首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 715 毫秒
1.
Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land‐use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate‐change mitigation policies will reduce direct climate‐change impacts; however, these policies will influence land‐use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land‐use changes. We estimated past extinctions from historical land‐use changes (1500–2005) based on the global gridded land‐use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land‐use changes under alternative climate‐change scenarios (2005–2100). Future land‐use changes are projected to reduce natural vegetative cover by 26‐58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land‐use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate‐change mitigation scenario and biological factors such as the slope of the species–area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land‐use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land‐use changes in hotspots or by lessening the impact of future land‐use activities on biodiversity within hotspots.  相似文献   

2.
Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate‐change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate‐change scenarios for ecological impact assessment. Selección y Uso de Escenarios de Cambio Climático para Estudios de Impacto Ecológico y Decisiones de Conservación  相似文献   

3.
Wildlife managers face the daunting task of managing wildlife in light of uncertainty about the nature and extent of future climate change and variability and its potential adverse impacts on wildlife. A conceptual framework is developed for managing wildlife under such uncertainty. The framework uses fuzzy logic to test hypotheses about the extent of the wildlife impacts of past climate change and variability, and fuzzy multiple attribute evaluation to determine best compensatory management actions for adaptively managing the potential adverse impacts of future climate change and variability on wildlife. A compensatory management action is one that can offset some of the potential adverse impacts of climate change and variability on wildlife. Implementation of the proposed framework requires wildlife managers to: (1) select climate impact states, hypotheses about climate impact states, possible management actions for alleviating adverse wildlife impacts of climate change and variability, and future climate change scenarios; (2) choose biological attributes or indicators of species integrity; (3) adjust those attributes for changes in non-climatic variables; (4) define linguistic variables and associated triangular fuzzy numbers for rating both the acceptability of biological conditions under alternative management actions and the relative importance of biological attributes; (5) select minimum or maximum acceptable levels of the attributes and reliability levels for chance constraints on the biological attributes; and (6) define fuzzy sets on the extent of species integrity and biological conditions and select a fuzzy relation between species integrity and biological conditions. A constructed example is used to illustrate a hypothetical application of the framework by a wildlife management team. An overall best compensatory management action across all climate change scenarios is determined using the minimax regret criterion, which is appropriate when the management team cannot assign or is unwilling to assign probabilities to the future climate change scenarios. Application of the framework can be simplified and expedited by incorporating it in a web-based, interactive, decision support tool.  相似文献   

4.
Mountains are among the natural systems most affected by climate change, and mountain mammals are considered particularly imperiled, given their high degree of specialization to narrow tolerance bands of environmental conditions. Climate change mitigation policies, such as the Paris Agreement, are essential to stem climate change impacts on natural systems. But how significant is the Paris Agreement to the survival of mountain mammals? We investigated how alternative emission scenarios may determine change in the realized climatic niche of mountain carnivores and ungulates in 2050. We based our predictions of future change in species niches based on how species have responded to past environmental changes, focusing on the probabilities of niche shrink and niche stability. We found that achieving the Paris Agreement's commitments would substantially reduce climate instability for mountain species. Specifically, limiting global warming to below 1.5°C would reduce the probability of niche shrinkage by 4% compared with a high-emission scenario. Globally, carnivores showed greater niche shrinkage than ungulates, whereas ungulates were more likely to shift their niches (i.e., face a level of climate change that allows adaptation). Twenty-three species threatened by climate change according to the IUCN Red List had greater niche contraction than other species we analyzed (3% higher on average). We therefore argue that climate mitigation policies must be coupled with rapid species-specific conservation intervention and sustainable land-use policies to avoid high risk of loss of already vulnerable species.  相似文献   

