首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental manipulation experiments showed that species respond individualistically to each environmental-change variable. The greatest responses of plants were generally to nutrient, particularly nitrogen, addition. Summer warming experiments showed that woody plant responses were dominant and that mosses and lichens became less abundant. Responses to warming were controlled by moisture availability and snow cover. Many invertebrates increased population growth in response to summer warming, as long as desiccation was not induced. CO2 and UV-B enrichment experiments showed that plant and animal responses were small. However, some microorganisms and species of fungi were sensitive to increased UV-B and some intensive mutagenic actions could, perhaps, lead to unexpected epidemic outbreaks. Tundra soil heating, CO2 enrichment and amendment with mineral nutrients generally accelerated microbial activity. Algae are likely to dominate cyanobacteria in milder climates. Expected increases in winter freeze-thaw cycles leading to ice-crust formation are likely to severely reduce winter survival rate and disrupt the population dynamics of many terrestrial animals. A deeper snow cover is likely to restrict access to winter pastures by reindeer/caribou and their ability to flee from predators while any earlier onset of the snow-free period is likely to stimulate increased plant growth. Initial species responses to climate change might occur at the sub-species level: an Arctic plant or animal species with high genetic/racial diversity has proved an ability to adapt to different environmental conditions in the past and is likely to do so also in the future. Indigenous knowledge, air photographs, satellite images and monitoring show that changes in the distributions of some species are already occurring: Arctic vegetation is becoming more shrubby and more productive, there have been recent changes in the ranges of caribou, and "new" species of insects and birds previously associated with areas south of the treeline have been recorded. In contrast, almost all Arctic breeding bird species are declining and models predict further quite dramatic reductions of the populations of tundra birds due to warming. Species-climate response surface models predict potential future ranges of current Arctic species that are often markedly reduced and displaced northwards in response to warming. In contrast, invertebrates and microorganisms are very likely to quickly expand their ranges northwards into the Arctic.  相似文献   

2.
The individual of a species is the basic unit which responds to climate and UV-B changes, and it responds over a wide range of time scales. The diversity of animal, plant and microbial species appears to be low in the Arctic, and decreases from the boreal forests to the polar deserts of the extreme North but primitive species are particularly abundant. This latitudinal decline is associated with an increase in super-dominant species that occupy a wide range of habitats. Climate warming is expected to reduce the abundance and restrict the ranges of such species and to affect species at their northern range boundaries more than in the South: some Arctic animal and plant specialists could face extinction. Species most likely to expand into tundra are boreal species that currently exist as outlier populations in the Arctic. Many plant species have characteristics that allow them to survive short snow-free growing seasons, low solar angles, permafrost and low soil temperatures, low nutrient availability and physical disturbance. Many of these characteristics are likely to limit species' responses to climate warming, but mainly because of poor competitive ability compared with potential immigrant species. Terrestrial Arctic animals possess many adaptations that enable them to persist under a wide range of temperatures in the Arctic. Many escape unfavorable weather and resource shortage by winter dormancy or by migration. The biotic environment of Arctic animal species is relatively simple with few enemies, competitors, diseases, parasites and available food resources. Terrestrial Arctic animals are likely to be most vulnerable to warmer and drier summers, climatic changes that interfere with migration routes and staging areas, altered snow conditions and freeze-thaw cycles in winter, climate-induced disruption of the seasonal timing of reproduction and development, and influx of new competitors, predators, parasites and diseases. Arctic microorganisms are also well adapted to the Arctic's climate: some can metabolize at temperatures down to -39 degrees C. Cyanobacteria and algae have a wide range of adaptive strategies that allow them to avoid, or at least minimize UV injury. Microorganisms can tolerate most environmental conditions and they have short generation times which can facilitate rapid adaptation to new environments. In contrast, Arctic plant and animal species are very likely to change their distributions rather than evolve significantly in response to warming.  相似文献   

