首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.

This study presents the results obtained in compostability tests of organic fraction of municipal solid waste (OFMSW) digestate. The final aim was to obtain mature compost without phytotoxic effects. For the evaluation of the composting process, a novel parameter describing the performance of the composting process, the relative heat generation standardized with the initial volatile solid content (RHGVS0), was defined and evaluated at laboratory-scale. From these laboratory-scale test, the optimum operational conditions were obtained, a mixing ratio (v/v) of 1:1:0 (bulking agent:digestate:co-substrate) and with 15% of mature compost as inoculum. Subsequently, these optimum operational conditions were applied in the active phase of the composting pilot-scale reactor. The active composting stage took 7 days, subsequently a curing phase of 60 days was carried out at ambient conditions. After 30 days of curing, the mature compost showed a specific oxygen uptake rate (SOUR) of 0.14 mg O2/g VS·h, a germination index (GI) of 99.63% and a low volatile fatty acids (VFA) concentration (41.3 AcH mg/kgdm), being indicative of the good compost stability and maturity of the compost. The very good quality of the final compost obtained indicated that the RHGVS0 accurately describes the performance of the composting process.

  相似文献   

2.
In this study, co-composting of food waste and green waste at low initial carbon to nitrogen (C/N) ratios was investigated using an in-vessel lab-scale composting reactor. The central composite design (CCD) and response surface method (RSM) were applied to obtain the optimal operating conditions over a range of preselected moisture contents (45–75%) and C/N ratios (13.9–19.6). The results indicate that the optimal moisture content for co-composting of food waste and green waste is 60%, and the substrate at a C/N ratio of 19.6 can be decomposed effectively to reduce 33% of total volatile solids (TVS) in 12 days. The TVS reduction can be modeled by using a second-order equation with a good fit. In addition, the compost passes the standard germination index of white radish seed indicating that it can be used as soil amendment.  相似文献   

3.
Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed.  相似文献   

4.
Mass balance, energy consumption and cost are basic pieces of information necessary for selecting a waste management technology. In this study, composting facilities that treat different types of organic waste were studied by questionnaire survey and via a chemical analysis of material collected at the facilities.The mass balance was calculated on a dry weight basis because the moisture content of organic waste was very high. Even though the ratio of bulking material to total input varied in the range 0-65% on a dry basis, the carbon and ash content, carbon/nitrogen ratio, heavy metal content and inorganic nutrients in the compost were clearly influenced by the different characteristics of the input waste. The use of bulking material was not correlated with ash or elemental content in the compost. The operating costs were categorised into two groups. There was some economy of scale for wages and maintenance cost, but the costs for electricity and fuel were proportional to the amount of waste. Differences in operating costs can be explained by differences in the process characteristics.  相似文献   

5.
The mass and element balance in municipal solid waste composting facilities that handle food waste was studied. Material samples from the facilities were analyzed for moisture, ash, carbon, nitrogen, and the oxygen consumption of compost and bulking material was determined.Three different processes were used in the food waste composting facilities: standard in-vessel composting, drying, and stand-alone composting machine. Satisfactory results were obtained for the input/output ash balance despite several assumptions made concerning the quantities involved. The carbon/nitrogen ratio and oxygen consumption values for compost derived only from food waste were estimated by excluding the contribution of the bulking material remaining in the compost product. These estimates seemed to be suitable indices for the biological stability of compost because there was a good correlation between them, and because the values seemed logical given the operating conditions at the facilities.  相似文献   

6.
The goal of this research was to investigate the effect of the C/N ratio on the in-vessel composting, under air pressure, of organic fraction of municipal solid waste in Morocco. Firstly, an in-vessel bioreactor was designed and used to evaluate the appropriate initial pressure for the composting process. Secondly, five bioreactors were run with C/N ratios of 26 (control; no C supplement), 32.2, 38.4, 44.6, and 50.8. Parameters monitored included internal air pressure, C/N ratio, temperature, volatile solids reduction, and maturity of the obtained composts. The relative microbial activity was observed indirectly using volatile solids removal and the relative heat generation data. The experimental results showed that organic waste could be composted within 10?days and the operating initial parameters that converted the most volatile solids and carbons in the feedstock were as follows: 0.6?×?105 Pa for the initial air pressure and 26 for the C/N ratio. Maturity tests, in optimal conditions, showed that the final compost has characteristics of stable compost and can be used as a soil conditioner. In addition, compost obtained from the experiment that considered a C/N ratio of 32.2 showed good maturity levels and may also be used for agricultural applications.  相似文献   