5.
Conserving coral reefs is critical for maintaining marine biodiversity, protecting coastlines, and supporting livelihoods in many coastal communities. Climate change threatens coral reefs globally, but researchers have identified a portfolio of coral reefs (bioclimatic units [BCUs]) that are relatively less exposed to climate impacts and strongly connected to other coral reef systems. These reefs provide a proactive opportunity to secure a long-term future for coral reefs under climate change. To help guide local management efforts, we quantified marine cumulative human impact (CHI) from climate, marine, and land pressures (2013 and from 2008 to 2013) in BCUs and across countries tasked with BCU management. Additionally, we created a management index based on common management measures and policies for each pressure source (climate, marine, and land) to identify a country's intent and commitment to effectively manage these pressures. Twenty-two countries (79%) had increases in CHI from 2008 to 2013. Climate change pressures had the highest proportional contribution to CHI across all reefs and in all but one country (Singapore), but 18 BCUs (35%) and nine countries containing BCUs (32%) had relatively high land and marine impacts. There was a significant positive relationship between climate impact and the climate management index across countries (R2 = 0.43, p = 0.02), potentially signifying that countries with greater climate impacts are more committed to managing them. However, this trend was driven by climate management intent in Fiji and Bangladesh. Our results can be used to guide future fine-scale analyses, national policies, and local management decisions, and our management indices reveal areas where management components can be improved. Cost-effectively managing local pressures (e.g., fishing and nutrients) in BCUs is essential for building a climate-ready future that benefits coral reefs and people.  相似文献   

6.
A modern challenge for conservation biology is to assess the consequences of policies that adhere to assumptions of stationarity (e.g., historic norms) in an era of global environmental change. Such policies may result in unexpected and surprising levels of mitigation given future climate‐change trajectories, especially as agriculture looks to protected areas to buffer against production losses during periods of environmental extremes. We assessed the potential impact of climate‐change scenarios on the rates at which grasslands enrolled in the Conservation Reserve Program (CRP) are authorized for emergency harvesting (i.e., biomass removal) for agricultural use, which can occur when precipitation for the previous 4 months is below 40% of the normal or historical mean precipitation for that 4‐month period. We developed and analyzed scenarios under the condition that policy will continue to operate under assumptions of stationarity, thereby authorizing emergency biomass harvesting solely as a function of precipitation departure from historic norms. Model projections showed the historical likelihood of authorizing emergency biomass harvesting in any given year in the northern Great Plains was 33.28% based on long‐term weather records. Emergency biomass harvesting became the norm (>50% of years) in the scenario that reflected continued increases in emissions and a decrease in growing‐season precipitation, and areas in the Great Plains with higher historical mean annual rainfall were disproportionately affected and were subject to a greater increase in emergency biomass removal. Emergency biomass harvesting decreased only in the scenario with rapid reductions in emissions. Our scenario‐impact analysis indicated that biomass from lands enrolled in the CRP would be used primarily as a buffer for agriculture in an era of climatic change unless policy guidelines are adapted or climate‐change projections significantly depart from the current consensus.  相似文献   

7.
Abstract: Given their physiological requirements, limited dispersal abilities, and hydrologically sensitive habitats, amphibians are likely to be highly sensitive to future climatic changes. We used three approaches to map areas in the western hemisphere where amphibians are particularly likely to be affected by climate change. First, we used bioclimatic models to project potential climate‐driven shifts in the distribution of 413 amphibian species based on 20 climate simulations for 2071–2100. We summarized these projections to produce estimates of species turnover. Second, we mapped the distribution of 1099 species with restricted geographic ranges. Finally, using the 20 future climate‐change simulations, we mapped areas that were consistently projected to receive less seasonal precipitation in the coming century and thus were likely to have altered microclimates and local hydrologies. Species turnover was projected to be highest in the Andes Mountains and parts of Central America and Mexico, where, on average, turnover rates exceeded 60% under the lower of two emissions scenarios. Many of the restricted‐range species not included in our range‐shift analyses were concentrated in parts of the Andes and Central America and in Brazil's Atlantic Forest. Much of Central America, southwestern North America, and parts of South America were consistently projected to experience decreased precipitation by the end of the century. Combining the results of the three analyses highlighted several areas in which amphibians are likely to be significantly affected by climate change for multiple reasons. Portions of southern Central America were simultaneously projected to experience high species turnover, have many additional restricted‐range species, and were consistently projected to receive less precipitation. Together, our three analyses form one potential assessment of the geographic vulnerability of amphibians to climate change and as such provide broad‐scale guidance for directing conservation efforts.  相似文献   

