首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
在滨海新区局部区域汉沽和大港采集了TSP和PM10样品,分析了不同颗粒物中多环芳烃的不同期别污染和分布特征,结果表明,多环芳烃的污染水平存在明显的季节性特征,采暖期多环芳烃和可吸入颗粒物中苯并[a]芘浓度均远远高于非采暖期。多环芳烃在不同期别也有不同的分布特征,非采暖期均是高环类多环芳烃占主导地位,比例超过60%;而在采暖期则是中环类多环芳烃占主导。  相似文献   

2.
研究了北京市典型交通路口大气颗粒物中多环芳烃的污染特征及影响因素.于2000年6月在北京市主要交通路口之一的崇文门路口采集大气中TSP,PM10和PM2.5样品,并进行样品中ρ(PAHs)的分析及机动车流量调查.研究结果表明:机动车排放是交通路口大气颗粒物中PAHs的首要来源;多环芳烃在粒径较小的粒子中比例较高;白天ρ(PAHs)随机动车流量的增加而增加,夜晚ρ(PAHs)高于白天;污染源识别表明,交通路口大气颗粒物中的多环芳烃除主要来源于机动车尾气排放外,还有一部分来源于道路扬尘.   相似文献   

3.
采集韶关市PM10和PM2.5样品,采用气相色谱-质谱法测定了16种PAHs的质量浓度,分析了16种PAHs在PM2.5中的时空分布特征,研究16种PAHs在PM10和PM2.5中分布的差异.结果显示:PAHs在PM2.5中的季节性分布具有冬、夏季高,春、秋季低的特点,且苯并[a]蒽、苯并[k]荧蒽、苯并[c]芘、苯并[a]芘、荧蒽等在一年四季含量均较高;在空间上的分布显示交通区>工业区>商业区>居民区>休闲区.PAHs在PM2.5中的分布明显高于在PM10中的分布,在人为活动较为频繁的季节和区域,PAHs的含量明显增加.  相似文献   

4.
本研究采用主动采样技术历时一年连续采集大气TSP样品,利用GC-MS分析测试TSP中16-PAHs的质量浓度,分析大气TSP中PAHs的浓度变化特征,成分谱分布规律。研究结果表明:成都TSP中PAHs浓度范围为15.75~295.63 ng/m3,年平均浓度及标准偏差为82.16±53.31 ng/m3,在Spearman相关检验中TSP中PAHs浓度与气温呈显著的负相关性,相关系数为:-0.6855,TSP中PAHs与TSP质量浓度成正相关关系,相关系数为:0.7186,全年大气TSP中PAHs浓度呈现出冬季>春季>秋季≈夏季的季节变化特征。  相似文献   

5.
通过采集典型矿区城市——黄石市新老城区大气颗粒物PM10和PM2.5的样品,并采用热解吸-气质联用法对黄石市夏季大气颗粒物中多环芳烃(PAHs)的污染特征和来源进行了研究。结果表明:黄石市老城区大气颗粒物中PAHs的浓度均明显高于新城区;在新、老城区大气PM10和PM2.5中PAHs的浓度变化范围分别为6.037~10.691ng/m3、12.132~18.440ng/m3和5.685~10.145ng/m3、9.314~15.998ng/m3;新、老城区大气颗粒物中低分子量PAHs含量较低,3环化合物呈相对优势分布,表明以石油源输入为主的来源特征,对比4环及其以上高分子量PAHs含量发现,老城区有明显的化石燃料不完全燃烧来源特征。  相似文献   

