首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
This work investigated sediment samples collected from Dapeng Bay and three neighboring rivers (Kaoping River, Tungkang River, and Lingbeng River) in southwestern Taiwan, Republic of China. Multivariate statistical analysis techniques, i.e., factor analysis, cluster analysis, and canonical discriminant analysis were used for the evaluation of spatial variations to determine the types of pollution and to identify pollutant sources from neighboring rivers. Factor analysis results showed that the most important latent factors in Dapeng Bay are soil texture, heavy metals, organic matter, and nutrients factors. Contour maps incorporating the factor scores showed heavy metals accumulate along the lakesides, especially on the southeastern banks of the lakes. A cluster analysis was performed using factor scores computed from these latent factors. We then classified these areas into five distinct classes using sampling stations, and we illustrate that in the three river classes, the sediment properties are influenced by industrial and domestic wastewater and agricultural activities (including livestock rearing and farm activities). However, in Dapeng Bay, the rivers were influenced more by complicated biogeochemical processes; these could be identified as a type of pollution. Canonical discriminant analysis illustrated that two constructed discriminant functions made a marked contribution to most of the discriminant variables, and the significant parameters of porosity and Cd, Cr, Al, and Pb content were combined as the ??heavy metal factor??. The recognition capacities of the two discriminant functions were 82.6% and 17.4%, respectively. It is also likely that the annual mean of the water exchange rate is insufficient (taking about 7 days to eliminate pollutants) and therefore has significantly influenced the carbon and nutrient biogeochemical processes and budgets in the semi-enclosed ecosystem. Thus, the sediment properties are not similar between the lagoon and the neighboring rivers. Our results yield useful information concerning estuary recovery and water resources management and may be applicable to other basins with similar characteristics that are experiencing similar coastal environmental issues.  相似文献   

3.
This study is the first measurement of trace elements in sipunculan and their surrounding sediments. The bioaccumulation characteristics of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), and zinc (Zn) were analyzed and compared in two sipunculan species, Sipuncula nudus and Siphonosoma vastum, which were collected from seagrass beds and wetlands in Taiwan. The sipunculan and sediment samples were analyzed using an inductively coupled plasma mass spectrometer. Both sipunculan in the wetlands and seagrass beds had a high Cu bioaccumulation mechanism. Multivariate analysis, principle component analysis, and partial least squares for discriminant analysis of trace element levels and bioaccumulation factors were used to distinguish the element distributions that corresponded to the two habitats (seagrass beds and wetlands). Different levels of certain trace elements in these two sipunculan species may result not only from the environmental factors of various habitats but also from the accumulation characteristics of various species. The As, Cd, Cr, Cu, Hg, and Zn concentrations were markedly lower in sipunculan than in other invertebrates from the adjacent polluted regions. The public health issues regarding the consumption of sipunculan are also discussed.  相似文献   

4.
Soil degradation associated with soil erosion and land use is a critical problem in Iran and there is little or insufficient scientific information in assessing soil quality indicator. In this study, factor analysis (FA) and discriminant analysis (DA) were used to identify the most sensitive indicators of soil quality for evaluating land use and soil erosion within the Hiv catchment in Iran and subsequently compare soil quality assessment using expert opinion based on soil surface factors (SSF) form of Bureau of Land Management (BLM) method. Therefore, 19 soil physical, chemical, and biochemical properties were measured from 56 different sampling sites covering three land use/soil erosion categories (rangeland/surface erosion, orchard/surface erosion, and rangeland/stream bank erosion). FA identified four factors that explained for 82 % of the variation in soil properties. Three factors showed significant differences among the three land use/soil erosion categories. The results indicated that based upon backward-mode DA, dehydrogenase, silt, and manganese allowed more than 80 % of the samples to be correctly assigned to their land use and erosional status. Canonical scores of discriminant functions were significantly correlated to the six soil surface indices derived of BLM method. Stepwise linear regression revealed that soil surface indices: soil movement, surface litter, pedestalling, and sum of SSF were also positively related to the dehydrogenase and silt. This suggests that dehydrogenase and silt are most sensitive to land use and soil erosion.  相似文献   

