首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microbial communities (phospholipid fatty acid pattern, bacterial growing strategies, eco-physiological index (EPI) and total bacteria counts, as a number of heterotrophic cuhurable bacteria), substrate-induced respiration (SIR), and nitrogen mineralization were studied in three Mediterranean soils at three different depth levels (A, B and C). Soils were experimentally treated with a final concentration of 1000 ppm of trace metals (Cu2+, Zn2+, Al3+, Fe2+, Pb2+, Ni2+, Mn2+, Cr3+ and Cd2+). Soils were stored in 571 plastic containers for one year, and watered with 1001 during this period. Leachate was recovered through a bottom tap. Samples of the three depths were studied. Soil microbial communities showed different effects to other studies presented in the literature, but carried out on non-Mediterranean soils. Dramatic differences were found between treated soils and untreated ones, but not between soils or horizons. the treated soil displayed a decrease in CFUs, SIR N-mineralization and EPI together with a dominance of r-growing strategists. the relative moles percent of several PLFAs, especially 15:0, 16: 1ω7, cy17: 0, br18:0 and 18: 1ω7 decreased because of the pollution of soils, whereas 10Me16, 18:2ω6, cy19:0, i16:0 and br17:0 showed higher values than in untreated soils.  相似文献   

2.
Adsorption and desorption of 137Cs by acid sulphate soils from the Nakhon Nayok province, South Central Plain of Thailand located near the Ongkarak Nuclear Research Center (ONRC) were investigated using a batch equilibration technique. The influence of added limestone (12 and 18 tons ha-1) on 137Cs adsorption-desorption was studied. Based on Freundlich isotherms, both adsorption and desorption of 137Cs were nonlinear. A large portion (98.26-99.97%) of added 137Cs (3.7 × 103-7.03 × 105 Bq l-1) was sorbed by the soils with or without added lime. The higher lime treatments, however, favoured stronger adsorption of 137Cs as compared with soil with no lime, which was supported by higher Kads values. The addition of lime, the cation exchange capacity and pH of the soil increased and hence favoured the stronger adsorption of 137Cs. Acid sulphate soils with a high clay content, medium to high organic matter, high CEC, and predominant clay types consisting of a mixture of illite, kaolinite, and montmorillonite were the main soil factors contributing to the high 137Cs adsorption capacity. Competing cations such as NH4+, K+, Na+, Ca2+, and Mg2+ had little influence on 137Cs adsorption as compared with liming, where a significant positive correlation between Kads and soil pH was observed. The 137Cs adsorption-desorption characteristics of the acid sulphate soils studied exhibited a very strong irreversible sorption pattern. Only a small portion (0.09-0.58%) of 137Cs adsorbed at the highest added initial 137Cs concentration was desorbed by four successive soil extractions. Results clearly demonstrated that Nakhon Nayok province acid sulphate soils have a high 137Cs adsorption capacity, which limits the 137Cs bioavailability.  相似文献   

3.
The adsorption of some heavy metals onto the walls of harvested, washed, and dried non-living biomass cells of different Pseudomonas strains was studied at optimum experimental conditions using a simplified single component system. The Langmuir adsorption model was found to be a suitable approach to describe the system via multi-step processes. Isotherms measured at 30.0°C and pH 5.5 with [M]total = 10-100 mM for tight, reversible Cr6+(aq), Ni2+(aq), Cu2+(aq) and Cd2+(aq) binding by the cell walls of the investigated biomass fit the Langmuir model and give the pH-independent stoichiometric site capacities νi and equilibrium constants Ki for metal binding at specific biomass sites i = A, B, C, and D. Tight binding sites A, B, and D of the non-living biomass are occupied by CrVI, sites A and C by NiII, sites A and D by CdII, and only site B by CuII. It is concluded that νi is a stoichiometric parameter that is independent of the magnitude of Ki for binding site i and that the studied heavy metals selectively and tightly bind at different biomass sites.  相似文献   