6.
利用大流量颗粒物采样器分昼夜采集了2007年春节前后大气气溶胶中PM10和PM2.5样品,并采用气相色谱-质谱技术对PM2.5样品中的多环芳烃进行了检测.春节期间大气颗粒物中PM10和PM2.5夜间平均质量浓度为232 μg·m-3和132 μg·m-3,分别高于白天的PM10(194 μg·m-3)和PM2.5(107 μg·m-3);除夕后颗粒物日平均质量浓度为252.3 μg·m-3 (PM10)和123.8 μg·m-3 (PM2.5),分别高于除夕前的166.7 μg·m-3(PM10)和106.8 μg·m-3(PM2.5);同时夜间PM2.5中多17种多环芳烃(PAHs)的总浓度都高于相应白天的总浓度,且除夕前多环芳烃日均总浓度为95.9 ng·m-3,高于除夕后的58.9 ng·m-3.结果表明,除了受一定的气象条件的影响外,大量燃放烟花爆竹会对大气颗粒物浓度有影响,但对大气中的多环芳烃影响不大,而春节期间工业及交通污染排放的减少削减了排放到大气中的PAHs.根据荧蒽/芘等比值指标判别北京PAHs主要以燃煤为主、交通为次的混合局地源污染.  相似文献   

7.
2007年春节期间北京大气颗粒物中多环芳烃的污染特征   总被引:10,自引:3,他引:10  
利用大流量颗粒物采样器分昼夜采集了2007年春节前后大气气溶胶中PM10和PM2.5样品,并采用气相色谱-质谱技术对PM2 5样品中的多环芳烃进行了检测.春节期间大气颗粒物中PM10和PM2 5夜间平均质量浓度为232 ug·m-3和132 ug·m-3,分别高于白天的PM10(194ug·m-3)和PM2.5(107ug·m-3);除夕后颗粒物日平均质量浓度为252.3 ug·m-3(PM10)和123.8ug·m-3 (PM2.5),分别高于除夕前的166.7 ug·m-3(PM10)和106.8 ug·m-3(PM2.5);同时夜间PM2.5中多17种多环芳烃(PAHs)的总浓度都高于相应白天的总浓度,且除夕前多环芳烃日均总浓度为95.9 ng·m-3,高于除夕后的58.9 ng·m-3.结果表明,除了受一定的气象条件的影响外,大量燃放烟花爆竹会对大气颗粒物浓度有影响.但对大气中的多环芳烃影响不大,而春节期间工业及交通污染排放的减少削减了排放到大气中的PAHs.根据荧蒽/芘等比值指标判别北京PAHs主要以燃煤为主、交通为次的混合局地源污染.  相似文献   

8.
典型城市大气颗粒物中多环芳烃的污染研究   总被引:6,自引:4,他引:6  
比较了我国四大代表性城市北京、青岛、成都和广州的PAHs污染,主要从三个方面进行比较:多环芳烃的浓度分布状况、季节变化以及在不同功能区的浓度变化趋势。  相似文献   

9.
北京市西三环地区大气颗粒物中多环芳烃的分布特性   总被引:1,自引:1,他引:1  
李峣  钱枫  何翔 《环境科学研究》2013,26(9):948-955
于2012年3—12月在北京市西三环地区按粒径分6级采集大气颗粒物样品,采用气相色谱-质谱(GC-MS)对颗粒物样品中16种优控PAHs(多环芳烃)进行分析. 结果表明:颗粒物中ρ(∑16PAHs)(PAHs的总质量浓度)季节变化显著,表现为冬季>春季>秋季>夏季,并且与ρ(PM)(PM为颗粒物)呈良好线性相关;不同粒径颗粒物中ρ(PAHs)呈向小粒子富集的趋势,PM2.1中ρ(PAHs)约占ρsum(∑16PAHs)〔6级颗粒物中ρ(∑16PAHs)总和〕的64%~87%;除夏季3环PAHs占优势外,其他季节均以4~ 5环PAHs占优势;同时,随着粒径的减小,PAHs有向高环数富集的趋势. 运用主成分分析和多元线性回归法进行源解析发现,机动车尾气排放和燃煤是本地区大气颗粒物中PAHs的主要来源;不同粒径颗粒物中的PAHs来源有差异,2.1~10.2μm粒径段颗粒物中PAHs主要来源于机动车尾气排放,贡献率为63.0%;而1.3~2.1μm和<1.3μm的颗粒物中PAHs均主要来源于燃煤,贡献率分别为56.8%和58.7%.   相似文献   

