首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
研究以50~100目的海绵状铁粉为还原剂,采用静态试验方法,研究了铁对硝酸盐氮的还原作用及其影响因素,分析了铁粉用量、铁炭比、pH值、硝酸盐氮初始浓度、温度以及铁粉表面预处理对硝酸盐去除率的影响。试验结果表明,最佳铁氮质量比为400∶1,铁粉投入过多对硝酸盐的去除率没有进一步促进;活性炭的加入有助于零价铁(Fe0)还原硝酸盐,降低反应后溶液中的NH+4-N浓度,试验最佳的铁炭比为1∶2;溶液的初始pH值降低有利于硝酸盐氮的去除;硝酸盐氮初始浓度越大,反应的平均速率越高;升高温度和酸洗预处理,有利于提高硝酸盐的去除率;产物分析表明,试验过程中,去除的NO-3-N含量中约60%以上转化为NH+4-N,NO-2-N浓度很低。  相似文献   

2.
水质对UV/H2O2降解17α-乙炔基雌二醇(EE2)的影响   总被引:3,自引:0,他引:3  
采用UV/H2O2间歇式光氧化反应器,研究了溶液pH值、腐殖酸及水中常见阴离子HCO3-、NO3-、CO32-、Cl-和SO42-对UV/H2O2工艺降解17α-乙炔基雌二醇(EE2)的影响.结果表明,UV/H2O2工艺可以有效地去除水中的EE2,光降解过程符合一级反应动力学模型.双氧水投加量为5mg/L时,在14W低压汞灯照射下,EE2在自来水和蒸馏水中的光降解一级反应速率常数为0.063 0min-1和0.132 4min-1.溶液中的腐殖酸和阴离子HCO3-、NO3-、Cl-、SO42-对EE2的光降解反应有抑制作用,4种阴离子浓度为5 mmol/L时,抑制作用依次为HCO3->SO42->Cl->NO3-,HCO3-可使光降解速率常数降低到50%.自来水中的光降解速率常数低于蒸馏水中的光降解速率常数是水中多种离子影响的结果.  相似文献   

3.
郑雯婧  林建伟  詹艳慧  王虹 《环境科学》2015,36(6):2185-2194
采用锆(Zr)和阳离子表面活性剂十六烷基三甲基氯化铵(CTAC)对活性炭进行联合改性,考察了所制备的Zr-CTAC改性活性炭对水中硝酸盐和磷酸盐的吸附去除作用,并探讨了相关的吸附去除机制.结果表明,Zr-CTAC改性活性炭对水中硝酸盐和磷酸盐均具备较好的吸附去除能力.Zr-CTAC改性活性炭对硝酸盐和磷酸盐吸附动力学过程满足准二级动力学模型.Langmuir、Freundlich和Dubinin-Radushkevich(D-R)等温吸附模型可以较好地描述Zr-CTAC改性活性炭对水中硝酸盐的等温吸附过程,Langmuir和D-R等温吸附模型可以较好地描述Zr-CTAC改性活性炭对水中磷酸盐等温吸附过程,通过Langmuir模型计算得到吸附剂对硝酸盐和磷酸盐的最大单位吸附量分别为7.58 mg·g-1和10.9 mg·g-1.高的p H会抑制Zr-CTAC改性活性炭对水中硝酸盐和磷酸盐的吸附.水中共存的Cl-、HCO-3和SO2-4等阴离子均会抑制Zr-CTAC改性活性炭对硝酸盐和磷酸盐的吸附,且对吸附硝酸盐的抑制作用较强而对吸附磷酸盐的抑制作用较弱.水中共存的磷酸盐对Zr-CTAC改性活性炭吸附硝酸盐的抑制作用较强,而水中共存的硝酸盐对Zr-CTAC改性活性炭吸附磷酸盐的抑制作用较弱.1 mol·L-1Na Cl溶液可以使90%左右被吸附到Zr-CTAC改性活性炭表面上的硝酸盐解吸下来.1 mol·L-1的Na OH溶液可以使78%左右被吸附到Zr-CTAC改性活性炭表面上的磷酸盐解吸下来.Zr-CTAC改性活性炭对硝酸盐的吸附机制主要包括阴离子交换作用和静电吸引作用,对磷酸盐的吸附机制主要包括配位体交换作用、阴离子交换作用和静电吸引作用.上述结果说明Zr-CTAC改性活性炭适合作为一种吸附剂去除废水中的硝酸盐和磷酸盐.  相似文献   