5.
An investigation was conducted to study the baseline levels of Ba, Cd, Cu, Cr, Ni, Pb, Sr, V and Zn (aqua regia-extractable) based on 51 representative soils of the Torrelles and Sant Climent Municipal Districts (Catalonia, Spain). The baseline concentrations of those elements were (mg kg−1): Ba 73.9–617.9, Cr 9.2–120.2, Cu 4.0–111.6, Ni 6.1–118.6, Pb 5.6–217.5, Sr 19.6–128.8, V 12.1–101.2, and Zn 16.8–326.8, respectively.Forty-nine samples were reported as having less than the 0.67 mg kg−1 detection limit for cadmiun and were therefore not useful for baseline determination; however, these results suggest that the baseline average is probably below 0.67 mg kg−1.Upper baseline values for most of the elements corresponded with those reported in the literature, except for Pb and Zn, which were two to four times greater.Soil properties, including clay fraction, OC, CEC and pHw were related to metal concentration using correlation and factorial analysis. R-mode factor analysis separates the soil analysis data into three factors. These factors explain 67.3% of the total variance, suggesting that metal concentration was controlled by soil composition.  相似文献   

6.
Present and future annual methane flux estimates out of landfills, rice paddies and natural wetlands, as well as the sorption capacity of aerobic soils for atmospheric methane, are assessed. The controlling factors and uncertainties with regard to soil methanogenesis and methanotrophy are also briefly discussed.The actual methane emission rate out of landfills is estimated at about 40 Tg yr–1. Changes in waste generation, waste disposal and landfill management could have important consequences on future methane emissions from waste dumps. If all mitigating options can be achieved towards the year 2015, the CH4 emission rate could be reduced to 13 Tg yr–1. Otherwise, the emission rate from landfills could increase to 63 Tg yr–1 by the year 2025. Methane emission from rice paddies is estimated at 60 Tg yr–1. The predicted increase of rice production between the years 1990 and 2025 could cause an increase of the CH4 emission rate to 78 Tg yr–1 by the year 2025. When mitigating options are taken, the emission rate could be limited to 56 Tg yr–1. The methane emission rate from natural wetlands is about 110 Tg yr–1. Because changes in the expanse of natural wetland area are difficult to assess, it is assumed that methane emission from natural wetlands would remain constant during the next 100 years. Because of uncertainties with regard to large potential soil sink areas (e.g. savanna, tundra and desert), the global sorption capacity of aerobic soils for atmospheric methane is not completely clear. The actual estimate is 30 Tg yr–1.In general, the net contribution of soils and landfills to atmospheric methane is estimated at 180 Tg yr–1 (210 Tg yr–1 emission, 30 Tg yr–1 sorption). This is 36% of the global annual methane flux (500 Tg yr–1).  相似文献   

7.
The effect of land use, i.e. 2–3 years of cropping, 15–20 years old residential area and fallow land on soilproperties of termite (microtermes sp) mounds in TypicPaleudults was studied in the humid rainforest zone ofMidwestern Nigeria, from January 1995 to May 1995. Termitemound populations increased in the following order: Fallow>Residential> Cropping. Soil sampled from mound surfaces, moundperimeters and surrounding soil was analyzed for routinephysical and chemical properties. The bulk densities werehighest in the mound surface (1.20–1.25 mg m–3), moundperimeters (1.22–1.23 mg m–3) and surface soil (1.27–1.28 mg m–3) of the residential area. There was no significantdifference in the soil textural characteristics among thevarious sampling locations of the three land use types.Particle size distribution in mound perimeters was howeverdependent on land use. With respect to organic carbon, totalN, pH, exchangeable cations and ECEC, no significantdifferences existed, instead they spatially differ from oneanother in terms of land use types and sampling locations.  相似文献   

8.
Temporal and spatial variability in wetland water-quality variables were examined for twenty-one wetlands in the Minneapolis/St. Paul metropolitan area and eighteen wetlands in adjacent Wright County. Wetland water quality was significantly affected by contact with the sediment (surface water vs. groundwater), season, degree of hydrologic isolation, wetland class, and predominant land-use in the surrounding watershed (p<0.05). Between years, only nitrate and particulate nitrogen concentrations varied significantly in Wright County wetland surface waters. For eight water-quality variables, the power of a paired before-and-after comparison design was greater than the power of a completely randomized design. The reverse was true for four other water-quality variables. The power of statistical tests for different classes of water-quality variables could be ranked according to the predominant factors influencing these: climate factors>edaphic factors>detritivory>land-use factors>biotic-redox or other multiple factors.For two wetlands sampled intensively, soluble reactive phosphate and total dissolved phosphorus were the most spatially variable (c.v.=76–249%), while temperature, color, dissolved organic carbon, and DO were least variable (c.v.=6–43%). Geostatistical analyses demonstrated that the average distance across which water-quality variables were spatially correlated (variogram range) was 61–112% of the mean radius of each wetland. Within the shallower of the two wetlands, nitrogen speciation was explained as a function of dissolved oxygen, while deeper marsh water-quality variables were explained as a function of water depth or distance from the wetland edge. Compositing water-quality samples produced unbiased estimates of individual sample means for all water quality variables examined except for ammonium.  相似文献   