8.
The reintroduction of a species that is extinct in the wild demands caution because reintroduction locations may be associated with threats, such as hunting, poor-quality habitat, and climate change. This is the case for Cyanopsitta spixii (Spix's Macaw), which has been extinct in the wild since 2000. The few living individuals were created in captivity and will be used in a reintroduction project within the species’ original distribution area, the Caatinga domain (Brazil). Because the occurrence records for this bird are old and inaccurate, we investigated the current and future environmental suitability of the 14 plant species used by C. spixii as resource. These plants are key elements for the long-term reestablishment of the species in the wild, so the use of models helps in the assessment of the effects of climate change on the availability of these resources for the species and informs selection of the best places for reintroduction. We based our models of environmental suitability on 19 bioclimatic variables and nine physical soil and topography variables. Climate projections were created for the present and for the year 2070 with an optimistic (SSP2-4.5) and a pessimistic (SSP5-8.5) climate scenario. Both future climate scenarios lead to a reduction in area of environmental suitability that overlapped for all the plant species: 33% reduction for SSP2-4.5 and 63% reduction for SSP5-8.5. If our projections materialize, climate change could thus affect the distribution of key resources, and the maintenance of C. spixii would depend on restoration of degraded areas, especially riparian forests, and the preservation of already existing natural areas. The Caatinga domain is very threatened by habitat loss and, for the success of this reintroduction project, the parties involved must act to protect the species and the resources it uses.  相似文献   

9.
Using anomalies calculated from General Circulation Model (GCM) climate predictions we developed scenarios of future fire weather, fuel moisture and fire occurrence and used these as the inputs to a fire growth and suppression simulation model for the province of Ontario, Canada. The goal of this study was to combine GCM predictions with the fire growth and suppression model to examine potential changes in area burned in Ontario due to climate change, while accounting for the large fire suppression activities of the Ontario Ministry of Natural Resources (OMNR). Results indicate a doubling of area burned in the Intensive and Measured fire management zones of Ontario by the decade of 2040 and an eightfold increase in area burned by the end of the 21st century in the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A2 scenario; smaller increases were found for the A1b and B1 scenarios. These changes are driven by increased fire weather conducive to large fire growth, and increases in the number of fires escaping initial attack: for the Canadian GCM's business-as-usual (A2) scenario, escaped fire frequency increased by 34% by 2040 and 92% by the end of the 21st century. Incorporating more detail on large fire growth than previous studies, our model predicts higher area burned under climate change than do these previous studies, as large numbers of high-intensity fires overwhelm suppression capacity.  相似文献   

10.
Climate‐change induced uncertainties in future spatial patterns of conservation‐related outcomes make it difficult to implement standard conservation‐planning paradigms. A recent study translates Markowitz's risk‐diversification strategy from finance to conservation settings, enabling conservation agents to use this diversification strategy for allocating conservation and restoration investments across space to minimize the risk associated with such uncertainty. However, this method is information intensive and requires a large number of forecasts of ecological outcomes associated with possible climate‐change scenarios for carrying out fine‐resolution conservation planning. We developed a technique for iterative, spatial portfolio analysis that can be used to allocate scarce conservation resources across a desired level of subregions in a planning landscape in the absence of a sufficient number of ecological forecasts. We applied our technique to the Prairie Pothole Region in central North America. A lack of sufficient future climate information prevented attainment of the most efficient risk‐return conservation outcomes in the Prairie Pothole Region. The difference in expected conservation returns between conservation planning with limited climate‐change information and full climate‐change information was as large as 30% for the Prairie Pothole Region even when the most efficient iterative approach was used. However, our iterative approach allowed finer resolution portfolio allocation with limited climate‐change forecasts such that the best possible risk‐return combinations were obtained. With our most efficient iterative approach, the expected loss in conservation outcomes owing to limited climate‐change information could be reduced by 17% relative to other iterative approaches.  相似文献   