10.
在大气悬浮颗粒物中,含有多种微量的,与致癌性有关的物质。其中,苯并(a)芘(Bap)的致癌性较强,含量也较高。由此,本文提出大气颗粒物中,苯并(a)芘等多环芳烃的HPLC测定法。一、实验部分(一)试剂1.标准物质 NBS-SRM 1649(大气悬浮颗粒物的标准样品)、NBS-SRM1647(16种多环芳烃的标准混合液);2.流动相及抽提剂乙腈(色谱纯。大阪岸田化学株式会社);3.碱性氧化铝(色谱纯。西德沃尔蒙公司);4.聚四氟乙烯滤膜 0.2μm。(二)仪器高效液相色谱系统高压泵(日本分光880PU)、UV检测器(日本分光875UV)、荧光检测器(日本分光FP-110)、色谱柱(Polymeric  相似文献   

11.
大气颗粒物中多环芳烃的污染特征及来源识别   总被引:15,自引:3,他引:15  
研究了北京市2000年采暖期和非采暖期2个典型代表月(6月和12月)不同粒径颗粒物的质量浓度特征以及不同粒径颗粒物中ρ(PAHs)分布特征,并同时利用比值法和化学质量平衡(CMB)受体模型对可吸入颗粒物(PM10)中PAHs的来源进行识别和解析.研究结果表明:北京市采暖期ρ(颗粒物)明显高于非采暖期;采暖期和非采暖期不同粒径颗粒物的比例有差别,采暖期、非采暖期ρ(PM10)分别约占ρ(TSP)的0.662和0.734;PAHs具有更明显富集于细颗粒物中的特征;源解析结果表明燃煤污染和机动车污染是PM10中PAHs的最主要来源.   相似文献   

12.
北京城市空气中多环芳烃的污染特征   总被引:10,自引:8,他引:2  
对北京市分属不同功能区的十三陵、石景山、车公庄和芍药居等地的环境空气进行了采集和测量.采集的样品包括气相和颗粒相中的PAHs,采样流速为450~500 L/min,采集时间不小于13 h,将采集的样品进行预处理,然后用液相色谱进行分析.结果表明:北京城市空气中PAHs污染比较严重,大于4环的PAHs在颗粒相中占主导地位,小于4环的PAHs主要分布在气相中;采暖期的PAHs污染比非采暖期较为严重,取暖所带来的污染占主要地位;同时研究表明,夜间柴油车所产生的污染不容忽视.   相似文献   

13.
龙岩大气颗粒物中多环芳烃源识别及污染评价   总被引:2,自引:0,他引:2  
采用恒能量同步荧光法,研究了龙岩市区不同功能区冬、春季大气颗粒物中多环芳烃(PAHs)的污染状况和污染来源,并对不同功能区的PAHs含量进行了评价. 结果表明:龙岩市区各功能区大气颗粒物中ρ(PAHs)为278.95~ 718.25 ng/m3,且冬季高于春季. 根据PAHs中一些特征标志物的比值,可判断冬、春季市区内PAHs主要来源于汽车尾气和燃煤污染. 采用苯并[a]芘(BaP)及苯并[a]芘等效致癌浓度(BaPE)来评价3个功能区大气颗粒物中PAHs的污染状况显示,冬季3个功能区苯并[a]芘含量(ρ(BaP))均超过国家标准(10 ng/m3),且ρ(PAHs)均严重超标.   相似文献   

14.
城市交通干道区颗粒物中多环芳烃的源解析研究   总被引:6,自引:5,他引:6  
通过比值法、因子分析法和多元逐步回归模型对南京市交通干道区颗粒物中的多环芳烃的源解析进行研究。结果表明南京市交通干道区颗粒物中多环芳烃的主要污染源是燃煤源、汽油燃烧排放源和柴油燃烧排放源 ,它们对多环芳烃的贡献率分别为 45 .2 %、34 .0 %和 2 0 .7%  相似文献   

