首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tread compound of truck tires is based primarily on natural rubber or blends of natural rubber (NR) and synthetic polymers in combination with high grade carbon black. When the tread compound is attacked by a strain of Nocardia capable of degrading NR, part of the NR in the compound is mineralized, and part is disintegrated to very small black particles. The small black particles consist of the residual rubber and inorganic fillers. At higher NR content, large and deep cavities are formed on the surface of the pieces of the tread compound after microbial disintegration. At lower content of NR, large but very shallow cavities or very small pits can be seen on the tread surface. During microbial growth on the tread compound, isoprene oligomers with molecular weight of about two thousand are produced. Not only the isoprene oligomers, but also butadiene oligomers are produced during microbial disintegration of the tread compound of NR/synthetic rubber blend.  相似文献   

2.
This paper presents a study to determine the impact of gas production in dredging sludge on the storage capacity of artificial sludge depots. Gas is produced as a result of the decomposition of organic material present in dredging spoil. This process, in which methane and carbon dioxide are formed, may lead to expansion of sludge layers, partly or even completely counterbalancing consolidation. The study shows that, even with a very conservative estimation of the rate of gas production, accumulation of gas occurs as convective and diffusive transport proceed very slowly. Nucleation of gas bubbles occurs already at a limited oversaturation of pore water. During their growth, bubbles push aside the surrounding grain matrix. Resulting stresses may initiate cracks around bubbles. If these cracks join, they may form channels stretching out to the depot surface and along which gas may escape. However, channels are only stable to a limited depth below which bubble accumulation may continue. The gas content at which sufficient cracks and channels are formed to balance the rate of gas production with the rate of outflow strongly depends on the constitutive properties of the dredging sludge considered. In sludge with a high shear strength (> 10 kPa), stable channels are created already at low deformations. However, a large expansion may occur in sludge with a low strength. The present study shows that accumulation of gas may continue until a bulk density less than that of water is attained. This is equivalent to a gas fraction of about 25-37%, depending on the initial water content of the sludge. Only then can gas escape as a result of instabilities in the sediment matrix. This should be well taken into account during the design and management of artificial depots.  相似文献   

3.
The degradability of the compatible thermoplastic starch/polyethylene film was investigated by weight loss percent (WLP), Fourier Transform Infrared (FT-IR) Spectroscopy, and Scanning Electron Microscope (SEM). The compatible film was prepared by using the particles of thermoplastic starch/polyethylene blends that were produced by one-step reactive extrusion. The weight of the film after degradation reduced more than 3% for 30 days and 4% for 60 days. The FTIR results revealed that both starch and polyethylene in the film exhibited varying degrees of degradation. SEM photographs of the films after degradation showed that starch particles in the film disintegrated into smaller particles or separated out of the film surface. Degradation studies demonstrated that the compatible thermoplastic starch/polyethylene film had increased degradability at the given degradable environment. The information implies that this film could be utilized as a degradable plastic.  相似文献   

4.
Selective surface modification of polyvinyl chloride (PVC) by ozonation was evaluated to facilitate the separation of PVC from other heavy plastics with almost the same density as PVC, especially polyethylene terephthalate (PET), by the froth flotation process. The optimum froth flotation conditions were investigated, and it was found that at 40°C, 90% of PVC and PET plastics floated. The bubble size became larger and the area covered with bubbles on the plastic surface was reduced with increasing temperature. Optimum PVC separation was achieved with the flotation solution at 40°C and mixing at 180–200 rpm, even for sheet samples 10 mm in size. Combined treatment by ozonation and froth flotation is a simple, effective, and inexpensive method for PVC separation from waste plastics.  相似文献   

5.
The characteristics of bubble properties and the chaotic flow behavior of gas were investigated in an annular fluidized bed (0.102 m in inner diameter and 2 m in height) because the behavior of gas flow in such a reactor is one of the important factors governing reactor operation, reactor performance, and the reaction itself. Pressure fluctuations as a state variable for the analysis of gas flow behavior were measured and analyzed. Bubble properties were determined by adopting the cross-correlation function of pressure fluctuations. The resultant chaotic flow behavior of gas was interpreted by means of chaotic parameters such as the Kolmogorov entropy. It was found that the Kolmogorov entropy could be utilized effectively to explain the nonlinear dynamic behavior of gas-solid flow in the annular fluidized bed. The pierced length and rising velocity of bubbles increased with increasing gas velocity, bed temperature, and particle size of the bed material. The bubble frequency increased with increasing gas velocity and bed temperature, while it decreased with increasing particle size of the bed material. Correlations to predict the bubble properties in annular fluidized-bed reactors were suggested.  相似文献   