7.
In the current climate of increasing emphasis on environmental protection and efficient waste management, regional management bodies and environmental agencies are striving to achieve an economical and environmentally acceptable system for the recycling of biodegradable organic wastes. Composting would appear to be a cost effective solution to this problem, but in its entirety, composting is an inherently lengthy and variable process and is restrictive in terms of the demand on resources and space in composting plants. The aim of this study was to compare a biological composting process of solid residues with an enzymatic hydrolysis process of residues. The length of time required to naturally compost three organic materials, spent mushroom compost (SMC), farmyard manure (FYM) and dairy wastewater sludge (DWS) under optimal conditions was 42 days, 98 days and 84 days, respectively. In an attempt to accelerate this process, commercial enzymes were added to the waste products in a heterogeneous solid-liquid system. The enzymes utilised included a range of proteases, cellulases, ligninases, lipases and pectinases, which are responsible for the hydrolysis of protein, cellulose, lignin, lipids and carbohydrates, respectively. Preliminary results indicate that all of the organic materials were stabilised within 9h and that the enzymes used would, therefore, improve the efficiency of a waste management plant, if such a system were employed. Spent mushroom compost has a mean N/P/K ratio of 20:10:10 recorded for composted SMC, while a similar ratio of 20:10:20 was obtained for hydrolysed SMC. In contrast, composted farmyard manure has a N/P/K ratio of 30:0:30 and a ratio of 10:1:10 for hydrolysed FYM. Finally, composted DWS has a N/P/K ratio of 20:1:30 while DWS hydrolysate has a N/P/K ratio of 40:1:20, with the decrease in nitrogen in the composted DWS attributed to the addition of wood chippings and sawdust as a bulking agent. While all three materials have a considerable supply of plant nutrients, the variability in nutrients could be overlooked when employed as a soil amendment.  相似文献   

8.
The quality of compost and its suitability for agricultural application depend upon physical and chemical parameters such as water-holding capacity, porosity, pH, electrical conductivity, C/N ratio, available nutrients and the absence of toxic substances. In the present study a complete characterization of an industrial municipal solid waste compost (MSWC) based on standardized European methods (CEN) for soil improvers and growing media was obtained, and compared with the quality of other Spanish composted biowaste and conventional substrates such as peat and pine bark. The MSWC was obtained from the main composting plant in Galicia (Spain), which processes organic waste that has been separated at origin and collected from more than 100 000 inhabitants. The MSWC presented a lower C/N ratio (15) than peat (84) and composted pine bark (CPB) (211), but had a similar ratio to other marketed MSWC. The nutrients and heavy metals were extracted using different recommended solvents (water, CaCl2 + diethylen triamin pentaacetic acid, and aqua regia). The nutrient concentrations of composted urban waste or manure were much higher than those of peat, CPB or pine bark. On the basis of the results of the plant tolerance test, the MSWC could be employed directly as a soil improver, but would need to be diluted with other low-salt components such as peat or CPB before being used as a growing media.  相似文献   

9.
Pretreatment of municipal solid waste prior to landfilling   总被引:5,自引:1,他引:4  
An outdoor pilot-scale study was undertaken to pretreat municipal solid waste by windrow composting. The raw waste was introduced to active composting without any source separation or pulverization. Pretreatment indicators were developed and used as a tool to measure the optimum level of sorting and waste stabilization. The moisture content of the waste dropped from 68% to 61% and the pile attained a thermophilic temperature in one week. It was observed that the C/N ratio, pH profile and temperature gradients were comparable to that of traditional windrow composting. Within one week of active bulk composting, the easily degradable organic matter was consumed and there was a significant reduction in the bulk volume of the mixed waste. The pre-composted wastes were then sorted into four fractions. Compared to the initial untreated waste, the pretreated waste showed greater sorting efficiency and reduced volatile solids. A 1-m3 cage was used to study pile settlement and volume reduction. The results indicate that pretreatment by bulk composting could reduce by ≈40% the total mass of waste hauled to landfill sites in developing countries.  相似文献   