4.
研究基于Fe2+可以刺激硫酸盐还原菌的活性,氢气又可以作为电子供体促进反硝化脱氮理论,考察了铁粉对同步反硝化脱硫运行技能的影响.在混养(主)、自养和异养(辅)条件下对比加入铁粉前后各种底物的代谢规律,结果表明:混养条件下加入铁粉前后,硫化物去除率均在99%以上,硝酸盐和乙酸盐的去除率分别为80%,90%和88%,62%.铁粉不影响碳、氮、硫的同步脱除,而且可以强化硫酸盐还原作用和反硝化作用,却使硫化物的去除时间延长2倍.经分析得知,铁粉的加入可以提高自养菌群的活性,进而提供氢气这种更容易被自养菌利用的电子供体将硝酸盐还原为氮气,使硫化物剩余.而且,Fe和H2O发生化学反应生成的Fe2+和氢气均能提高硫酸盐还原菌的活性,硫酸盐还原菌群和自养菌群之间可能存在一定的共生关系,Fe的加入会破坏这种共生关系.  相似文献   

5.
亚铁对水平潜流人工湿地反硝化作用的影响   总被引:6,自引:0,他引:6  
亚铁离子可以作为电子供体参与反硝化作用,某些微生物可以通过氧化亚铁离子还原硝酸盐,从而去除污水中的硝态氮.本研究通过在潜流人工湿地中添加Fe2+,分析不同初始Fe2+浓度对反硝化过程的强化效果及不同C/N对Fe2+参与反硝化作用的影响.结果表明,Fe2+的添加可以显著提高人工湿地反硝化能力,进水NO-3-N为30 mg·L-1、C/N为2、水力停留时间为1 d,添加45 mg·L-1Fe2+的人工湿地中硝氮去除率可以提高24%;硝氮去除率随初始Fe2+浓度的增加而增加.C/N与初始Fe2+浓度对反硝化作用都具有显著影响且两者具有交互作用,碳源的存在可以促进Fe2+参与的反硝化作用.  相似文献   

6.
利用小球烧结和氢气还原工艺制备了粒径1mm~5mm的多孔性球形海绵铁,对球形海绵铁去除水体中硝酸盐的效率及去除动力学进行了研究。结果表明:溶液初始pH值对硝酸盐去除效率的影响显著,初始pH值小于3时,硝酸盐的去除率随溶液初始pH的增加而逐渐降低;初始pH值大于3时,硝酸盐的去除率又随之升高。硝酸盐浓度低于10mgN/L时,硝酸盐去除率随着硝酸盐初始浓度的增加而增加,硝酸盐的残余量保持在0.4mgN/L左右;硝酸盐浓度高于20mgN/L时,硝酸盐的去除率随初始硝酸盐浓度的增加而略有降低。球形海绵铁去除硝酸盐为一级动力学反应,反应级数为0.970~1.378,表观反应速率常数为0.314h-1~0.536h-1。海绵铁还原硝酸盐的主要产物为氨氮,随着还原反应的进行,溶液pH值快速增加,氨氮以分子态氨的形式从水中逸出。进行归纳总结和对比,并以多环芳烃的提取为例列举了各方法的应用步骤,从而为其他环境样品其他有机物分析预处理提供参考。  相似文献   

7.
为了研究地下水中阴离子对载镁活化天然沸石除氟效果的影响,考察了4种主要阴离子——Cl-,HCO3-,SO42-,PO43-的影响,并分析了吸附剂的除氟机理及表面结构和成分。结果表明:对于初始氟浓度不同的水样,随着阴离子浓度的增加,吸附剂对氟的去除效率逐渐降低。Cl-对吸附剂除氟效果影响较小,氟去除率降低较慢;随着HCO3-浓度的增大(由100 mg/L到1 000 mg/L),水样pH缓慢由7.48增大到9.44,而氟去除率则由63.78%缓慢下降到52.70%(2 mg/L);SO42-及PO43-对改性沸石除氟效果影响较大,氟去除率降低较快,且SO42-的影响大于PO43-。所以,镁改性天然沸石对该4种阴离子的吸附顺序是:SO42->PO43->HCO3->Cl-。  相似文献   

8.
采用鼠李糖脂对纳米铁进行改性后负载在活性炭上制备出改性纳米铁/炭,将其作为PRB填充材料,并采用有机玻璃柱模拟连续墙式PRB来进行水中硝态氮地去除研究.结果表明:经过改性后的纳米铁能够有效负载在活性炭上,悬浮稳定性得到明显提高;改性纳米铁/炭粒径远大于纳米铁,将其作为填充材料可有效缓解PRB堵塞问题;当纳米铁与活性炭质量比为5:2时,PRB运行效果最佳;pH值越小,污染液硝态氮浓度越低,水流速度越小均有利于硝态氮地去除.  相似文献   