6.
Scrubbers are used as particulate emission control devices with the increase in stringency of old regulations or promulgation of new regulations. Scrubbing of fly ash in a novel dual flow scrubber, i.e., one water filled bubble section and one section with water-spray, is reported in this article. The presented system included a tapered section in order to achieve the bubble regime. On the other hand, a two-phase critical flow atomizer was used for the generation of spray regime with high degree of spray uniformity. Experiments were carried out for studying the behavior of the system in terms of various pertinent variables. The fly ash removal mechanism was explained in terms of various physical interactions. Electrostatic effect was found to have an insignificant influence on the collection efficiency of fly ash. The removal efficiency was found to decrease with the increase in inlet fly ash loading in the bubble section while it was increased in the spray section. A compromise must, therefore, be struck while operating the scrubber for achieving the desired performance. The effects of other operating variables studied on the removal efficiency remained similar in the regimes under investigation. The combined effect was, however, that the spray regime was dominating. Experimentation also revealed that the bubble section collected particles down to 20 microm size. Detailed experimentation revealed that almost 100% removal efficiency (zero penetration) of fly ash could be achieved in the dual flow scrubber at a QL/QG ratio of 3.0 m3/1000 ACM (actual cubic meter). Almost zero penetration of fly ash particles, clearly demonstrated that the dual flow scrubber with its staging operations met with the stricter emission regulations for particulate matter. Selection of any particulate control device is intrinsically related to the performance as a function of various pertinent variables of the system. Correlations were, therefore, put forward for the prediction of the performances of the bubble and the spray sections in terms of various pertinent variables of the system. The overall removal efficiency achievable in the dual flow scrubber was predicted with the help of these correlations. The predicted values were in excellent agreement with the experimental values (well within +/-5.0% deviation). Comparison of the performance of the present system with the existing systems indicated that the bubble and spray sections either alone or in combination (as in a dual flow scrubber), was energy and efficiency-wise much better than the existing systems. The novelty of the system is also described.  相似文献   

7.
Flotation tests of 35 polymer materials were carried out to investigate their floatability modulated by frothers. Results of flotation tests demonstrated that polymer resins and soft PVC showed high floatability, floatability of hard PVC plastics was relatively low and was related to the frothers, and there exists significant difference in the floatability of different post-consumer plastics. Flotation rate of post-consumer plastics varies from 0% to 100%. Furthermore, three-category low-energy surface (LES) was defined based on the hydrophile index of the materials involved in this paper, and an adsorption model was proposed to explain the results of flotation and to discuss the floatability of polymer materials modulated by frothers. Frother molecules are prone to adsorb on the surface of bubble rather than LES at relatively low concentration, bubble adsorbed by frother molecules is prone to approach first-category LES rather than third-category LES, and the structure of liquid film is formed on the first-category LES at large concentration. Floatability of polymer materials modulated by frothers is further discussed: frothers increase the floatability of the first-category LES but decrease the floatability of the third-category LES, while the floatability of the second-category LES is related to the type of frothers.  相似文献   

8.
For resource reutilization, scrap tyres have long been investigated as an additive to concrete to form 'Rubcrete' for various applications and have shown promising results. However, the addition of rubber particles leads to the degradation of physical properties, particularly, the compressive strength of the concrete. In this study, a theoretical model was proposed to shed light on the mechanisms of decrease in compressive strength due to the addition of rubber particles as well as improvement in compressive strength through modification of particle surfaces. The literature suggests that the compressive strength can be improved by soaking the rubber particles in alkaline solution first to increase the inter-phase bonding between the rubber particles and cement. Instead, we discovered that the loss in compressive strength was due to local imperfections in the hydration of cement, induced by the addition of heterogeneous and hydrophobic rubber particles. Microscopic studies showed that the rubber particles disturbed the water transfer to create channels, which were prone to cracking and led to a loss in the compressive strength. Unexpectedly, no cracking was found along the surfaces of the rubber particles, indicating that the bonding strength between the rubber particles and cement phases was not the critical factor in determining the compressive strength. Therefore, a theoretical model was proposed to describe the water transfer in the Rubcrete specimens to explain the experimental data. In the model, the local water available for hydration (Q) is: Q = -A(slv)/6piv, where Q, A(slv), and v are mass flow rate (kg s(-1)), Hamaker constant (J), and dynamic viscosity (m2 s(-1)), respectively. By maximizing the quantity Q and, in turn, the Hamaker constant A(slv), the compressive strength could be improved. The Hamaker constant A(slv) for water film on rubber particle surfaces was smaller than that for the hydrated cement particles; the water transfer rate was lower in the presence of rubber particles because the Hamaker constant A(slv) for water film on rubber particle surfaces was smaller than that on the hydrated cement particles. Thus, the compressive strength of Rubcrete could be improved by increasing the Hamaker constant of the system. This was achieved by increasing the refractive indices of the solids (n(s)). The refractive indices of materials increase with increases in functional groups, such as OH and SH on the surface. The model provided a possible mechanism for the efficacy of treating rubber particles with NaOH in improving the compressive strength. By using NaOH solution treatment, an oxygen-containing OH group was formed on the rubber surface to increase the Hamaker constant of the system, leading to higher compressive strength. Based on this mechanism, a novel method for modification of the rubber particles was also proposed. In this process, the rubber particles were partially oxidized with hot air/steam in a fluidized bed reactor to produce the hydrophilic groups on the surface of the particles. Preliminary results obtained so far are promising in accordance with the theory.  相似文献   