10.
Bioconversion of sugar and distillery industrial wastes with other biodegradables into enriched compost is an important possibility in need of research. In this paper, changes in temperature and physico-chemical (pH, NH4+-N, C/N ratio, CEC) parameters during windrow composting, related to biological stabilization of the compost, were studied. The rise in temperature, which occurred as composting progressed, was accompanied by an increase in NH4+-N and the passage of the thermophilic phase to mesophilic took place between 90 and 105 days. This overall pattern was observed in all composting mixes, whereby the concentrations of NH4+-N increased rapidly and then declined gradually over the course of monitoring pari passu with increase in NO3- -N. The C/N ratios of the composting mixes decreased substantially by the 90th day in full thermophilic phase and became comparatively stable later on. Addition of additives showed potential in improving the C/N ratios. Increases in cation exchange capacity (CEC) and the germination index value of a sensitive crop (Raphanus sativus) had value in establishing the optimum degree of maturity. The rise and fall of temperature and changes in NH4+-N concentrations, C/N ratios and CEC over time proved to be reliable indicators of the progress of the composting process for establishing biological stability and compost maturity.  相似文献   

11.
Efficient composting process requires set of adequate parameters among which physical–chemical properties of the composting substrate play the key-role. Combining different types of biodegradable solid waste it is possible to obtain a substrate eligible to microorganisms in the composting process. In this work the composting of apple and tobacco solid waste mixture (1:7, dry weight) was explored. The aim of the work was to investigate an efficiency of biodegradation of the given mixture and to characterize incurred raw compost. Composting was conducted in 24 L thermally insulated column reactor at airflow rate of 1.1 L min?1. During 22 days several parameters were closely monitored: temperature and mass of the substrate, volatile solids content, C/N ratio and pH-value of the mixture and oxygen consumption. The composting of the apple and tobacco waste resulted with high degradation of the volatile solids (53.1%). During the experiment 1.76 kg of oxygen was consumed and the C/N ratio of the product was 11.6. The obtained temperature curve was almost a “mirror image” of the oxygen concentration curve while the peak values of the temperature were occurred 9.5 h after the peak oxygen consumption.  相似文献   

12.
Mass balances and life cycle inventory of home composting of organic waste   总被引:1,自引:0,他引:1  
A comprehensive experimental setup with six single-family home composting units was monitored during 1 year. The composting units were fed with 2.6-3.5 kg organic household waste (OHW) per unit per week. All relevant consumptions and emissions of environmental relevance were addressed and a full life-cycle inventory (LCI) was established for the six home composting units. No water, electricity or fuel was used during composting, so the major environmental burdens were gaseous emissions to air and emissions via leachate. The loss of carbon (C) during composting was 63-77% in the six composting units. The carbon dioxide (CO(2)) and methane (CH(4)) emissions made up 51-95% and 0.3-3.9% respectively of the lost C. The total loss of nitrogen (N) during composting was 51-68% and the nitrous oxide (N(2)O) made up 2.8-6.3% of this loss. The NH(3) losses were very uncertain but small. The amount of leachate was 130 L Mg(-1) wet waste (ww) and the composition was similar to other leachate compositions from home composting (and centralised composting) reported in literature. The loss of heavy metals via leachate was negligible and the loss of C and N via leachate was very low (0.3-0.6% of the total loss of C and 1.3-3.0% of the total emitted N). Also the compost composition was within the typical ranges reported previously for home composting. The level of heavy metals in the compost produced was below all threshold values and the compost was thus suitable for use in private gardens.  相似文献   

13.
Prior to composting, the composition of palm oil mill wastes were analyzed. Palm empty fruit bunches (PEFB) contained the highest total organic carbon (52.83 % dry weight) while palm oil mill biogas sludge (POMS) and decanter cake (DC) contained higher total nitrogen (3.6 and 2.37 % dry weight, respectively) than the others. In addition, palm oil fuel ash (POFA) had a high amount of phosphorus and potassium (2.17 and 1.93 % dry weight, respectively). The effect of mixture ratio of POMS and other palm oil mill wastes for composting was studied using the mixed culture Super LDD1 as an inoculum. All compost piles turned dark brown and attained an ambient temperature after 40 days incubation. The pH values were stable in the range of 6.9–7.8 throughout the process whereas the moisture content tended to decrease till the end with the final value around 30 %. After 60 days incubation, the mixture ratio of POMS:PEFB:DC at 2:1:1 with the addition of biogas effluent gave the highest quality of the compost. Its nitrogen content was 31.75 % higher than the other treatments that may be a result of growth of ink cap mushroom (Coprinus sp.). This is the first report on the occurrence of this mushroom during composting. In addition, its nutrients (3.26 % N, 0.84 % P and 2.03 % K) were higher than the level of the Organic Fertilizer Standard. The mixed culture Super LDD1 produced the highest activity of CMCase (6.18 Unit/g) and xylanase (11.68 Unit/g) at 9 days fermentation. Therefore, this solid-state fermentation could be employed for production of compost as well as enzymes.  相似文献   