3.
Historically, the function of Arctic ecosystems in terms of cycles of nutrients and carbon has led to low levels of primary production and exchanges of energy, water and greenhouse gases have led to low local and regional cooling. Sequestration of carbon from atmospheric CO2, in extensive, cold organic soils and the high albedo from low, snow-covered vegetation have had impacts on regional climate. However, many aspects of the functioning of Arctic ecosystems are sensitive to changes in climate and its impacts on biodiversity. The current Arctic climate results in slow rates of organic matter decomposition. Arctic ecosystems therefore tend to accumulate organic matter and elements despite low inputs. As a result, soil-available elements like nitrogen and phosphorus are key limitations to increases in carbon fixation and further biomass and organic matter accumulation. Climate warming is expected to increase carbon and element turnover, particularly in soils, which may lead to initial losses of elements but eventual, slow recovery. Individual species and species diversity have clear impacts on element inputs and retention in Arctic ecosystems. Effects of increased CO2 and UV-B on whole ecosystems, on the other hand, are likely to be small although effects on plant tissue chemisty, decomposition and nitrogen fixation may become important in the long-term. Cycling of carbon in trace gas form is mainly as CO2 and CH4. Most carbon loss is in the form of CO2, produced by both plants and soil biota. Carbon emissions as methane from wet and moist tundra ecosystems are about 5% of emissions as CO2 and are responsive to warming in the absence of any other changes. Winter processes and vegetation type also affect CH4 emissions as well as exchanges of energy between biosphere and atmosphere. Arctic ecosystems exhibit the largest seasonal changes in energy exchange of any terrestrial ecosystem because of the large changes in albedo from late winter, when snow reflects most incoming radiation, to summer when the ecosystem absorbs most incoming radiation. Vegetation profoundly influences the water and energy exchange of Arctic ecosystems. Albedo during the period of snow cover declines from tundra to forest tundra to deciduous forest to evergreen forest. Shrubs and trees increase snow depth which in turn increases winter soil temperatures. Future changes in vegetation driven by climate change are therefore, very likely to profoundly alter regional climate.  相似文献   

4.
Changes in Arctic vegetation can have important implications for trophic interactions and ecosystem functioning leading to climate feedbacks. Plot-based vegetation surveys provide detailed insight into vegetation changes at sites around the Arctic and improve our ability to predict the impacts of environmental change on tundra ecosystems. Here, we review studies of changes in plant community composition and phenology from both long-term monitoring and warming experiments in Arctic environments. We find that Arctic plant communities and species are generally sensitive to warming, but trends over a period of time are heterogeneous and complex and do not always mirror expectations based on responses to experimental manipulations. Our findings highlight the need for more geographically widespread, integrated, and comprehensive monitoring efforts that can better resolve the interacting effects of warming and other local and regional ecological factors.  相似文献   

5.
Moen J 《Ambio》2008,37(4):304-311
This paper examines potential effects of predicted climate changes on the forage conditions during both summer and winter for semidomesticated reindeer in Sweden. Positive effects in summer ranges include higher plant productivity and a longer growing season, while negative effects include increased insect harassment. Forage quality may change in both positive and negative ways. An increase in shrubs and trees in alpine heaths is also likely. A warmer climate means shorter winters, which will have positive effects for the survival of reindeer. However, warmer and wetter weather may also result in increased probabilities of ice-crust formations, which strongly decrease forage availability. A warmer climate with higher forest productivity will also likely reduce lichen availability through competitive interactions. Adaptations to these changes will include maintaining a choice of grazing sites in both summer and winter. However, this capacity may already be severely limited because of other forms of land use.  相似文献   

6.
At the last glacial maximum, vast ice sheets covered many continental areas. The beds of some shallow seas were exposed thereby connecting previously separated landmasses. Although some areas were ice-free and supported a flora and fauna, mean annual temperatures were 10-13 degrees C colder than during the Holocene. Within a few millennia of the glacial maximum, deglaciation started, characterized by a series of climatic fluctuations between about 18,000 and 11,400 years ago. Following the general thermal maximum in the Holocene, there has been a modest overall cooling trend, superimposed upon which have been a series of millennial and centennial fluctuations in climate such as the "Little Ice Age spanning approximately the late 13th to early 19th centuries. Throughout the climatic fluctuations of the last 150,000 years, Arctic ecosystems and biota have been close to their minimum extent within the most recent 10,000 years. They suffered loss of diversity as a result of extinctions during the most recent large-magnitude rapid global warming at the end of the last glacial stage. Consequently, Arctic ecosystems and biota such as large vertebrates are already under pressure and are particularly vulnerable to current and projected future global warming. Evidence from the past indicates that the treeline will very probably advance, perhaps rapidly, into tundra areas, as it did during the early Holocene, reducing the extent of tundra and increasing the risk of species extinction. Species will very probably extend their ranges northwards, displacing Arctic species as in the past. However, unlike the early Holocene, when lower relative sea level allowed a belt of tundra to persist around at least some parts of the Arctic basin when treelines advanced to the present coast, sea level is very likely to rise in future, further restricting the area of tundra and other treeless Arctic ecosystems. The negative response of current Arctic ecosystems to global climatic conditions that are apparently without precedent during the Pleistocene is likely to be considerable, particularly as their exposure to co-occurring environmental changes (such as enhanced levels of UV-B, deposition of nitrogen compounds from the atmosphere, heavy metal and acidic pollution, radioactive contamination, increased habitat fragmentation) is also without precedent.  相似文献   

