季>秋季>春季>冬季.NH4+与SO42-的摩尔比>2,表明NH4+未被SO42-完全中和.在细粒子中NH4+和SO42-、NO3-均有较好的相关性,相关系数分别为0.96和0.87,表明NH4+可能以(NH4)2SO4和NH4NO3的形式存在.  相似文献   

10.
长沙市夏季PM10和PM2.5中水溶性离子的污染特征   总被引:17,自引:1,他引:17       下载免费PDF全文
对长沙市3个采样点夏季大气中的PM10和PM2.5样品pH值和水溶性离子浓度进行了定量分析.结果表明,颗粒物中主要离子是SO42-、NO3-、NH 和Ca2 ;PM10、PM2.5、NH4 和K 浓度夜间高于白天;SO42-和NO3-则相反.颗粒物尤其是PM2.5酸性强;Mg2 、Ca2和Na 集中在粗粒子中,SO42-、NH4 和K 大部分分布在细颗粒物中,NO3-和Cl-在粗细颗粒段则各占一半.SO2气体发生了二次转化,NO2的转化率不及SO2;由于NO3-/SO42-质量比<1,长沙市的大气污染物来源以固定源为主.  相似文献   

11.
为研究邢台市秋季PM2.5污染特征,于2017年10月15日~11月14日在邢台市区对PM2.5样品进行了采集,并对其中水溶性离子(包括Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+)进行了分析.结果显示,观测期间邢台市ρ(PM2.5)平均值为(130.0±74.9)μg/m3,其中水溶性离子质量浓度为(69.8±11.4)μg/m3,占ρ(PM2.5)的53.3%,NO3-、SO42-和NH4+为主要离子,占水溶性离子比例达到了89.7%.当污染加重,水溶性离子...  相似文献   

12.
对2017年6月—2018年5月北京市延庆区大气PM2.5样本进行采集,分析了PM2.5中9种水溶性无机离子的污染特征,并利用SPSS软件进行来源解析。结果表明:延庆区大气PM2.5中总水溶性无机离子平均浓度为28.0 μg∕m 3,其中,S O 4 2 - 、N O 3 - 和N H 4 + 是最主要的水溶性无机离子,合计占比为82.1%。受天气影响,N O 3 - 和S O 4 2 - 浓度均表现为秋高冬低,N H 4 + 浓度为秋高夏低;受冬季气象条件和施工影响,Ca 2+、Mg 2+、Na +浓度冬季最高。根据电荷平衡分析,春季PM2.5中阴、阳离子基本达到平衡状态,夏、秋季呈弱酸性,冬季呈弱碱性;PM2.5中硫氧化率(SOR)、氮氧化率(NOR)的均值分别为0.53和0.27,大气中存在明显的二次转化过程;N O 3 - ∕S O 4 2 - 为1.66,说明机动车尾气排放源对PM2.5中水溶性无机离子贡献较大;根据N H 4 + 与S O 4 2 - 、N O 3 - 、Cl -的相关性分析,PM2.5中N O 3 - 和S O 4 2 - 以(NH4)2SO4、NH4HSO4、NH4NO3以及HNO3形式存在。利用SPSS软件进行皮尔森相关性分析,PM2.5中N O 3 - 、S O 4 2 - 、N H 4 + 两两相关性强,说明二次反应显著;Ca 2+、Mg 2+、Na + 两两相关性强,说明其污染来源可能相同;Cl -与K +相关性强,说明大气中Cl -主要以KCl的形式存在。利用因子分析模块进行主成分分析,发现延庆区主要污染源为生物质燃烧、扬尘污染和机动车尾气排放。  相似文献   

13.
北京市PM_(2.5)主要化学组分浓度水平研究与特征分析   总被引:1,自引:1,他引:1  
为研究北京市大气环境PM_(2.5)中主要化学组分特征,于2012年8月—2013年7月期间,在北京市定陵、车公庄、东四、石景山、通州、房山、亦庄和榆垡等8个点位开展为期1年的样品采集,共计采集472组样品,分析每组样品中OC、EC、水溶性离子和18种无机元素等组分.研究结果表明,本次研究的组分重建后和实际PM_(2.5)浓度相关性显著,相关系数为0.94,所测组分平均占PM_(2.5)总量的90%;各点位不同季节PM_(2.5)中主要的组分均为OC、NO_3~-、SO_4~(2-)、NH_4~+,呈南高北低的趋势,冬季OC是夏季的1.7倍,NO_3~-和SO2--4在四季呈交替状态,除榆垡点位的SO_4~(2-)NO_3~-外,其他点位均是NO_3~-SO_4~(2-),4种主要的组分质量浓度分别为(23.1±21.4)、(20.3±23.4)、(19.4±22.2)、(13.6±15.2)μg·m-3,占PM_(2.5)总含量的18.5%、16.3%、15.6%、10.9%;研究水溶性离子发现,8个点位全年SNA/PM_(2.5)比例为42.8%,其中,夏季最高(49.9%),秋季较低(31.1%),NO_3~-/SO_4~(2-)比值平均为1.05,相对往年研究结果 NO_3~-/SO_4~(2-)比值有增加的趋势.  相似文献   