4.
Crude-oil-inundated soils were collected from the Agbada oil field in the Niger Delta region of Nigeria 2 months after the recorded incidence of oil spillage. The soils were taken on the second day of reconnaissance from three replicate quadrats, at surface (0-15 cm) and subsurface (15-30 cm) depths, using the grid sampling technique. The total extractable hydrocarbon content (THC) of the polluted soils ranged from 1.24 × 102 to 3.86 × 104 mg/kg at surface and subsurface depths (no overlap in standard errors at a 95% confidence level). Greenhouse trials for possible reclamation were later carried out using 10-100 g of (NH4)2SO4, KH2PO4 and KCl (NPK) fertilizer as nutrient supplements. Nitrogen as NO3-N and potassium were optimally enhanced at 2% (w/w) and 3% (w/w) of the NPK supplementation, respectively. Phosphorus, which was inherently more enhanced in the soils than the other nutrients, maintained the same level of impact after treatment with 20 g of NPK fertilizer. Total organic carbon (%TOC), total organic matter (%TOM), pH, and percentage moisture content all provided evidence of enhanced mineralization in the fertilizer-treated soils. If reclamation of the crude-oil-inundated soils is construed as the return to normal levels of metabolic activities of the soils, then the application of the inorganic fertilizers at such prescribed levels would duly accelerate the remediation process. However, this would be limited to levels of pollution empirically defined by such THC values obtained in this study.  相似文献   

5.
The structure of the benthic microbial loop was studied in order to understand heterotrophic pathways in the suboxic sediments of the Rapallo Harbour in autumn, 1996. Sediments were characterized by the large accumulation of organic detritus (17.2 - 21.4 μg chloroplastic pigment equivalents (CPE)g-1; carbohydrates and proteins: 7.8-16.7 and 6.7-7.5 mg g-1). Due to the high organic load, benthic bacteria and protozoa displayed extremely high densities (1.4 × 109 cells g-1 and 26.9 × 105 cells g-1). Meiofauna, protozoa and bacteria showed an approximate biomass ratio of 1:2:20. the presence of large amounts of organic matter appeared to determine a shift of the benthic size structure toward the increasing dominance of the smaller components of the benthic food webs. These data indicate that the sediments of the Rapallo Harbour were dominated by microbial biomasses to a larger extent than in non-food limited environments, characterized by a lower organic contamination. On the results presented in this study, the microbial dominance in highly organic enriched sediments can be explained with: (1) a reduction of the top-down control and grazing pressure of meio- and macrofauna on the microbial components; (2) the opportunistic composition and high metabolic activity of the microbial components.  相似文献   

6.
Biosorption of colours is an important technology for treatment of different types of industrial wastewaters containing dyes. The objective of this study was to convert green alga Ulva lactuca to dye adsorbents for wastewater treatment. The importance of commonly available green alga Ulva lactuca was investigated as viable biomaterials for the biological treatment of synthetic basic blue 9 (5-ch1oro-N,N,N',N'-tetramethyl-5λ4-phenothiazine-3,7-diamine) effluents. The results obtained from the batch experiments revealed the ability of the green algae to remove the basic blue 9, and this was dependent on the dye concentration, pH, and algal biomass. We investigated the equilibrium and kinetics of adsorption, and the Langmuir and Freundlich equations were used to fit the equilibrium isotherm. The adsorption isotherm of basic blue 9 followed both the Langmuir and Freundlich models with a correlation coefficient of ∼0.96-0.99, and the adsorption kinetics followed the pseudo-second-order model (R2=1.0). The maximum adsorption capacity was about 40.2 mg of dye per gram of dry green algae at pH 10, 25 g l-1 dye and 2.5 g l-1 alga concentrations. This study demonstrated that the green algae could be used as an effective biosorbent for the treatment of dye-containing wastewater streams.  相似文献   