14.
An attempt was made to recycle waste biomass and mineral powder (waste mica) as an alternative source of potassium (K) through composting technology. Two different waste biomass, isabgol straw and palmarosa distillation waste along with two levels of waste mica (2 and 4% as K) were used for preparation of enriched composts. A notable decrease of C:N ratio was observed at the end of the composting (150 days) as an indicator of compost maturity. The mature composts were evaluated for K-supplying capacity through laboratory leaching and soil incubation study. Significantly higher water-soluble K released initially followed by a sharp decrease up to 21 days of leaching thereafter gradually decreased up to 35 days of leaching. Water-soluble K was released from K-enriched (mica charged) compost significantly higher than the ordinary compost throughout the leaching period. Soil incubation study also revealed that application of K-enriched compost greatly improved the available K (water soluble and exchangeable) pools in K-deficient soil which indicated that a considerable amount of K releases during composting. Therefore, K-enriched compost could be an effective alternative of costly commercial K fertilizer and eco-friendly approach to utilize low-cost waste mineral powder and plant residue.  相似文献   

15.
In this research the feasibility of aerated in-vessel composting process followed by chemical oxidation with H2O2 and Fenton for removal of petroleum hydrocarbons from oily sludge of crude oil storage tanks was investigated. The ratios of the sludge to immature compost were 1:0 (as abiotic control), 1:2, 1:4, 1:6, 1:8 and 1:10 (as dry basis) at a C:N:P ratio of 100:5:1 and 55 % moisture content for a period of 10 weeks. Six concentrations of H2O2 and Fenton were added to the compost mixture for a period of 24- and 48-h reaction times. Results showed that petroleum hydrocarbons removal in ratios of 1:2, 1:4, 1:6, 1:8 and 1:10 were 66.6, 73.2, 74.8, 80.2 and 79.9 %, respectively. The results of the abiotic experiments indicated that the main mechanism of hydrocarbon removal in the composting reactors was biological. The application of combined composting and chemical oxidation demonstrated a remarkable (about 88 %) overall removal. The study showed that in-vessel composting combined with chemical oxidation is a viable choice for the remediation of the sludge.  相似文献   

16.
The effectiveness of two commercial additives meant to improve the composting process was studied in a laboratory-scale experiment. Improver A (sulphates and oxides of iron, magnesium, manganese, and zinc mixed with clay) and B (mixture of calcium hydroxide, peroxide, and oxide) were added to source-separated biowaste:peat mixture (1:1, v/v) in proportions recommended by the producers. The composting process (T, emissions of CO2, NH3, and CH4) and the quality of the compost (pH, conductivity, C/N ratio, water-soluble NH4–N and NO3–N, water- and NaOH-soluble low-weight carboxylic acids, nutrients, heavy metals and phytotoxicity to Lepidium sarivum) were monitored during one year. Compared with the control, the addition of improver B increased pH by two units, led to an earlier elimination of water-soluble ammonia, an increase in nitrates, a 10-fold increase in concentrations of acetic acid, and shortened phytotoxicity period by half; as negative aspect it led to volatilization of ammonia. The addition of improver A led to a longer thermophilic stage by one week and lower concentrations of low-weight carboxylic acids (both water- and NaOH-extractable) with formic and acetic of similar amounts, however, most of the aspects claimed by the improver’s producer were not confirmed in this trial.  相似文献   