11.
• A model coupling water-heat-salt of unsaturated frozen soil was established. • Future temperature, precipitation, and evaporation increase in freeze–thaw period. • Soil water, heat, and salt transport are closely coupled during freeze–thaw period. • Freeze–thaw cycles and future climate change can exacerbate salinization. The transport mechanisms of water, heat, and salt in unsaturated frozen soil, as well as its response to future climate change are in urgent need of study. In this study, western Jilin Province in north-eastern China was studied to produce a model of coupled water-heat-salt in unsaturated frozen soil using CoupModel. The water, heat, and salt dynamics of unsaturated frozen soil under three representative concentration pathway (RCP) scenarios were simulated to analyze the effects of future climate change on unsaturated frozen soil. The results show that water, heat, and salt migration are tightly coupled, and the soil salt concentration in the surface layer (10 cm) exhibits explosive growth after freezing and thawing. The future (2020–2099) meteorological factors in the study area were predicted using the Statistical Downscaling Model (SDSM). For RCP2.6, RCP4.5, and RCP8.5 scenarios, future temperatures during the freeze–thaw period increased by 2.68°C, 3.18°C, and 4.28°C, respectively; precipitation increased by 30.28 mm, 28.41 mm, and 32.17 mm, respectively; and evaporation increased by 93.57 mm, 106.95 mm, and 130.57 mm, respectively. Climate change will shorten the freeze–thaw period, advance the soil melting time from April to March, and enhance water and salt transport. Compared to the baseline period (1961–2005), future soil salt concentrations at 10 cm increased by 1547.54 mg/L, 1762.86 mg/L, and 1713.66 mg/L under RCP2.6, RCP4.5, and RCP8.5, respectively. The explosive salt accumulation is more obvious. Effective measures should be taken to prevent the salinization of unsaturated frozen soils and address climate change.  相似文献   

12.
Climate‐change vulnerability assessments (CCVAs) are valuable tools for assessing species’ vulnerability to climatic changes, yet failure to include measures of adaptive capacity and to account for sources of uncertainty may limit their effectiveness. We took a more comprehensive approach that incorporates exposure, sensitivity, and capacity to adapt to climate change. We applied our approach to anadromous steelhead trout (Oncorhynchus mykiss) and nonanadromous bull trout (Salvelinus confluentus), threatened salmonids within the Columbia River Basin (U.S.A.). We quantified exposure on the basis of scenarios of future stream temperature and flow, and we represented sensitivity and capacity to adapt to climate change with metrics of habitat quality, demographic condition, and genetic diversity. Both species were found to be highly vulnerable to climate change at low elevations and in their southernmost habitats. However, vulnerability rankings varied widely depending on the factors (climate, habitat, demographic, and genetic) included in the CCVA and often differed for the 2 species at locations where they were sympatric. Our findings illustrate that CCVA results are highly sensitive to data inputs and that spatial differences can complicate multispecies conservation. Based on our results, we suggest that CCVAs be considered within a broader conceptual and computational framework and be used to refine hypotheses, guide research, and compare plausible scenarios of species’ vulnerability to climate change.  相似文献   

13.
土壤微生物呼吸热适应性被认为是决定陆地生态系统对全球变暖反馈作用的潜在重要机制,可能显著改变未来的气候变化趋势,然而,土壤微生物群落结构变化如何引起土壤微生物呼吸热适应性的研究目前尚存争议.该文针对气候变化对土壤微生物呼吸的影响研究,梳理了当前对土壤微生物呼吸的热适应性是否存在的争议和不同观点与结论,综述了气候变化对土...  相似文献   

14.
The impact of climate changes on the pollution levels in Denmark is the major topic of this paper. Variations of the Danish air pollution levels that are caused by climatic changes are studied together with variations caused by other factors (emissions, inter-annual variability of meteorological conditions, etc.). The Unified Danish Eulerian Model (UNI-DEM) was run on a fine, 10 km × 10 km, grid over a space domain covering all of Europe to minimize the influence of the boundary conditions on the Danish pollution levels. This study is based on four categories of scenarios: (i) traditional scenarios, (ii) climatic scenarios, (iii) scenarios with variations of the human-made (anthropogenic) emissions and (iv) scenarios in which the biogenic emissions were varied. The total number of applied scenarios was 14, and a time-period of 16 years was used. The results show clearly that although the concentrations of the major pollutants do not depend too much on the climatic changes, some quantities, in particular quantities related to high ozone levels, might be increased significantly as a result of the warming trends in the future climate. The reason for this phenomenon is explained.  相似文献   