7.
Batch sorption experiments were conducted to evaluate the sorption behavior of tetracycline (TC, H3L) on sediments and soils in the presence and absence of cadmium (Cd), as affected by pH and properties of sediments and soils. The results indicated stronger nonlinearity and higher capacity of TC sorption on sediments than on soils. Sorption of TC also strongly depended on environmental factors and sediment/soil properties. Lower pH facilitated TC sorption through a cation exchange mechanism, which also took place at pH values above 5.5, where TC existed as a zwitterion (H2L0) or anions (HL- and L2-). When pH was above 7, however, ligand-promoted dissolution of TC might occur due to TC weakening the Al-O bond of aluminum oxide and the Fe-O bond of iron oxide. Natural organic matter (NOM) plays a more important role in TC sorption than cation exchange capacity (CEC) and clay contents. The presence of Cd (II) increased TC sorption on both sediments and soils, which resulted from the decrease of equilibrium solution pH caused by Cd2+ exchange with H+ ions of sediment/soil surfaces. The increase of TC sorption was also related to the formation of TC-Cd complexes, where Cd2+ acted as a bridge between the sediment/soil and TC.  相似文献   

8.
Excess nitrate in Mississippi River water entering offshore areas is reported to contribute to low oxygen (hypoxia) conditions in the Gulf of Mexico. Excessive algal growth driven by the excess nitrogen results in a decrease in dissolved oxygen in bottom water. Reintroduction of Mississippi River waters into a Louisiana coastal wetland has the potential to reduce the amount of nitrate reaching offshore waters. In this study, reduction in the concentration of added NO3- was determined in sediment-water-columns collected from a wetland site in Breton Sound estuary receiving nutrient inputs from the Mississippi River. The capacity of a wetland to process nitrate in floodwater was determined in the laboratory. The rates of NO3- removal (determined from change in nitrate concentration in the floodwater) averaged 97 mg N m-2 d-1 over 16 d for a 1750-mg NO3-N m-2 addition, and 170 mg N m-2 d-1 over 16 d for a 3500-mg NO3-N m-2 addition. The total N2O-N emissions from the 1750- and 3500-mg NO3-N m-2 additions were 19 and 54 mg N m-2 accounting for 1.1% and 1.5% of the applied NO3-N, respectively. Using the acetylene-inhibition technique, the average denitrification rate was determined to be 57 and 87 mg N m-2 d-1 (21 and 32 g N m-2 yr-1) during the most active denitrification period of 5 d after incubation for 1750 and 3500 mg NO3--N m-2 of added nitrate in floodwater, respectively. The total N evolved over 11 d as N2O + N2 was equivalent to 436 and 921 mg N m-2 (24.9% and 26.3%, respectively, of added N). Increasing the amount of NO3- applied to the overlying water increased the rate of NO3- loss and N2O emission significantly. The thickness of the oxidized surface sediment layer was also influenced by the NO3- application to the floodwater with a significant linear correlation between nitrate addition and thickness of the oxidized layer (r = 0.9998, p = 0.01). This study indicates that wetlands receiving diverted Mississippi River water have the potential to process and remove NO3- in the river water, reducing the amount of NO3- reaching to offshore areas.  相似文献   

9.
Two typical waters from thermal springs of Montecatini Terme-used as therapeutical beverages-exhibit a small complexing capacity towards Cu2+. By differential pulse anodic stripping voltammetry the following values were found: 0.46 μmol 1-1 and 0.10 μmol 1-1, respectively for Regina and Rinfresco waters.

Owing to the presence of a small amount of complexed copper in the original samples, the complexing capacity has to be regarded as residual capacity. In bottled waters from the same springs no complexing capacity was detected. Values of formation constants for copper complexes are given. No residual complexing capacity for Cu2+ was displayed for Tamerici and Tettuccio thermal waters.  相似文献   