9.
This article reports on soil samples collected from Hsiang-Shan wetland, Taiwan. Canonical discriminant analysis (CDA) was applied to identify an existing habitat type's scheme by identifying the physico-chemical properties of sediment in Hsiang-Shan wetland. The three constructed discriminant functions (CDFs) showed a marked contribution by most of the discriminant variables, and the recognition capacities in these three CDFs were 49.5, 32.8 and 17.7%. Our study revealed that the most important latent factors in Hsiang-Shan wetland are soil texture-caused factor, ocean current-caused factor, nutrient-caused factor, and the redox reaction-caused factor. And the most sensitivity parameters in this habitat followed the descending order: OBD, EC, Eh, sand, TN, porosity, STP, silt, VCP and pH. And the inhabited sediment properties for U. formosensis in terms of soil texture are sand, silt, and clay (34.05, 29.72, and 32.35%, respectively): that is clay loam soil. We also found that U. formosensis preferred to inhabit the upper intertidal zone, spending 8.41% of the time submerged. Vegetation coverage on the ground was less than 2.20%, showing that it preferred to live in a bare intertidal habitat. Concerning nest choosing, excavating burrows is more difficult when a high soil penetration force is required, and in this study the soil penetration force for 20 cm was found to be is 45.98 N/cm(2). The results will be helpful in developing a methodology for use by the government in refining its management programs.  相似文献   

10.
Applying Satellite Imagery to Triage Assessment of Ecosystem Health   总被引:3,自引:0,他引:3  
Considerable evidence documents that certain changes in vegetation and soils result in irreversibly degraded rangeland ecosystems. We used Advanced Very High Resolution Radiometer (AVHRR) imagery to develop calibration patterns of change in the Normalized Difference Vegetation Index (NDVI) over the growing season for selected sites for which we had ground data and historical data characterizing these sites as irreversibly degraded. We used the NDVI curves for these training sites to classify and map the irreversibly degraded rangelands in southern New Mexico. We composited images into four year blocks: 1988–1991, 1989–1992, and 1990–1993. The overlap in pixels classified as irreversibly degraded ranged from 42.6% to 84.3% in year block comparisons. Quantitative data on vegetation composition and cover were collected at 13 sites within a small portion of the study area. Wide coverage reconnaissance of boundaries between vegetation types was also conducted for comparisons with year block maps. The year block 1988–1991 provided the most accurate delineation of degraded areas. The rangelands of southern New Mexico experienced above average precipitation from 1990–1993. The above average precipitation resulted in spatially variable productivity of ephemeral weedy plants on the training sites and degraded rangelands which resulted in much smaller areas classified as irreversibly degraded. We selected imagery for a single year, 1989, which was characterized by the absence of spring annual plant production in order to eliminate the confounding effect of reflectance from annual weeds. That image analysis classified more than 20% of the rangelands as irreversibly degraded because areas with shrub-grass mosaic were included in the degraded classification. The single year image included more than double the area classified as irreversibly degraded by the year blocks. AVHRR imagery can be used to make triage assessments of irreversibly degraded rangeland but such assessment requires understanding productivity patterns and variability across the landscapes of the region and careful selection of the years from which imagery is chosen.  相似文献   

11.
This work investigated water samples collected from Tapeng Lagoon, Taiwan. Factor analysis was conducted to explain the characteristics and the variation in the quality of water during the disassembly of oyster frames and fishery boxes. The result shows that the most important latent factors in Tapeng Lagoon are the ocean factor, primary productivity factor, and the fishery pollution factor. Canonical discriminant analysis is applied to identify the source of pollution in neighboring rivers outside Tapeng Lagoon. The two constructed discriminant functions (CDFs) showed markedly contribution to all discriminant variables, and that total nitrogen, algae, dissolved oxygen and total phosphate, combined in the nutrient effect factor. The recognition capacities in these two CDFs were 95.6%, 4.4%, respectively. The water quality in the Kaoping river most strongly determined that in the Tapeng Lagoon the best is. And disassembling the oyster frames and fishery boxes improves the water quality markedly. However, environmental topographic conditions indicate that strengthening stream pollution prevention and to constructing another entrance to the ocean are the best approaches for improving the quality of water in Tapeng Lagoon, especially by reducing eutrophication. These approaches and results yield useful information concerning habitat recovery and water resource management.  相似文献   