9.
The recycling process for 3 mol% yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) sintered at 1450°–1550°C was examined by applying low-temperature degradation of zirconia ceramics under hydrothermal conditions. Hydrothermal treatment at a temperature from 200° to 240°C can lead to the spontaneous disintegration of 3Y-TZP sintered bodies into powdery particles. The hydrothermally obtained zirconia powder was found to consist of primary particles and aggregated particles. Detailed X-ray diffraction measurement revealed the formation of a cubic zirconia phase in the 3Y-TZP sintered bodies, which seemed to inhibit the disintegration of aggregated particles toward the primary particle level. The reclaimed 3Y-TZP powder was sintered again through a conventional powder processing route. The mechanical properties and microstructure of recycled 3Y-TZP sintered specimens were examined by comparison with those of the original 3Y-TZP sintered bodies. Dense recycled 3Y-TZP sintered at a higher temperature exhibited higher fracture toughness to some degree than the original 3Y-TZP.  相似文献   

10.
A mathematical model has recently been proposed by the authors to simulate the biochemical processes that prevail in a co-digestion reactor fed with sewage sludge and the organic fraction of municipal solid waste. This model is based on the Anaerobic Digestion Model no. 1 of the International Water Association, which has been extended to include the co-digestion processes, using surface-based kinetics to model the organic waste disintegration and conversion to carbohydrates, proteins and lipids. When organic waste solids are present in the reactor influent, the disintegration process is the rate-limiting step of the overall co-digestion process. The main advantage of the proposed modeling approach is that the kinetic constant of such a process does not depend on the waste particle size distribution (PSD) and rather depends only on the nature and composition of the waste particles. The model calibration aimed to assess the kinetic constant of the disintegration process can therefore be conducted using organic waste samples of any PSD, and the resulting value will be suitable for all the organic wastes of the same nature as the investigated samples, independently of their PSD. This assumption was proven in this study by biomethane potential experiments that were conducted on organic waste samples with different particle sizes. The results of these experiments were used to calibrate and validate the mathematical model, resulting in a good agreement between the simulated and observed data for any investigated particle size of the solid waste. This study confirms the strength of the proposed model and calibration procedure, which can thus be used to assess the treatment efficiency and predict the methane production of full-scale digesters.  相似文献   

11.
A rubber-degrading strain of Nocardia was cultured on tread rubber particles from a truck tire by a two-step cultivation method. At the first step, the culture medium was either not agitated or stirred at very slow rate of 40 rpm for one or 2 weeks. At the second step, the culture medium was stirred at relatively higher stirring rate of 150 or 300 rpm for seven or six weeks. It was found that the rate of disintegration was greatly increased and the weight losses of the particles with diameters of about 2.3 mm were as high as 40% in the two-step method and only 20–30% in a one-step method in which the stirring rate was kept constant throughout the culture period. With this method, microbial colonization and disintegration were depressed particularly at the corners of the cubic particles and characteristic protuberant structures were observed at the corners after the removal of microbial cells by washing.  相似文献   