10.
This work focuses on four marine sites of the Mediterranean Sea, north of the Nile Delta, Egypt. Surface-water samples were collected seasonally during 2003. The aim of this study is to assess the levels of some dissolved trace metals (Fe, Mn, Zn, Cu, and Pb) in two environmental conditions. The metal concentrations in the coastal zone were in the following ranges: 11.92-30.45 μg l-1 for Fe, 5.79-17.36 μg l-1 for Mn, 0.87-7.80 μg l-1 for Zn, 0.40-1.87 μg l-1 for Cu, and 1.53-10.31 μg l-1 for Pb. In the sites with continental water input (mixing zone), the metals were scattered in the following ranges: Fe (19.72-60.33 μg l-1), Mn (12.63-35.60 μg l-1), Zn (2.67-22.00), Cu (0.83-8.10 μg l-1), and Pb (1.72-29.7 μg l-1). The results for the metal concentrations showed a remarkable decrease in the levels of the different metals going from the estuaries and outlets into the coastal sea water. Generally, the levels of the metals in the two zones are higher than the background levels of the unpolluted area. A comparison of the trace-metal levels in the coastal zone of the Mediterranean Sea north of Nile Delta with the minimal risk concentration (reported by water-quality criteria, WQC) showed a significantly lower content at the coastal area of the Mediterranean sea of Egypt. The study also indicated that the impact of anthropogenic inputs was limited in the distribution of the metals, except that the Pb content was slightly higher in the area of the mixing zone than that reported for WQC. The relationships between the different trace-metal concentrations and the other parameters (salinity, chlorophyll a and suspended particulate matter) were discussed, and the simple regressions between them were evaluated.  相似文献   

11.
Discharges of nutrients, urea, dissolved organic matter and heavy metals by a sewage underwater pipeline are analysed in comparison to environmental conditions in a shallow coastal zone. Variable thermo-haline stratifications of the water column and currents in upper (2.62-34.97 cm s-1) and deeper (0.83-10.91 cm s-1) layers drive vertical diffusion and lateral transport of wastewaters. Loads of reactive phosphorus (0.13 tons d-1) and ammonium (1.62 tons d-1) by the pipeline are not negligible compared to the major river loads in the gulf. High concentrations of urea (≤11.51 μmol N dm-3) were found in the area of wastewater release. Ammonium uptake (6.14-534 nmol N dm-3 h-1) strongly exceeded nitrate uptake (0.19-138 nmol N dm-3 h-1), indicating that discharges of ammonium by the pipeline are actively assimilated by plankton community even at low levels of light. Distribution of Zn (≤27.7 ppb), Cu (≤25.6 ppb), Cd (≤0.80 ppb) and Pb (≤13.5 ppb) in the water column and the measurement of their complex-forming capacity in seawater did not indicate a persistent perturbation of the pelagic environment due to heavy metals.  相似文献   

12.
The methanogenesis was severely inhibited with 0.46 mM ASA addition.PO43 didn’t attenuate the methanogenesis inhibition in the existence of ASA.ASA was transformed to As(III), As(V), MMA and DMA in anaerobic digestion.Cu2+ mitigated the methanogenesis inhibition via impeding the degradation of ASA.Arsanilic acid (ASA), copper ion (Cu2+) and phosphate (PO43) are widely used as feed additives for pigs. Most of these three supplemented feed additives were excreted in feces and urine. Anaerobic digestion is often used for the management of pig manure. However, the interaction of ASA with Cu2+ or PO43 on anaerobic digestion is still not clear. In this study, the influence of ASA, Cu2+, PO43 and their interaction on anaerobic digestion of pig manure and the possible mechanisms were investigated. The initial concentrations of ASA, Cu2+ and PO43 were 0.46 mM, 2 mM and 2 mM in the anaerobic digester, respectively. The methanogenesis was severely inhibited in the assays with only ASA addition, only Cu2+ addition and ASA+ PO43 addition with the inhibition index of 97.8%, 46.6% and 82.6%, respectively, but the methanogenesis inhibition in the assay with ASA+ Cu2+ addition was mitigated with the inhibition index of 39.4%. PO43 had no obvious impacts on the degradation of ASA. However, Cu2+ addition inhibited the degradation of ASA, mitigating the methanogenesis inhibition. The existence of ASA would inhibit methanogenesis and generate more toxic inorganic arsenic compounds during anaerobic digestion, implying the limitation of anaerobic digestion for ASA- contaminated animal manure. However, the co-existence of ASA and Cu2+ could mitigate the inhibition. These results could provide useful information for the management of anaerobic digestion of pig manure containing ASA with Cu2+.  相似文献   