12.
Concentrations of mercury were determined in above- and below-ground tissues of dominant plant species, as well as soils, in the wetlands of Lake Maurepas, Louisiana. Indicators of wetland soil biogeochemical status, such as soil redox potential, pore-water nutrient concentrations, and pore-water total sulfides, were also determined. Total mercury concentrations in plant tissues were within the typical range for vegetation not exposed to mercury contamination. Similarly, total mercury concentrations in soils were typical of uncontaminated wetlands within this geographic region. Soil methyl mercury levels in this study are slightly lower than those reported in other studies of nearby wetlands. This may reflect the less extensive geographic sampling in this study, or the low water levels in the Lake Maurepas system immediately prior to and during this study, which would have altered soil biogeochemical status. This is corroborated by measurements of soil redox potential and soil pore-water nitrogen and sulfur constituents conducted during this study that suggest minimal sulfate reduction was occurring in surficial soils. This study indicates that the wetlands surrounding Lake Maurepas are typical of many uncontaminated oligohaline wetlands in the southeastern U.S. in regard to mercury concentrations.  相似文献   

13.
The study on the spatial distribution of forest soil organic carbon (SOC) is of great significance for accurate assessment of carbon storage in forest ecosystems. In the present study, by taking eight kinds of forest soils of Mountain Lushan in the subtropical area as the research object, we studied the spatial distribution characteristics of SOC in this mountainous area. The results showed that the SOC content and SOC density (SOCD) of main forest types in the Mountain Lushan were lower than the national and the world average. The soil layer of Lushan forest was thinner, and the SOC and active SOC (ASOC) contents of different forest types and SOCDs are the highest in the surface soil. SOCD of the topsoil accounts for 32.64–54.03% of the total SOCD in the whole soil profile. Surface litter is an important source of SOC, and the different vegetation types are the important reason for the different spatial distribution of SOC in this area. Soil SOC contents in the high-altitude forest (bamboo forest, deciduous broadleaf forest, Pinus taiwanensis forest, evergreen-deciduous forest, and coniferous-broadleaved mixed forest) were higher than those in the low-altitude forest (evergreen broadleaf forest, shrub, and Pinus massoniana forest). However, the difference in SOC content exhibited at the altitude gradient is significantly lower than that in SOC in the soil profile. This indicates that both soil depth and elevation are the important factors that affected SOC distribution. However, the influence of soil depth on spatial distribution of SOC may be more complex than that of altitude. Vegetation types and soil properties are the main reasons for the large differences of reduction rate in the contents of SOC and ASOC.  相似文献   

14.
Soil management significantly affects the soil labile organic factors. Understanding carbon and nitrogen dynamics is extremely helpful in conducting research on active carbon and nitrogen components for different kinds of soil management. In this paper, we examined the changes in microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) to assess the effect and mechanisms of land types, organic input, soil respiration, microbial species, and vegetation recovery under Deyeuxia angustifolia freshwater marshes (DAMs) and recovered freshwater marsh (RFM) in the Sanjiang Plain, Northeast China. Identifying the relationship among the dynamics of labile carbon, nitrogen, and soil qualification mechanism using different land management practices is therefore important. Cultivation and land use affect intensely the DOC, DON, MBC, and MBN in the soil. After DAM soil tillage, the DOC, DON, MBC, and MBN at the surface of the agricultural soil layer declined significantly. In contrast, their recovery was significant in the RFM surface soil. A long time was needed for the concentration of cultivated soil total organic carbon and total nitrogen to be restored to the wetland level. The labile carbon and nitrogen fractions can reach a level similar to that of the wetland within a short time. Typical wetland ecosystem signs, such as vegetation, microbes, and animals, can be recovered by soil labile carbon and nitrogen fraction restoration. In this paper, the D. angustifolia biomass attained natural wetland level after 8 years, indicating that wetland soil labile fractions can support wetland eco-function in a short period of time (4 to 8 years) for reconstructed wetland under suitable environmental conditions.  相似文献   