12.
A simple, low-cost method for suppression of dioxins/furans (hereinafter referred to as dioxins) is required because many middle- and, especially, small-scale incinerators have fallen into disuse or have been dismantled because of the high running and system costs of measures for the suppression of dioxins. Therefore, the purpose of the present study was to develop a simple removal method for dioxins from combustion gas and to evaluate the basic removal rate of dioxins. The removal method for suspended matter in a gas mixture (cold model) and dioxins in exhaust gases (hot model) has been investigated by means of gas injection into water, the mechanism of which is that the suspended matter in the gas gathers at the gas–liquid interface. In the cold model, the removal ratio of fine particles (RP) by gas injection into water was reproduced well by the following equation: RP (%) = 100 × {1−exp(−0.8 · SS · tC)}, where SS (cm2/cm3) is the specific surface area of bubbles and tC (s) is the residence time of bubbles in water. The removal ratio of fine particles increased as the product Ss · tC increased. In a hot model using the exhaust gas from combustion experiments of polyvinyl chloride, the removal ratio of dioxins (RD) by injecting the exhaust gas into water was estimated by the following equation: RD (%) = 100 × {1−exp(−0.8 · SS · tC · CD0 0.07)}, where CD0 [ng/cm3 (at standard temperature and pressure)] is the dioxins concentration in the exhaust gas before injection into water. RD depends greatly on the specific surface area of bubbles and the residence time of the bubbles in water, and only weakly on the dioxins concentration in the exhaust gas. Injection of the exhaust gas into water has been shown to be effective and was evaluated as a simple method for the removal of dioxins from exhaust gas.  相似文献   

13.
Methodology to produce materials derived from renewable resources is of great importance in decreasing both environmental impact as well as dependence on fossil fuels. We report a straightforward method of polymer grafting to soy protein hydrolysates, which are available in surplus. Benzylthiocarbonate moieties were installed on the protein surface via amidation of free amino groups, creating a protein macro chain transfer agent (CTA) for reversible addition fragmentation transfer (RAFT) polymerization. We found that subjection of this soy protein macro-CTA (SP-CTA) to RAFT polymerization conditions with polar acrylate monomers resulted in protein-polymer nanometer-scale particles with solubility properties dictated by monomer polarity. Polymer grafting, particle size and polymerization were characterized by elemental analysis, transmission electron microscopy and gel permeation chromatography. We anticipate that this method of grafting will be of use in generation of new materials based on renewable resources.  相似文献   

14.
Currently, wet bottom ash is not sufficiently utilized due to its content of unburned coal, chloride and moisture. In contrast, bottom ash discharged from the recently introduced dry process spends a longer time on the clinker conveyer in the lower part of the boiler and consequently contains a significantly smaller amount of unburned coal. Consequently, it has high potential for use as a lightweight aggregate for construction material because of properties such as high porosity, low unburned coal content, non-chloride, and non-moisture. However, it is not frequently used for construction because the ash particle has a flat and thin shape, coarse surface and unfavorable structural strength. Against this backdrop, this study has conducted a range of experiments to identify the shapes, structure, density, absorption, percentage of floating particles, unit volume weight, solid volume, characteristics of air bubbles and micro pores, crushing strength of bottom ash, and the following results were observed. Though the dry bottom ash has sharp and angular edges, its flat and thin shapes lead to vulnerable structures. Dry bottom ash of the size of 0.6 mm or larger has 50–60 % of the total pore rate and 30–50 % of the closed pore rate. Considering these qualities, by removing the relatively fragile surface parts and making the particles more globular, dry bottom ash can be used as a lightweight aggregate for construction field having outstanding performance in terms of light weight and insulation.  相似文献   

15.
为了使现有花岗岩水膜除尘器的燃煤锅炉烟气净化达标排放,在不更换水膜除尘器的前提下,探讨和比较了后继烟气吸收装置喷淋塔和鼓泡塔的脱硫和除尘机理,提出改进措施。该技术具有工艺流程简单,建设和运行成本低,适用于由于历史原因仍有相当大数量使用的花岗岩水膜除尘器的烟气净化工艺路线的改造。  相似文献   

16.
The coke-slag mixture discharged from water-air generators not only causes a serious environmental problem, but also is a potential resource. In order to obtain a high economic return, separation of fine binary mixtures in a vibrating fluidized bed with dense media was experimentally investigated. The effects of volume ratio (mono-component volume to dense medium volume or binary mixture volume to dense medium volume), the fluidization velocity and vibration parameters on separation efficiency are discussed. The experimental results show that vibration can prevent the coalescence and growth of bubbles and improve fluidization properties of particles and the stability of bed density. The major factors associated with separating efficiency are discussed. Based on the experiments, the ratio of the volume of particles to bed volume and the vibration conditions are also reported. It was found that the separation efficiency for a fine coke-slag mixture was greater than 70% and close to 80% under optimal conditions.  相似文献   