7.
Climate in the Arctic has warmed at a more rapid pace than the global average over the past few decades leading to weather, snow, and ice situations previously unencountered. Reindeer herding is one of the primary livelihoods for Indigenous peoples throughout the Arctic. To understand how the new climate state forces societal adaptation, including new management strategies and needs for preserved, interconnected, undisturbed grazing areas, we coupled changes in temperature, precipitation, and snow depth recorded by automatic weather stations to herder observations of reindeer behaviour in grazing areas of the Laevas Sámi reindeer herding community, northern Sweden. Results show that weather and snow conditions strongly determine grazing opportunities and therefore reindeer response. We conclude that together with the cumulative effects of increased pressures from alternative land use activities, the non-predictable environmental conditions that are uniquely part of the warming climate seriously challenge future reindeer herding in northern Sweden.  相似文献   

8.
Leif Kullman 《Ambio》2010,39(2):159-169
Alpine plant life is proliferating, biodiversity is on the rise and the mountain world appears more productive and inviting than ever. Upper range margin rise of trees and low-altitude (boreal) plant species, expansion of alpine grasslands and dwarf-shrub heaths are the modal biotic adjustments during the past few decades, after a century of substantial climate warming in the Swedish Scandes. This course of biotic landscape evolution has reached historical dimensions and broken a multi-millennial trend of plant cover retrogression, alpine tundra expansion, floristic and faunal impoverishment, all imposed by progressive and deterministic neoglacial climate cooling. Continued modest warming over the present century will likely be beneficial to alpine biodiversity, geoecological stability, resilience, sustainable reindeer husbandry and aesthetic landscape qualities. These aspects are highlighted by an integrative review of results from long-term monitoring of subalpine/alpine vegetation in the Swedish Scandes. This forms the basis for some tentative projections of landscape transformations in a potentially warmer future. Notably, these results and projections are not necessarily valid in other regions and differ in some respects from model predictions. Continued monitoring is mandatory as a basis for generation of more realistic vegetation and ecosystem models.  相似文献   

9.
The surface energy balance (SEB) is essential for understanding the coupled cryosphere–atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt. For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled with modelling efforts are essential for assessing the impact of warming in the Arctic.  相似文献   

10.
Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially, (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution.  相似文献   

11.
本文根据最近的文献,回顾了UV- B 辐射对陆地生态系统的影响。UV- B 辐射影响植物物候、形态和次生代谢,从而改变生态系统的物种结构、竞争性平衡、食物链、植物病原体、物质循环、真菌移殖与叶片分解。植物物候、形态和次生代谢的变化是UV- B 辐射调控影响生态系统的重要途径,具有重要的生态学意义。虽然我们已经适当了解了UV- B 辐射对植物作用的机理,但由于温室内植物个体水平的短期响应与野外条件下生态系统的长期响应具有明显的差异,到目前为止还不能预测UV- B辐射影响生态系统的精确后果,有时甚至连变化方向也不能预测。因此,必须强调生态系统对UV- B 辐射长期响应的野外研究的重要性。  相似文献   

12.
Understanding the responses of tundra systems to global change has global implications. Most tundra regions lack sustained environmental monitoring and one of the only ways to document multi-decadal change is to resample historic research sites. The International Polar Year (IPY) provided a unique opportunity for such research through the Back to the Future (BTF) project (IPY project #512). This article synthesizes the results from 13 papers within this Ambio Special Issue. Abiotic changes include glacial recession in the Altai Mountains, Russia; increased snow depth and hardness, permafrost warming, and increased growing season length in sub-arctic Sweden; drying of ponds in Greenland; increased nutrient availability in Alaskan tundra ponds, and warming at most locations studied. Biotic changes ranged from relatively minor plant community change at two sites in Greenland to moderate change in the Yukon, and to dramatic increases in shrub and tree density on Herschel Island, and in subarctic Sweden. The population of geese tripled at one site in northeast Greenland where biomass in non-grazed plots doubled. A model parameterized using results from a BTF study forecasts substantial declines in all snowbeds and increases in shrub tundra on Niwot Ridge, Colorado over the next century. In general, results support and provide improved capacities for validating experimental manipulation, remote sensing, and modeling studies.  相似文献   