13.
This paper deals with the water chemistry and dissolved nutrient flux of two small mountainous and heavily dammed rivers—Periyar and Chalakudy—of Kerala on the south-west coast of India. The lower reaches of these rivers are affected by sea-water ingression from the Arabian Sea during the non-monsoon season. Human interference through agriculture, urbanization, and industrialization in the lower and middle stretches of the river basins induces marked concentration variations in the hydro-chemical parameters. Except for N & P, all other chemical constituents exhibit high values during the non-monsoon season. Industrial contaminants in specific locations of the Periyar river reduce the pH to lower levels. Nutrients in the two rivers reveal marked seasonal and regional concentration variations. During the monsoon season, dissolved inorganic nitrogen (DIN) predominates over dissolved organic nitrogen (DON), but the reverse trend is observed during the non-monsoon season. The Periyar river shows higher average concentrations of DIN (monsoon 801 μg l-1 and non-monsoon 292 μg l-1) than Chalakudy river (monsoon 478 μg l-1 and non-monsoon 130 μg l-1). Dissolved inorganic phosphorus (DIP) has lower average values in the monsoon season (Periyar river, 38 μg l-1; Chalakudy river, 42 μg l-1) than dissolved organic phosphorus (DOP) values (Periyar river, 107 μg l-1; Chalakudy, 62 μg l-1). The rivers show a marked difference in nutrient flux due to its difference in water discharge/basin characteristics and point/non-point sources of contaminants. The flux rates of DIN, DIP, and DOP during the monsoon are higher than during the non-monsoon season, while those of dissolved silicon (DSi), dissolved Fe (DFe), and DON are lower. On average, the Periyar river discharges 4953 t y-1 of DIN and 1626 t y-1 of DON to the coastal waters, and the corres-ponding values of the Chalakudy river are 772 t y-1 and 596 t y-1. The Periyar and Chalakudy rivers discharge 245 t y-1 and 70.8 t y-1 of DIP, respectively. The total flux of DOP is considerably higher (Periyar river 703 t y-1 and Chalakudy river 101 t y-1). The discharge of DSi into the Periyar river (40 193 t y-1) is nearly five times higher than that in the Chalakudy river (8275 t y-1). The discharges of DFe through the Periyar and Chalakudy rivers are 257 t y-1 and 36.7 t y-1, respectively. To sum up, this study addresses the water quality and nutrient flux of two tropical rivers and discusses the impact of urbanization and industrialization on river-water quality.  相似文献   

14.
• Forward osmosis (FO) coupled with chemical softening for CCI ROC minimization • Effective removal of scale precursor ions by lime-soda ash softening • Enhanced water recovery from 54% to 86% by mitigation of FO membrane scaling • High-purity CaCO3 was recovered from the softening sludge • Membrane cleaning efficiency of 88.5% was obtained by EDTA for softened ROC Reverse osmosis (RO) is frequently used for water reclamation from treated wastewater or desalination plants. The RO concentrate (ROC) produced from the coal chemical industry (CCI) generally contains refractory organic pollutants and extremely high-concentration inorganic salts with a dissolved solids content of more than 20 g/L contributed by inorganic ions, such as Na+, Ca2+, Mg2+, Cl, and SO42. To address this issue, in this study, we focused on coupling forward osmosis (FO) with chemical softening (FO-CS) for the volume minimization of CCI ROC and the recovery of valuable resources in the form of CaCO3. In the case of the real raw CCI ROC, softening treatment by lime-soda ash was shown to effectively remove Ca2+/Ba2+ (>98.5%) and Mg2+/Sr2+/Si (>80%), as well as significantly mitigate membrane scaling during FO. The softened ROC and raw ROC corresponded to a maximum water recovery of 86% and 54%, respectively. During cyclic FO tests (4 × 10 h), a 27% decline in the water flux was observed for raw ROC, whereas only 4% was observed for softened ROC. The cleaning efficiency using EDTA was also found to be considerably higher for softened ROC (88.5%) than that for raw ROC (49.0%). In addition, CaCO3 (92.2% purity) was recovered from the softening sludge with an average yield of 5.6 kg/m3 treated ROC. This study provides a proof-of-concept demonstration of the FO-CS coupling process for ROC volume minimization and valuable resources recovery, which makes the treatment of CCI ROC more efficient and more economical.  相似文献   