15.
The International Joint Commission has recently completed a five-year study (2000–2005) to review the operation of structures controlling the flows and levels of the Lake Ontario – St. Lawrence River system. In addition to addressing the multitude of stakeholder interests, the regulation plan review also considers environmental sustainability and integrity of wetlands and various ecosystem components. The present paper outlines the general approach, scientific methodology and applied management considerations of studies quantifying the relationships between hydrology and wetland plant assemblages (% occurrence, surface area) in Lake Ontario and the Upper and Lower St. Lawrence River. Although similar study designs were used across the study region, different methodologies were required that were specifically adapted to suit the important regional differences between the lake and river systems, range in water-level variations, and confounding factors (geomorphic types, exposure, sediment characteristics, downstream gradient of water quality, origin of water masses in the Lower River). Performance indicators (metrics), such as total area of wetland in meadow marsh vegetation type, that link wetland response to water levels will be used to assess the effects of different regulation plans under current and future (climate change) water-supply scenarios.The Canadian Crown reserves the right to retain a non-exclusive, royalty free licence in and to any copyright.  相似文献   

16.
Transboundary air pollution from industries in Nikel and Zapolyarnij has caused severe damage to the environment in Southern-Varanger in Norway and in Pechenga municipality in Russia. The work presented in this paper focuses on the integration of in-situ air pollution data with remote sensing based land cover maps. Land cover maps have been utilised to detect changes in the major land cover types within the area. The major change in the environment was the decrease of the sensitive lichen-dominated land cover types, and the increase of bilberry-dominated land cover types and finally the increase of the land cover types with the greatest air pollution stress (industrial barren, barren, and partly damaged vegetation, defoliated forests, lichen removal). A GIS based method for assessing the relationship of the remotely sensed land cover maps with the environmental condition parameters was developed and applied. By comparing the results from this analysis we observed that the land cover types with the greatest stress had the largest concentrations of SO2 in the ground air layer, while the land cover types with minor damage (the remaining lichen-dominated vegetation) had rather low concentrations of sulphur dioxide in the ground air layer. The area of the land cover types with the greatest stress (industrial barren, barren and partly damaged vegetation) has increased in the period 1973–1988, and the degradation is carried out in a such manner that sensitive mountain and lichen vegetation formations have been transformed into a more barren-like environment. The increase in the emissions has also transferred the natural barrens which also consisted of some sparse vegetation into a complete barren with little vegetation left. Also the epilitic lichens and mosses on bare rocks and stones were also removed by the high concentrations of SO2. The land cover types with minor damage (with the remaining lichen-dominated vegetation) had rather low concentrations of the contaminants (SO2, Ni and S), while the partly damaged and damaged land cover types had the highest concentrations of the contaminants. An exception was the Ni and S concentrations found in class 11 Industrial barrens which were lower than expected. Associations between the degradation and the SO2 concentration in the air were also documented. The conclusion from this analysis is that the in-situ data support the observations of damaged vegetation and industrial barrens imaged by the Landsat satellites, especially in the surroundings of Nikel and Zapolyarnij.  相似文献   

17.
In this semi-arid area, many studies focused on the two-phase vegetation pattern were carried out to explore a changing vegetation trajectory on degraded land. However, this study conducted an analysis of a two-phase vegetation pattern and explored the successional vegetation trajectories in a positive succession without disturbance. In this work, 60 randomly distributed plots (1?×?1 m) were invested on four abandoned land areas (4-, 12-, 22-, and 50-year abandoned land) to determine attributes of vegetation, and soil physical and nutritional properties. It was found that vegetation distribution development went from homogeneous on 4-year abandoned land to heterogeneous on 50-year abandoned land, with a positive succession. Meanwhile, there was a significant difference in soil physical and nutritional properties for the inside and outside of vegetation patches. Vegetation patches can supply better soil physical and nutritional properties for vegetation than bare patches along the abandoned time. Vegetation diversity changes without a regular trend which may be due to the effect of environment and interspecies competition. This work picked up the slack for vegetation patterns succession research and provided a quantitative analysis approach.  相似文献   