13.
Schindler DW  Smol JP 《Ambio》2006,35(4):160-168
Despite their generally isolated geographic locations, the freshwaters of the north are subjected to a wide spectrum of environmental stressors. High-latitude regions are especially sensitive to the effects of recent climatic warming, which have already resulted in marked regime shifts in the biological communities of many Arctic lakes and ponds. Important drivers of these limnological changes have included changes in the amount and duration of snow and ice cover, and, for rivers and lakes in their deltas, the frequency and extent of spring floods. Other important climate-related shifts include alterations in evaporation and precipitation ratios, marked changes in the quality and quantity of lake and river water inflows due to accelerated glacier and permafrost melting, and declining percentages of precipitation that falls as snow. The depletion of stratospheric ozone over the north, together with the clarity of many Arctic lakes, renders them especially susceptible to damage from ultraviolet radiation. In addition, the long-range atmospheric transport of pollutants, coupled with the focusing effects of contaminant transport from biological vectors to some local ecosystems (e.g., salmon nursery lakes, ponds draining seabird colonies) and biomagnification in long food chains, have led to elevated concentrations of many persistent organic pollutants (e.g., insecticides, which have never been used in Arctic regions) and other pollutants (e.g., mercury). Rapid development of gas and oil pipelines, mining for diamonds and metals, increases in human populations, and the development of all-season roads, seaports, and hydroelectric dams will stress northern aquatic ecosystems. The cumulative effects of these stresses will be far more serious than those caused by changing climate alone.  相似文献   

14.
An assessment of impacts on Arctic terrestrial ecosystems has emphasized geographical variability in responses of species and ecosystems to environmental change. This variability is usually associated with north-south gradients in climate, biodiversity, vegetation zones, and ecosystem structure and function. It is clear, however, that significant east-west variability in environment, ecosystem structure and function, environmental history, and recent climate variability is also important. Some areas have cooled while others have become warmer. Also, east-west differences between geographical barriers of oceans, archipelagos and mountains have contributed significantly in the past to the ability of species and vegetation zones to relocate in response to climate changes, and they have created the isolation necessary for genetic differentiation of populations and biodiversity hot-spots to occur. These barriers will also affect the ability of species to relocate during projected future warming. To include this east-west variability and also to strike a balance between overgeneralization and overspecialization, the ACIA identified four major sub regions based on large-scale differences in weather and climate-shaping factors. Drawing on information, mostly model output that can be related to the four ACIA subregions, it is evident that geographical barriers to species re-location, particularly the distribution of landmasses and separation by seas, will affect the northwards shift in vegetation zones. The geographical constraints--or facilitation--of northward movement of vegetation zones will affect the future storage and release of carbon, and the exchange of energy and water between biosphere and atmosphere. In addition, differences in the ability of vegetation zones to re-locate will affect the biodiversity associated with each zone while the number of species threatened by climate change varies greatly between subregions with a significant hot-spot in Beringia. Overall, the subregional synthesis demonstrates the difficulty of generalizing projections of responses of ecosystem structure and function, species loss, and biospheric feedbacks to the climate system for the whole Arctic region and implies a need for a far greater understanding of the spatial variability in the responses of terrestrial arctic ecosystems to climate change.  相似文献   

15.
Miller PA  Smith B 《Ambio》2012,41(Z3):281-291
The Arctic land area has warmed by > 1 °C in the last 30 years and there is evidence that this has led to increased productivity and stature of tundra vegetation and reduced albedo, effecting a positive (amplifying) feedback to climate warming. We applied an individual-based dynamic vegetation model over the Arctic forced by observed climate and atmospheric CO(2) for 1980-2006. Averaged over the study area, the model simulated increases in primary production and leaf area index, and an increasing representation of shrubs and trees in vegetation. The main underlying mechanism was a warming-driven increase in growing season length, enhancing the production of shrubs and trees to the detriment of shaded ground-level vegetation. The simulated vegetation changes were estimated to correspond to a 1.75 % decline in snow-season albedo. Implications for modelling future climate impacts on Arctic ecosystems and for the incorporation of biogeophysical feedback mechanisms in Arctic system models are discussed.  相似文献   