15.
Dielectrophoresis (DEP) process could enhance the removal the Cd2+ and Pb2+ with less absorbent. The removal rates of both Cd2+ and Pb2+ increased with the increase of voltage. The overall removal rate of Cd2+ and Pb2+ in the binary system is higher than that of Cd2+ or Pb2+ in the single system. DEP could cause considerable changes of the bentonite particles in both surface morphology and microstructure. Dielectrophoresis (DEP) was combined with adsorption (ADS) to simultaneously and effectively remove Cd2+ and Pb2+ species from aqueous solution. To implement the process, bentonite particles of submicro-meter size were used to first adsorb the heavy metal ions. These particles were subsequently trapped and removed by DEP. The effects of the adsorbent dosage, DEP cell voltage and the capture pool numbers on the removal rate were investigated in batch processes, which allowed us to determine the optimal experimental conditions. The high removal efficiency, 97.3% and 99.9% for Cd2+ and Pb2+, respectively, were achieved when the ions are coexisting in the system. The microstructure of bentonite particles before and after ADS/DEP was examined by scanning electron microscopy. Our results suggest that the dielectrophoresis-assisted adsorption method has a high capability to remove the heavy metals from wastewater.  相似文献   

16.
As the bioelectrochemical system, the microbial fuel cell (MFC) and the microbial electrolysis cell (MEC) were developed to selectively recover Cu2+ and Ni2+ ions from wastewater. The wastewater was treated in the cathode chambers of the system, in which Cu2+ and Ni2+ ions were removed by using the MFC and the MEC, respectively. At an initial Cu2+ concentration of 500 mg·L-1, removal efficiencies of Cu2+ increased from 97.0%±1.8% to 99.0%±0.3% with the initial Ni2+ concentrations from 250 to 1000 mg·L-1, and maximum power densities increased from 3.1±0.5 to 5.4±0.6 W·m-3. The Ni2+ removal mass in the MEC increased from 6.8±0.2 to 20.5±1.5 mg with the increase of Ni2+ concentrations. At an initial Ni2+ concentration of 500 mg·L-1, Cu2+ removal efficiencies decreased from 99.1%±0.3% to 74.2%±3.8% with the initial Cu2+ concentrations from 250 to 1000 mg·L-1, and maximum power densities increased from 3.0±0.1 to 6.3±1.2 W·m-3. Subsequently, the Ni2+ removal efficiencies decreased from 96.9%±3.1% to 73.3%±5.4%. The results clearly demonstrated the feasibility of selective recovery of Cu2+ and Ni2+ from the wastewater using the bioelectrochemical system.  相似文献   

17.
• Unmodified-AuNP based, colorimetric nanosensor was constructed for Pb2+ detection. • 5-nucleotide truncation in DNAzyme made complete substrate detachment upon Pb2+. • Ultrasensitive and selective detection of Lead (II) was achieved with 0.2×10-9 mol/L LOD. Water pollution accidents, such as the Flint water crisis in the United States, caused by lead contamination have raised concern on the safety of drinking water distribution systems. Thus, the routine monitoring of lead in water is highly required and demands efficient, sensitive, cost-effective, and reliable lead detection methods. This study reports a label-free colorimetric nanosensor that uses unmodified gold nanoparticles (AuNPs) as indicators to enable rapid and ultra-sensitive detection of lead in environmental water. The 8–17 DNAzyme was truncated in this study to facilitate the detachment of single-stranded DNA fragments after substrate cleavage in the presence of Pb2+. The detached fragments were adsorbed over AuNPs and protected against salt concentration-induced aggregation. Accordingly, high Pb2+ would result in rapid color change from blue to pink. The established sensing principle achieved a sensitive limit of detection of 0.2×10-9 mol/L Pb2+, with a linear working range of two orders of magnitude from 0.5×10-9 mol/L to 5×10-9 mol/L. The selectivity of the nanosensor was demonstrated by evaluating the interfering metal ions. The developed nanosensor can serve as a substitute for the rapid analysis and monitoring of trace lead levels under the drinking water distribution system and even other environmental water samples.  相似文献   