15.
固体废物中多环芳烃类化合物(PAHs)的浸出特性研究   总被引:6,自引:0,他引:6  
参照美国环境保护局(USEPA)方法1311(TCLP)和1312(SPLP)对油墨渣和环氧树脂废料中的多环芳烃类化合物(PAHs)进行了浸出实验,并对在实验室条件下影响PAHs浸出的主要因素(如浸提剂,液固比,pH,浸提时间和粒径)进行了识别和研究.浸出液采用固相萃取方法处理,用GC/MS和GC进行定性、定量分析.结果表明浸提剂对PAHs浸出的影响显著,醋酸缓冲溶液浸出体系比HNO3/H2SO4浸出体系具有明显的优势;液固比的增加、浸提时间的延长或样品粒径的减小均能增加PAHs的浸出量;在实验设计的范围内,pH对PAHs的浸出影响不明显.  相似文献   

16.
PAHs的生物富集性使其在养殖海域的研究对人体健康和生态环境具有重要意义。流沙湾海水PAHs污染的特征是2-3环的化合物为主要污染物,总体浓度水平较低,但变化大;内湾PAHs含量较外湾高,与各站点所在位置,水体交换以及污染源有关;由菲/蒽和荧蒽/芘7、种化合物的线性相关性,以及主因子成份分析得出流沙湾PAHs的污染源主要为石油源和燃料燃烧等混合源。  相似文献   

17.
为探明北运河流域(北京段)多层沉积物中PAHs(多环芳烃)的污染状况,利用活塞式底泥取样器于2014年11月采集了9处沉积物样品,取样深度为30~80 cm,每处样品根据其垂向介质特征大致分成3~4层,分别测定各层样品的粒径、TOM(总有机质)及16种PAHs的质量分数,探讨PAHs在河道沿程与垂向上的分布特征、来源及生态风险评价.结果表明,北运河流域(北京段)沉积物以砂质壤土为主,w(TOM)(以干质量计,下同)为103.4~146.8 g/kg,w(∑16PAHs)为598.1~28 730.6 ng/g,各层w(∑16PAHs)为108.5~8 810.8 ng/g.沉积物中PAHs以高环为主,主要包括有Phe(Phenanthrene,菲)、Fla(Fluoranthene,荧蒽)、Pyr(Pyrene,芘)、BbF〔Benzo(b)fluoranthene,苯并[b]荧蒽〕.在河道沿程变化上,中下游沉积物的污染程度远高于上游.在垂向变化上,w(TOM)和沉积物粒径对PAHs的分布影响有限,PAHs的垂向分布主要受所处沉积环境与历史污染程度影响.根据主成分分析与同分异构体比值法推断,PAHs主要来源于化石燃料与生物燃料的燃烧,少部分为石油源.利用效应区间值得出的生态风险评价结果表明,北运河流域(北京段)沉积物中PAHs可能已对环境产生负面影响,其中BbF、BkF、InP与BgP已对环境产生毒副作用,需要给予关注与解决.   相似文献   

18.
温州城市河流中多环芳烃的污染特征及其来源   总被引:3,自引:7,他引:3  
利用气相色谱/质谱联用仪(GC/MS)对温州九山外河和山下河春夏季水体和表层沉积物中18种多环芳烃(PAHs)进行了分析.结果表明,研究河段河水和沉积物中18种PAHs含量范围为146.74~3 047.89 ng·L-1和21.01~11 990.48ng·g-1,春季水体和沉积物中的PAHs含量显著高于夏季.水体和沉积物中主要以2、3、4环的中低环PAHs为主,但沉积物中5、6环PAHs的含量相对高于水样中的含量.研究河段春季和夏季水样中EBaP值分别为1.69~51.95 ng·L-1和0~3.03ng·L-1,春季水样中有80%超过我国地表水环境质量标准中BaP的限值.春夏季沉积物中ΣPAHs含量均小于ERM限值,只有部分PAHs组分含量高于ERM值,可能会对生物产生较大的毒副作用.通过PAHs特征化合物分子比值法和主成分分析法判源,发现研究河段水体表现出石油源和燃烧源的复合来源特征,沉积物表现出燃烧源占更大比例的复合来源特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号