14.
为研究盘锦市秋季PM_(2.5)中水溶性离子污染特征及来源,于2016年10月在盘锦市开发区、文化公园和第二中学采集PM_(2.5)样品,用离子色谱分析其水溶性离子.同时,分析了PM_(2.5)及水溶性离子浓度特征,并通过离子平衡计算、相关性分析和聚类分析对其污染特征和来源进行研究.结果表明:盘锦市秋季PM_(2.5)平均质量浓度为(52.71±19.44)μg·m~(-3),低于环境空气质量标准(GB 3095—2012)日均浓度限值(75μg·m~(-3)),不同点位之间表现为:开发区第二中学文化公园.开发区、文化公园和第二中学的水溶性离子总质量浓度分别为13.64、13.16和13.19μg·m~(-3),分别占PM_(2.5)浓度的22.83%、29.72%和24.36%,各点位均表现为NO~-_3、SO■和NH~+_4质量浓度较大.阴阳离子当量比值(AE/CE)均大于1,表明采样期间盘锦市颗粒物整体偏酸性.离子间相关关系分析显示,SNA的主要存在形式为(NH_4)_2SO_4、NH_4NO_3和KNO_3等.NO~-_3/SO■的均值为1.41,说明移动源对PM_(2.5)的贡献大于固定源.通过聚类分析得出,盘锦市秋季PM_(2.5)中水溶性离子主要来源于气态污染物的二次转化、生物质和化石燃料燃烧及土壤扬尘或建筑扬尘排放.  相似文献   

15.
PM2.5是指大气中动力学直径≤2.5μm的颗粒物,也称为可入肺颗粒物。北京的大气污染是我国在快速发展过程中出现的典型的城市大气环境问题的代表,具有明显的烟煤型污染与光化学污染相结合的复合型污染特征,北京市PM2.5的污染已经相当严重。为了进一步研究北京市PM2.5的特性,对北京市PM2.5的污染特征、化学组成、源解析方面进行探讨,并提出了相应的防治对策。  相似文献   

16.
2014年5~6月在东海海域采集PM2.5和PM10气溶胶样品,通过离子色谱法对样品中主要水溶性阳离子(Na+、K+、NH4+、Mg2+、Ca2+)和阴离子(Cl-、NO3-、SO42-、MSA)的浓度进行测定,并结合相关数理统计方法探讨了其主要来源.结果表明,PM2.5和PM10样品中主要水溶性离子的总浓度范围分别为7.9~23.7μg/m3和10.4~47.9μg/m3,平均值分别为(14.9±5.8)μg/m3和(21.3±10.7)μg/m3.二次离子(nss-SO42-、NO3-和NH4+)浓度最高,分别占测定离子总浓度的80.8%和73.3%,其中SO42-和NH4+主要富集在细颗粒物(PM2.5)中,NO3-主要富集在粗颗粒物(PM10)中.富集因子及相关性分析表明K+主要来自陆源,Mg2+受海源和陆源双重输入影响.阴阳离子浓度平衡计算结果表明,细颗粒物样品呈弱碱性;粗颗粒物样品酸碱基本中和.两种样品中NH4+的主要结合方式均为(NH42SO4和NH4NO3.来源分析结果表明,PM2.5和PM10样品中生源硫化物对nss-SO42-的贡献率分别为13.7%和8.7%.根据估算的干沉降通量结果,NH4+对氮沉降的贡献程度小于NO3-.  相似文献   

17.
为探究新乡市秋季PM_(2.5)污染水平及水溶性离子特征,于2016年9—11月期间,利用TH-150C中流量大气采样器分别在新乡市城市和郊区设立的两个采样点采集了大气PM_(2.5)样品,并分别用重量法和离子色谱法测得PM_(2.5)的浓度值和水溶性离子的组分,分析了大气PM_(2.5)的组成特征、变化规律及污染来源.结果表明,采样期间,城市站PM_(2.5)浓度为122.65~223.56μg·m-3,平均值为164.17μg·m-3,郊区站PM_(2.5)浓度为92.99~217.40μg·m-3,平均值为144.75μg·m-3,均超过国家二级标准浓度限值(75μg·m-3).采样期间,城市站7种水溶性无机离子(NH+4、NO-3、SO2-4、K+、Mg2+、Ca2+、Cl-)的平均质量浓度分别为9.98、22.05、13.41、0.65、0.04、0.30、2.19μg·m-3,郊区站分别为7.49、17.95、10.34、0.38、0.03、0.57、1.35μg·m-3;其中,NO-3、SO2-4、NH+4是大气PM_(2.5)中水溶性离子最主要的二次污染成分,而硝酸盐则是新乡市大气灰霾污染的关键组分.对PM_(2.5)中阴、阳离子进行相关性分析,结果发现,新乡市大气颗粒物PM_(2.5)总体呈酸性.PM_(2.5)中水溶性离子来源主要有二次转化,以及工业源、燃烧源及土壤建筑尘等,移动源(汽车尾气)对新乡市秋季大气污染的贡献较大.  相似文献   