15.
Distributions and populations of large mammals are declining globally, leading to an increase in their extinction risk. We forecasted the distribution of extant European large mammals (17 carnivores and 10 ungulates) based on 2 Rio+20 scenarios of socioeconomic development: business as usual and reduced impact through changes in human consumption of natural resources. These scenarios are linked to scenarios of land‐use change and climate change through the spatial allocation of land conversion up to 2050. We used a hierarchical framework to forecast the extent and distribution of mammal habitat based on species’ habitat preferences (as described in the International Union for Conservation of Nature Red List database) within a suitable climatic space fitted to the species’ current geographic range. We analyzed the geographic and taxonomic variation of habitat loss for large mammals and the potential effect of the reduced impact policy on loss mitigation. Averaging across scenarios, European large mammals were predicted to lose 10% of their habitat by 2050 (25% in the worst‐case scenario). Predicted loss was much higher for species in northwestern Europe, where habitat is expected to be lost due to climate and land‐use change. Change in human consumption patterns was predicted to substantially improve the conservation of habitat for European large mammals, but not enough to reduce extinction risk if species cannot adapt locally to climate change or disperse.  相似文献   

16.
The combined effects of water diversion and climate change are a major conservation challenge for freshwater ecosystems. In the Lemhi Basin, Idaho (U.S.A.), water diversion causes changes in streamflow, and climate change will further affect streamflow and temperature. Shifts in streamflow and temperature regimes can affect juvenile salmon growth, movement, and survival. We examined the potential effects of water diversion and climate change on juvenile Chinook salmon (Oncorhynchus tshawytscha), a species listed as threatened under the U.S. Endangered Species Act (ESA). To examine the effects for juvenile survival, we created a model relating 19 years of juvenile survival data to streamflow and temperature and found spring streamflow and summer temperature were good predictors of juvenile survival. We used these models to project juvenile survival for 15 diversion and climate‐change scenarios. Projected survival was 42–58% lower when streamflows were diverted than when streamflows were undiverted. For diverted streamflows, 2040 climate‐change scenarios (ECHO‐G and CGCM3.1 T47) resulted in an additional 11–39% decrease in survival. We also created models relating habitat carrying capacity to streamflow and made projections for diversion and climate‐change scenarios. Habitat carrying capacity estimated for diverted streamflows was 17–58% lower than for undiverted streamflows. Climate‐change scenarios resulted in additional decreases in carrying capacity for the dry (ECHO‐G) climate model. Our results indicate climate change will likely pose an additional stressor that should be considered when evaluating the effects of anthropogenic actions on salmon population status. Thus, this type of analysis will be especially important for evaluating effects of specific actions on a particular species. Efectos Interactivos de la Desviación del Agua y el Cambio Climático en Individuos Juveniles de Salmón Chinook en la Cuenca del Río Lemhi (E.U.A.)  相似文献   

17.
With the genetic health of many plant and animal populations deteriorating due to climate change outpacing adaptation, interventions, such as assisted gene flow (AGF), may provide genetic variation necessary for populations to adapt to climate change. We ran genetic simulations to mimic different AGF scenarios in large populations and measured their outcomes on population-level fitness to determine circumstances in which it is worthwhile to perform AGF. In the absence of inbreeding depression, AGF was beneficial within a few generations only when introduced genotypes had much higher fitness than local individuals and traits affecting fitness were controlled by a few genes of large effect. AGF was harmful over short periods (e.g., first ∼10–20 generations) if there was strong outbreeding depression or introduced deleterious genetic variation. When the adaptive trait was controlled by many loci of small effect, the benefits of AGF took over 10 generations to realize—potentially too long for most climate-related management scenarios. The genomic integrity of the recipient population typically remained intact following AGF; the amount of genetic material from the donor population usually constituted no more of the recipient population's genome than the fraction of the population introduced. Significant genomic turnover (e.g., >50% replacement) only occurred when the selective advantage of the adaptive trait and translocation fraction were extremely high. Our results will be useful when adaptive management is used to maintain the genetic health and productivity of large populations under climate change.  相似文献   