16.
Winter climate and snow cover are the important drivers of plant community development in polar regions. However, the impacts of changing winter climate and associated changes in snow regime have received much less attention than changes during summer. Here, we synthesize the results from studies on the impacts of extreme winter weather events on polar heathland and lichen communities. Dwarf shrubs, mosses and soil arthropods were negatively impacted by extreme warming events while lichens showed variable responses to changes in extreme winter weather events. Snow mould formation underneath the snow may contribute to spatial heterogeneity in plant growth, arthropod communities and carbon cycling. Winter snow cover and depth will drive the reported impacts of winter climate change and add to spatial patterns in vegetation heterogeneity. The challenges ahead lie in obtaining better predictions on the snow patterns across the landscape and how these will be altered due to winter climate change.  相似文献   

17.
Uncertainties and recommendations   总被引:1,自引:0,他引:1  
An assessment of the impacts of changes in climate and UV-B radiation on Arctic terrestrial ecosystems, made within the Arctic Climate Impacts Assessment (ACIA), highlighted the profound implications of projected warming in particular for future ecosystem services, biodiversity and feedbacks to climate. However, although our current understanding of ecological processes and changes driven by climate and UV-B is strong in some geographical areas and in some disciplines, it is weak in others. Even though recently the strength of our predictions has increased dramatically with increased research effort in the Arctic and the introduction of new technologies, our current understanding is still constrained by various uncertainties. The assessment is based on a range of approaches that each have uncertainties, and on data sets that are often far from complete. Uncertainties arise from methodologies and conceptual frameworks, from unpredictable surprises, from lack of validation of models, and from the use of particular scenarios, rather than predictions, of future greenhouse gas emissions and climates. Recommendations to reduce the uncertainties are wide-ranging and relate to all disciplines within the assessment. However, a repeated theme is the critical importance of achieving an adequate spatial and long-term coverage of experiments, observations and monitoring of environmental changes and their impacts throughout the sparsely populated and remote region that is the Arctic.  相似文献   

18.
The Arctic land area has warmed by >1 °C in the last 30 years and there is evidence that this has led to increased productivity and stature of tundra vegetation and reduced albedo, effecting a positive (amplifying) feedback to climate warming. We applied an individual-based dynamic vegetation model over the Arctic forced by observed climate and atmospheric CO2 for 1980–2006. Averaged over the study area, the model simulated increases in primary production and leaf area index, and an increasing representation of shrubs and trees in vegetation. The main underlying mechanism was a warming-driven increase in growing season length, enhancing the production of shrubs and trees to the detriment of shaded ground-level vegetation. The simulated vegetation changes were estimated to correspond to a 1.75 % decline in snow-season albedo. Implications for modelling future climate impacts on Arctic ecosystems and for the incorporation of biogeophysical feedback mechanisms in Arctic system models are discussed.  相似文献   

19.
Winter climate and snow cover are the important drivers of plant community development in polar regions. However, the impacts of changing winter climate and associated changes in snow regime have received much less attention than changes during summer. Here, we synthesize the results from studies on the impacts of extreme winter weather events on polar heathland and lichen communities. Dwarf shrubs, mosses and soil arthropods were negatively impacted by extreme warming events while lichens showed variable responses to changes in extreme winter weather events. Snow mould formation underneath the snow may contribute to spatial heterogeneity in plant growth, arthropod communities and carbon cycling. Winter snow cover and depth will drive the reported impacts of winter climate change and add to spatial patterns in vegetation heterogeneity. The challenges ahead lie in obtaining better predictions on the snow patterns across the landscape and how these will be altered due to winter climate change.  相似文献   

20.
Arctic and subarctic ecosystems are experiencing substantial changes in hydrology, vegetation, permafrost conditions, and carbon cycling, in response to climatic change and other anthropogenic drivers, and these changes are likely to continue over this century. The total magnitude of these changes results from multiple interactions among these drivers. Field measurements can address the overall responses to different changing drivers, but are less capable of quantifying the interactions among them. Currently, a comprehensive assessment of the drivers of ecosystem changes, and the magnitude of their direct and indirect impacts on subarctic ecosystems, is missing. The Torneträsk area, in the Swedish subarctic, has an unrivalled history of environmental observation over 100 years, and is one of the most studied sites in the Arctic. In this study, we summarize and rank the drivers of ecosystem change in the Torneträsk area, and propose research priorities identified, by expert assessment, to improve predictions of ecosystem changes. The research priorities identified include understanding impacts on ecosystems brought on by altered frequency and intensity of winter warming events, evapotranspiration rates, rainfall, duration of snow cover and lake-ice, changed soil moisture, and droughts. This case study can help us understand the ongoing ecosystem changes occurring in the Torneträsk area, and contribute to improve predictions of future ecosystem changes at a larger scale. This understanding will provide the basis for the future mitigation and adaptation plans needed in a changing climate.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01381-1) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号