18.
北京混合功能区夏冬季细颗粒物组分特征及来源比较   总被引:1,自引:0,他引:1  
于2014年8月和12月,选择北京某城市混合功能区,分别手工采集一个月的环境空气PM2.5样品,实验室方法测定滤膜中的元素碳/有机碳、9种可溶性离子、16种无机元素等20余种化学组分,采用CMB模型对夏冬两季PM2.5来源进行分析.结果表明,夏季PM2.5日均质量浓度为73μg/m3,低于《环境空气质量标准》,而冬季平均值为111μg/m3,高于夏季和标准限值.冬季OC和EC浓度均高于夏季,且OC/EC比值升高,OC和EC呈线性相关,提示二者有相同来源.NO3-、SO42-、NH4+是北京混合功能区3种主要可溶性离子,且夏季生成量较高;冬季Cl-显著升高与燃煤排放有关.Si、Ti、Fe、Zn、Al等元素质量浓度在0.1~10μg/m3浓度水平,Pb、Cu、Mn、Cr、Ba、Sb等在10~102ng/m3浓度水平,V、Ni、Co、Mo、Cd等在0.1~10ng/m3浓度水平.且冬季各个元素浓度均高于夏季.CMB模型初步解析结果表明,夏季和冬季颗粒物的来源变化明显,夏季二次硫酸盐、机动车和二次硝酸盐贡献率居前三位,而冬季则为燃煤、机动车和扬尘.  相似文献   

19.
利用高时间分辨率MARGA于2017年2月17日~3月24日在桂林市开展PM2.5组分监测,结合同一点位环境和气象监测数据,分析桂林市大气PM2.5水溶性无机离子组分特征及气溶胶酸性.结果表明:MARGA监测的PM2.5中8种水溶性离子与PM2.5变化趋势一致.8种水溶性离子总浓度均值29.27μg/m3,3种二次水溶性离子SO42-、NO3-和NH4+浓度均值26.91μg/m3,占水溶性离子总浓度的93.50%,是桂林市大气PM2.5的主要组分.二次水溶性离子SO42-、NH4+和NO3-两两之间存在显著正相关性(相关系数均>0.80),提示二次离子产生的机制及在大气中的演化、沉积具有一定的相似性.无论有无降雨,能见度(Vis)均随着水溶性离子,尤其是二次水溶性离子浓度的增加呈幂函数规律递减.24h累计降雨量≥ 10.0mm时,湿清除作用明显.晴天及降雨量不大的天气下,需注意管控机动车尾气、生物质燃烧和扬尘污染.SOR、NOR分别为0.35、0.12,SO2同时通过均相和非均相氧化反应转化为SO42-,NOx主要是通过白天光化学反应转化为NO3-.大多数离子和气态前体物均存在明显的日变化规律,这与物质的来源、形成机制和气象条件不同有关.CE/AE摩尔浓度均值为1.5,桂林市PM2.5总体偏碱性.PM2.5中SO42-、NO3-、Cl-主要以(NH42SO4、NH4NO3和NH4Cl形式存在.PM2.5中NH4+可能与监测点位交通源排放有关,桂林市应加强交通污染物排放管控.  相似文献   

20.
为探究当前空气质量持续改善背景下重污染地区大气PM2.5和水溶性无机离子(WSⅡs)的污染特征和季节变化,于2019年在太原市采集了四季PM2.5样品.结果表明,2019年太原市PM2.5年均质量浓度为(65.50±30.44)μg·m-3,水溶性离子浓度的季节特征为:冬季(39.81 μg·m-3) > 秋季(33.05 μg·m-3) > 春季(20.50 μg·m-3) > 夏季(19.62 μg·m-3).WSⅡs以二次离子SNA为主,占总离子浓度的76.90%±10.51%,且随着PM2.5污染加重,SNA的比重显著升高.其中,SO42-和NO3-在秋、冬季的浓度最高,这与气态污染物排放增加和二次转化程度的升高(硫氧化率SOR>0.30,氮氧化率NOR>0.10)有关;NH4+、Cl-和K+在冬季的浓度最高,是其他季节的1.2~7.9倍,可能归因于冬季燃煤和生物质燃烧活动的增加;由于春季风速较高,受土壤扬尘的影响,Ca2+和Mg2+的比重在春季显著增加为20.2%.春季和夏季为贫氨状态,而秋、冬季为富氨状态,且硝酸盐颗粒物在高湿度条件下的吸湿增长比硫酸盐更为显著.太原市大气PM2.5中水溶性离子主要来源于二次生成、燃煤、生物质燃烧和土壤扬尘.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号