18.
Groundwater is a major water resource in Southwestern Taiwan; hence, long-term monitoring of water quality is essential. The study aims to assess the hydrochemical characteristics of water in the arsenic-contaminated aquifers of Choushui River alluvial fan and Chianan Plain, Taiwan using multivariate statistical methods, namely, factor analysis (FA), cluster analysis (CA), and discriminant analysis (DA). Factor analysis is applied to reveal the processes controlling the hydrochemistry of groundwater. Cluster analysis is applied to spatially categorize the collected water samples based on the water quality. Discriminant analysis is then applied to elucidate key parameters associated with the occurrence of elevated As concentration (>10 μg L(-1)) in groundwater. Major water types are characterized as Na-Ca-Cl and Na-Mg-Cl in the Choushui River alluvial fan and Chianan Plain, respectively. Inorganic species of arsenic (As), particularly As(III), prevail in these two groundwater catchments, and their levels are higher in the Chianan Plain than in the Choushui River alluvial fan. Through FA, three factors, namely, the degree of salination, As reduction, and iron (Fe) reduction, are determined and denoted irrespective of some differences between the factorial compositions. Spatial distribution patterns of factors As reduction and Fe reduction imply that the redox zonation is delineated by As- and Fe-dominance zones separately. The results of CA demonstrate that three main groups can be properly explained by the factors extracted via FA. Three- (Fe(2+), Fe(3+), and NH (4) (+) ) and four-parameters (Fe(2+), Fe(3+), NH (4) (+) , and Ca(2+)) derived from discriminant analysis for Choushui River alluvial fan and Chianan Plain are elucidated as key parameters affecting the distribution of As-contained groundwater. The analytical results indicate that the reductive dissolution of Fe minerals is prerequisite for the mobilization of As, whereas the shift of redox condition from Fe- to As-reducing leads to the accumulation of dissolved As in this area.  相似文献   

19.
On August 8, 2009, Typhoon Morakot brought heavy rain to Taiwan, causing numerous landslides and debris flows in the Taihe village area of Meishan Township, Chiayi County, in south-central Taiwan. In the Taihe land is primary used for agriculture and land use management may be a factor in the area’s landslides. This study explores Typhoon Morakot-induced landslides and land use changes between 1999 and 2009 using GIS with the aid of field investigation. Spot 5 satellite images with a resolution of 2.5 m are used for landslide interpretation and manually digitalized in GIS. A statistical analysis for landslide frequency–area distribution was used to identify the landslide characteristics associated with different types of land use. There were 243 landslides with a total area of 2.75 km2 in the study area. The area is located in intrinsically fragile combinations of sandstone and shale. Typhoon Morakot-induced landslides show a power–law distribution in the study area. Landslides were mainly located in steep slope areas containing natural forest and in areas planted with bamboo, tea, and betel nut. Land covered with natural forest shows the highest landslide ratio, followed by bamboo, betel nut, and tea. Landslides thus show a higher ratio in areas planted with shallow root vegetation such as bamboo, betel nut, and tea. Furthermore, the degree of basin development is proportional to the landslide ratio. The results show that a change in vegetation cover results in a modified landslide area and frequency and changed land use areas have higher landslide ratios than non-changed. Land use management and community-based disaster prevention are needed in mountainous areas of Taiwan for hazard mitigation.  相似文献   

20.
Temporal moments analysis of preferential solute transport in soils   总被引:1,自引:0,他引:1  
Temporal moments analysis of solute breakthrough curves is used to investigate the preferential leaching of chloride, nitrate and phosphate through an Australian soil. Recent studies have shown that current models and methods do not adequately describe the leaching of nutrients through soil, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. This inaccuracy results primarily from ignoring soil structure and non-equilibrium between soil constituents, water and solutes. Therefore simple models are required to accurately characterise solute transport in natural and agricultural soils under non-equilibrium conditions. A multiple sample percolation system, consisting of 25 individual collection wells was constructed to study the effects of localised soil heterogeneities on the transport of nutrients (NO3 , Cl, PO4 3 ) in the vadose zone of an agricultural soil predominantly dominated by clay. Using data collected from the multiple sample percolation experiments, this paper compares and contrasts the performance of temporal moments analysis with two mathematical models for predicting solute transport, the advective-dispersion model with a reaction term (ADR) and a two-region preferential flow model (TRM) suitable for modelling preferential transport. The values for solute transport parameters predicted by temporal moments analysis were in excellent agreement with experimental data and results from ADR and TRM. It is concluded that temporal moments analysis when applied with other physical models such as the ADR and TRM, provide an excellent means of obtaining values for important solute transport parameters and gaining insight of preferential flow. These results have significant ramifications for modelling solute transport and predicting nutrient loadings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号