17.
A 3-D hybrid flow/transport model has been developed to predict the dispersal of oil pollution in coastal waters. The transport module of the model takes predetermined current and turbulent diffusivities and uses Lagrangian tracking to predict the motion of individual particles (droplets), the sum of which constitute a hypothetical oil spill. Currents and turbulent diffusivities used in the model have been generated by a numerical ocean circulation model (Princeton ocean model) implemented for the Caspian Sea. The basic processes affecting the fate of the oil spill are taken into account and parameterized in the transport model.The hybrid model is implemented for a simulated continuous release in the coastal waters of the Caspian Sea. The potential of the model for the prediction of the advective and turbulent transport and dispersal of oil spills is demonstrated.  相似文献   

18.
Here, the influence of graphene as a coating on the biodegradation process for two different polymers is investigated, poly(butylene adipate-co-terephthalate) (PBAT) (biodegradable) and low-density polyethylene (LDPE) (non-biodegradable). Chemical vapor deposition graphene was transferred to the surface of two types of polymers using the Direct Dry Transfer technique. Polymer films, coated and uncoated with graphene, were buried in a maturated soil for up to 180 days. The films were analyzed before and after exposure to microorganisms in order to obtain information about the integrity of the graphene (Raman Spectroscopy), the biodegradation mechanism of the polymer (molecular weight and loss of weight), and surface changes of the films (atomic force microscopy and contact angle). The results prove that the graphene coating acted as a material to control the biodegradation process the PBAT underwent, while the LDPE covered by graphene only had changes in the surface properties of the film due to the accumulation of solid particles. Polymer films coated with graphene may allow the production of a material that can control the microbiological degradation, opening new possibilities in biodegradable polymer packaging. Regarding the possibility of graphene functionalization, the coating can also be selective for specific microorganisms attached to the surface.  相似文献   

19.
The current landfill gas (LFG) management (based on flaring and utilization for heat generation of the collected gas) and three potential future gas management options (LFG flaring, heat generation and combined heat and power generation) for the Old Ämmässuo landfill (Espoo, Finland) were evaluated by life-cycle assessment modeling. The evaluation accounts for all resource utilization and emissions to the environment related to the gas generation and management for a life-cycle time horizon of 100 yr. The assessment criteria comprise standard impact categories (global warming, photo-chemical ozone formation, stratospheric ozone depletion, acidification and nutrient enrichment) and toxicity-related impact categories (human toxicity via soil, via water and via air, eco-toxicity in soil and in water chronic).The results of the life-cycle impact assessment show that disperse emissions of LFG from the landfill surface determine the highest potential impacts in terms of global warming, stratospheric ozone depletion, and human toxicity via soil. Conversely, the impact potentials estimated for other categories are numerically-negative when the collected LFG is utilized for energy generation, demonstrating that net environmental savings can be obtained. Such savings are proportional to the amount of gas utilized for energy generation and the gas energy recovery efficiency achieved, which thus have to be regarded as key parameters. As a result, the overall best performance is found for the heat generation option – as it has the highest LFG utilization/energy recovery rates – whereas the worst performance is estimated for the LFG flaring option, as no LFG is here utilized for energy generation.Therefore, to reduce the environmental burdens caused by the current gas management strategy, more LFG should be used for energy generation. This inherently requires a superior LFG capture rate that, in addition, would reduce fugitive emissions of LFG from the landfill surface, bringing further environmental benefits.  相似文献   

20.
An assay method has been developed for monitoring the enzymatic degradation of thin films of translucent polymers. The method was based on the observation that when a solution-cast film of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was exposed to a solution of a depolymerase fromPseudomonas lemoignei, the surface of the film roughened and the film became visibly turbid. This increase in turbidity could be measured spectrophotometrically and was reproducible during the initial stage of degradation. Turbidity correlated very closely with film weight loss early in the degradation but reached a maximum value before extensive degradation had taken place. For a given set of films, this correlation was independent of the concentration of the enzyme used, although it did vary with the mode of enzyme exposure. The turbidity was associated with the exposure of crystalline domains due to the removal of amorphous material from the film surface. The increase in crystallinity at the surface was verified by attenuated total reflectance infrared spectroscopy (ATRIR). In conjunction with SEM, weight loss, and ATRIR, the film turbidity assay provided much semiquantitative insight into the mechanism of the enzymatic degradation reaction. This assay was used to study the enzymatic degradation of films of PHBV solution blended with cellulose acetate esters (CAE). The presence of only 25% of CAE of degree of substitution 2.9 severely hampered the enzymatic degradability of PHBV, a result which is consistent with the environmental degradation of these same samples exposed to activated sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号