18.
One of the least explored sources of algorithmic uncertainty in bioclimatic envelope models (BEM) is the selection of thresholds to transform modelled probabilities of occurrence (or indices of suitability) into binary predictions of species presence and absence. We investigate the impacts of such thresholds in the specific context of climate change. BEM for European tree species were fitted combining 9 climatic models and emissions scenarios, 7 modelling techniques, and 14 threshold-setting techniques. We quantified sources of uncertainty in projections of turnover, and found that the choice of the modelling technique explained most of the variability (39%), while threshold choice explained 25% of the variability in the results, and their interaction an additional 19%. Choice of future climates explained 9% of total variability among projections. Estimated species range shifts obtained by applying different thresholds and models were grouped by IUCN-based categories of threat. Thresholds had a large impact on the inferred risks of extinction, producing 1.7- to 9.9-fold differences in the proportions of species projected to become threatened by climate change. Results demonstrate that threshold selection has large - albeit often unappreciated - consequences for estimating species range shifts under climate change.  相似文献   

19.
Species shift their distribution in response to climate and land-cover change, which may result in a spatial mismatch between currently protected areas (PAs) and priority conservation areas (PCAs). We examined the effects of climate and land-cover change on potential range of gibbons and sought to identify PCAs that would conserve them effectively. We collected global gibbon occurrence points and modeled (ecological niche model) their current and potential 2050s ranges under climate-change and different land-cover-change scenarios. We examined change in range and PA coverage between the current and future ranges of each gibbon species. We applied spatial conservation prioritization to identify the top 30% PCAs for each species. We then determined how much of the PCAs are conserved in each country within the global range of gibbons. On average, 31% (SD 22) of each species’ current range was covered in PAs. PA coverage of the current range of 9 species was <30%. Nine species lost on average 46% (SD 29) of their potential range due to climate change. Under climate-change with an optimistic land-cover-change scenario (B1), 12 species lost 39% (SD 28) of their range. In a pessimistic land-cover-change scenario (A2), 15 species lost 36% (SD 28) of their range. Five species lost significantly more range under the A2 scenario than the B1 scenario (p = 0.01, SD 0.01), suggesting that gibbons will benefit from effective management of land cover. PA coverage of future range was <30% for 11 species. On average, 32% (SD 25) of PCAs were covered by PAs. Indonesia contained more species and PCAs and thus has the greatest responsibility for gibbon conservation. Indonesia, India, and Myanmar need to expand their PAs to fulfill their responsibility to gibbon conservation. Our results provide a baseline for global gibbon conservation, particularly for countries lacking gibbon research capacity.  相似文献   

20.
Numerical experiments based on atmosphere–ocean general circulation models (AOGCMs) are one of the primary tools in deriving projections for future climate change. Although each AOGCM has the same underlying partial differential equations modeling large scale effects, they have different small scale parameterizations and different discretizations to solve the equations, resulting in different climate projections. This motivates climate projections synthesized from results of several AOGCMs’ output. We combine present day observations, present day and future climate projections in a single highdimensional hierarchical Bayes model. The challenging aspect is the modeling of the spatial processes on the sphere, the number of parameters and the amount of data involved. We pursue a Bayesian hierarchical model that separates the spatial response into a large scale climate change signal and an isotropic process representing small scale variability among AOGCMs. Samples from the posterior distributions are obtained with computer-intensive MCMC simulations. The novelty of our approach is that we use gridded, high resolution data covering the entire sphere within a spatial hierarchical framework. The primary data source is provided by the Coupled Model Intercomparison Project (CMIP) and consists of 9 AOGCMs on a 2.8 by 2.8 degree grid under several different emission scenarios. In this article we consider mean seasonal surface temperature and precipitation as climate variables. Extensions to our model are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号