17.
A laboratory-scale bioreactor was used to investigate the influence of dairy manure addition (as an inoculum and a carbon source) on the biological and thermal kinetics of the composting process of tomato plant residues-wood shavings mixture. Urea was added (as a nitrogen source) to correct the initial C:N ratio to 30:1 and the initial moisture content was also adjusted to 60%. The result of this study indicated that manure addition to the tomato residues-wood shavings mixture is a good source of macro and micronutrients required for supporting the composting microorganisms. Manure addition increased the rate of temperature increase and the duration of maximum temperature and reduced the lag and the peak time, all of which resulted in a significant reduction in the retention time. However, thermophilic temperature (> or = 40 degrees Celsius) was only achieved with 30%, 40% and 50% manure addition for 3, 7 and 9h. Total carbon reductions were in the range of 9.4-10.8% and TKN reductions were in the range of 3.4-6.0%. Neither the nitrogen nor the moisture content were limiting factors as the C:N ratio remained in the range of 26:1 to 28:1 and the moisture content remained within the optimum range of 58-61%. The maximum temperature of each mixture correlated with the reduction of total carbon, but carbon availability was a limiting factor in these experiments. In order to attain and sustain a thermophilic phase during the composting process, the addition of a readily available carbon source to the tomato should be investigated and carbon type (carbohydrates, proteins and fats) should be taken into account.  相似文献   

18.
Composting was applied as a bioremediation methodology for the reclamation of dredged sediments of Isnapur, Khazipally and Gandigudem lakes polluted with industrial wastes. The present study is an attempt to elaborate upon organic matter transformations and define the parameters for product maturity adapting chemical and spectroscopic methods during composting. The stability and maturity of sediments were evaluated by assessing parameters like C/N ratio, nitrification index (NH(4)-N/NO(3)-N), water-soluble organic carbon concentration, CO(2) evolution rate, cation exchange capacity and indices such as humification index, E4/E6 ratio, compost mineralization index (ash content/oxidizable carbon), germination index, dehydrogenase, polyphenoloxidase activities and FTIR spectroscopy. The results showed that the changes in the above chemical and biological parameters can be employed as reliable indicators of stability and maturity. The FTIR spectra revealed enrichment in the aromatic groups and a degradation of the aliphatic groups indicating stabilization of the final compost.  相似文献   

19.
In Ireland, conversion of biodegradable farm wastes such as pig manure spent mushroom compost and poultry litter wastes to pelletised fertilisers is a desirable option for farmers. In this paper, results obtained from the composting of pig waste solids (20% w/w) blended with other locally available biodegradable wastes comprising poultry litter (26% w/w), spent mushroom compost (26% w/w), cocoa husks (18% w/w) and moistened shredded paper (10% w/w) are presented. The resulting 6-mo old 'mature' composts had a nutrient content of 2.3% total N, 1.6% P and 3.1% K, too 'low' for direct use as an agricultural fertiliser. Formulations incorporating dried blood or feather meal amendments enriched the organic N-content, reduced the moisture in mature compost mixtures and aided the granulation process. Inclusion of mineral supplements viz., sulphate of ammonia, rock phosphate and sulphate of potash, yielded slow release fertilisers with nutrient N:P:K ratios of 10:3:6 and 3:5:10 that were suited for amenity grasslands such as golf courses for spring or summer application and autumn dressing, respectively. Rigorous microbiological tests carried out throughout the composting, processing and pelletising phases indicated that the formulated organo-mineral fertilisers were free of vegetative bacterial pathogens.  相似文献   

20.
Characteristics of municipal solid waste and sewage sludge co-composting   总被引:1,自引:0,他引:1  
The purpose of this work is to study the characteristics of the co-composting of municipal solid waste (MSW) and sewage sludge (SS). Four main influencing factors (aeration pattern, proportion of MSW and SS, aeration rate and mature compost (MC) recycling) were systematically investigated through changes of temperature, oxygen consumption rate, organic matters, moisture content, carbon, nitrogen, carbon-to-nitrogen ratio, nitrogen loss, sulphur and hydrogen. We found that a continuous aeration pattern during composting was superior to an intermittent aeration pattern, since the latter delayed the composting process. A 3:1 (v:v) mixture of MSW and SS was most beneficial to composting. It maintained the highest temperature for the longest duration and achieved the fastest organic matter degradation and highest N content in the final composting product. A 0.5L/minkgVS aeration rate best ensured rapid initiation and maintained moderate moisture content for microorganisms. After the mature MC was recycled to the fresh materials as a bulking agent, the structure and moisture of the initial materials were improved. A higher proportion of MC resulted in quicker decrease of the temperature, oxygen consumption rate and moisture. Therefore a 3:1:1 (v:v:v) proportion of MSW: SS: MC is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号