18.
Water samples were taken from 12 stations at El-Dikheila Harbour, El-Mex Bay, Western Harbour, Qayet Bey outfall, Eastern Harbour, El-Ibrahemiya, Gleem, Sidi Bishr and Mandara, during January, April, August and November 1995. the area lies between latitude 31˚ 8' and 31˚ 17' North and longitude 29˚ 47' and 30˚ East. the annual mean of chlorinity (11.69-20.5%0), pH (7.9-8.3), reactive phosphate (0.31-2.24 μM), nitrite (0.18-1.98 μM), oxidizable organic matter (1.97-8.95 mgO2 1-1), iodide (21.14-46.74 μg 1-1) and iodate (4.61-2.04 μg 1-1) were measured. Iodide content in water is three times higher than iodate. Iodide is positively correlated with chlorinity (r=0.65) and iodate (r=0.45), while it is negatively correlated with nitrite (r= -0.72), oxidizable organic matter (r= -0.55) and pH (r= -0.4).  相似文献   

19.
Organotin compounds were measured in sediments of four different semi-closed areas of the Mediterranean coast of Alexandria: the Eastern Harbour, Western Harbour, El-Max Bay, and Abu-Qir Bay. Due to the commercial trade activity inside the Western Harbour, in addition to the effect of wastes discharged from El Noubaria canal, it shows the highest concentrations of total tin (6.34 μg g-1 dry weight), dibutyl tin (1.63 μg g-1 wet weight), tributyl tin (0.33 μg g-1 wet weight) and diphenyl tin (1.06 μg g-1 wet weight) compared with other locations. The concentrations of TBT species showed the highest contents compared with DBT and DPhT compounds in all sampling areas. This trend might be due to the worldwide use of TBT not only as biocides in antifouling paints but also as preserving agents for wood, fungicides in agricultural activities, and heat and UV stabilizers of PVC, which results in a direct release of TBT into the water body, accumulation in aquatic fauna. There is also precipitation into sediments and a decrease in degradation rate into its derivatives. Variations, types, concentrations, and distribution of different organotin compounds are discussed in the areas under investigation. The study reveals a new record of organotin compounds along the Alexandria coast and makes comparisons with other surrounding areas of interest.  相似文献   

20.
Ascomycota was the predominant phylum in sanitary landfill fungal communities. • Saprophytic fungi may be of special importance in landfill ecology. • Both richness and diversity of fungal community were lower in leachate than refuse. • Physical habitat partly contributed to the geographic variance of fungal community. • NO3 was considered the most significant abiotic factor shaping fungal community. Land filling is the main method to dispose municipal solid waste in China. During the decomposition of organic waste in landfills, fungi play an important role in organic carbon degradation and nitrogen cycling. However, fungal composition and potential functions in landfill have not yet been characterized. In this study, refuse and leachate samples with different areas and depths were taken from a large sanitary landfill in Beijing to identify fungal communities in landfills. In high-throughput sequencing of ITS region, 474 operational taxonomic units (OTUs) were obtained from landfill samples with a cutoff level of 3% and a sequencing depth of 19962. The results indicates that Ascomycota, with the average relative abundance of 84.9%, was the predominant phylum in landfill fungal communities. At the genus level, Family Hypocreaceae unclassified (15.7%), Fusarium (9.9%) and Aspergillus (8.3%) were the most abundant fungi found in the landfill and most of them are of saprotrophic lifestyle, which plays a big role in nutrient cycling in ecosystem. Fungi existed both in landfilled refuse and leachate while both the richness and evenness of fungal communities were higher in the former. In addition, fungal communities in landfilled refuse presented geographic variances, which could be partly attributed to physical habitat properties (pH, dissolved organic carbon, volatile solid, NH4+, NO2 and NO3), while NO3 was considered the most significant factor (p<0.05) in shaping fungal community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号