9.
水中无机阴离子对UV/H2O2降解LAS的影响及机理   总被引:3,自引:0,他引:3  
研究了UV/H2O2工艺对直链烷基苯磺酸钠(LAS)的去除效果以及水中常见无机阴离子对LAS降解的影响和机理.结果表明,UV/H2O2工艺可以有效的去除水中LAS,光降解过程符合一级反应动力学模型.在H2O2投加量为8 mg·L-1,14 W低压汞灯照射下,LAS在蒸馏水和自来水中光降解速率常数分别为0.018 0 min-1和0.012 2 min-1;NO3-、Cl-、SO2-4和HCO3-对LAS光降解有抑制作用,4种离子在浓度分别为5、10、15 mmol·L-1时,对LAS光降解的抑制程度均为HCO3->NO3->Cl->SO2-4;随着离子浓度增大,抑制作用增强;自来水中的光降解速率常数低于蒸馏水中的光降解速率常数是由于水中多种离子影响的结果.  相似文献   

10.
去除地下水中硝酸盐的渗透性反应墙研究   总被引:2,自引:1,他引:1  
通过土柱试验模拟地下水环境,研究以发酵树皮和沙子混合物为反应介质的渗透性反应墙(生物墙)对地下水中硝酸盐的去除情况,探讨其作用机制与影响因素,为硝酸盐污染地下水的修复提供经济有效的方法.结果表明,从模拟生物墙运行的第3 d起,墙内为强还原环境(Eh在-100 mV之下),有利于硝酸盐的还原降解.在15 d的运行时间内,模拟生物墙对水中硝态氮(NO3--N)的去除率为80%~90%左右(NO3--N由进水的20 mg·L-1可降至出水的1.6 mg·L-1);出水中亚硝态氮(NO2--N)的浓度较低,一直小于2.5 mg·L-1;出水中铵态氮(NH4+-N)的浓度在前2 d较低,从第3 d起升至12 mg·L-1.模拟生物墙对NO3--N的去除机制主要为吸附和微生物降解.提高模拟生物墙内水流速度后,NO3--N的去除率有所下降,出水中NH4+-N的浓度明显降低.在模拟生物墙下游串联一个模拟沸石墙,可去除水中98%的NH4+-N.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

14.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

15.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

16.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

17.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

18.
The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment,but sorption mechanism is still not fully understood.In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction.Toward this end,cuticular materials were isolated from the fruits of tomato by chemical method.The tomato cuticle sheet consisted of waxes (6.5 wt%),cuticular monomer (69.5 wt%),and polysaccharide (24.0 wt%).Isotherms of l-naphthol to the cuticular fractions were nonlinear (N value (0.82-0.90)) at the whole tested concentration ranges.The KodKow ratios for bulk cuticle (TC1),dewaxed cuticle (TC2),cutin (TC4),and desugared cuticle (TC5) were larger than unity,suggested that tomato bulk cuticle and cutin are much powerful solption medium.Sorption capability of cutin (TC4) was 2.4 times higher than the nonsaponifiable fraction (TC3).The 1-naphthol interactions with tomato cuticular materials were governed by both hydrophobic-type interactions and polar (H-bonding) interactions. Removal of the wax and polysaccharide materials from the bulk tomato cuticle caused a significant increase in the sorption ability of the cuticular material.There was a linear negative trend between K_(oc) values and the amount of polysaccharides or fraction's polarities ((N O)/C);while a linear positive relationship between K_(oc) values and the content of cutin monomer (linear R~2=0.993) was observed for present in the cuticular fractions.Predominant sorbent of the hydrophobic organic compounds (HOCs) in the plant cuticular fraction was the cutin monomer,contributing to 91.7% of the total sorption of tomato bulk cuticle.  相似文献   

19.
Common silver barb,Puntius gonionotus,exposed to the nominal concentration of 0.06 mg/L Cd for 60 d,were assessed for histopathological alterations(gills,liver and kidney),metal accumulation,and metallothionein(MT)mRNA expression.Fish exhibited pathological symptoms such as hypertrophy and hyperplasia of primary and secondary gill lamellae,vacuolization in hepatocytes,and prominent tubular and glomerular damage in the kidney.In addition,kidney accumulated the highest content of cadmium,more than gills and liver.Expression of MT mRNA was increased in both liver and kidney of treated fish.Hepatic MT levels remained high after fish were removed to Cd-free water.In contrast,MT expression in kidney was peaked after 28 d of treatment and drastically dropped when fish were removed to Cd-free water.The high concentrations of Cd in hepatic tissues indicated an accumulation site or permanent damage on this tissue.  相似文献   

20.
Seed induces and promotes the crystallization of calcium phosphate, and acts as carrier of the recovered phosphorus (P). In order to select suitable seed for P recovery from wastewater, three seeds including Apatite (AP), Juraperle (JP) and phosphate-modified Juraperle (M-JP) were tested and compared. Batch and fixed-bed column experiments of seeded crystallization of calcium phosphate were undertaken by using synthetic wastewater with 10 mg/L P phosphate. It shows that AP has bad enduring property in the crystallization process, while JP has better performance for multiple uses, and M-JP is a hopeful seed for P recovery by crystallization of calcium phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号