首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mass migration of locusts is an economically devastating and poorly understood phenomenon. Locust mass migration often follows rapid population growth because individuals must move to find new sources of locally depleted resources. In Mormon crickets and Desert locusts, cannibalistic interactions have been revealed as the driving force behind collective mass movement. Locusts are known to compensate for nutrient deficiencies and they themselves are a good source of nutrients such as protein. However, direct empirical evidence for an adaptive benefit of cannibalism in migratory bands has been lacking. Here, we first show that Australian plague locusts, Chortoicetes terminifera, will cannibalise vulnerable conspecifics to compensate for protein deprivation, supporting the notion that cannibalistic interactions among nutritionally deprived individuals drives collective mass movement. We then show that individuals in a group with the opportunity to cannibalise survive longer and move more than individuals without the opportunity to cannibalise. These results provide empirical support for the ??lifeboat mechanism??, which proposes that cannibalism offers the dual benefits to individuals in a group of surviving longer and travelling farther than a solitary individual without the opportunity to cannibalise.  相似文献   

2.
This paper deals with the purposeful marking of trails as a mechanism for coordinating movement. Patterns of motion are adapted to the environmental conditions, the functions to be carried out, and the condition of the organism; therefore, the networks of trails must change both quantitatively and qualitatively over time. The nature of such changes, and how they are controlled at the individual level are discussed. In particular, we show that slight modulations in individual traits, in the trail marker, or in the size of the group can account for major changes in movement patterns at the population level such as abrupt transitions from diffuse area-covering networks to focused trunk trails. Using a mathematical model and computer (cellular automata) simulation we show that trunk trails carrying a high density of traffic can form spontaneously under suitable conditions from an initially randomly distributed group. The key to this self-organizing property stems from interactions between individuals that lead to a collective effect in recruitment to trails: the influence of small groups of individuals increases rapidly with group size. The dichotomy between high traffic (strong) trunk trails versus diffuse (weak) networks is discussed.  相似文献   

3.
The theory of collective motion and the study of animal social networks have, each individually, received much attention. Currently, most models of collective motion do not consider social network structure. The implications for considering collective motion and social networks together are likely to be important. Social networks could determine how populations move in, split up into and form separate groups (social networks affecting collective motion). Conversely, collective movement could change the structure of social networks by creating social ties that did not exist previously and maintaining existing ties (collective motion affecting social networks). Thus, there is a need to combine the two areas of research and examine the relationship between network structure and collective motion. Here, we review different modelling approaches that combine social network structures and collective motion. Although many of these models have not been developed with ecology in mind, they present a current context in which a biologically relevant theory can be developed. We argue that future models in ecology should take inspiration from empirical observations and consider different mechanisms of how social preferences could be expressed in collectively moving animal groups.  相似文献   

4.
Snider SB  Gilliam JF 《Ecology》2008,89(7):1961-1971
Immigration, emigration, migration, and redistribution describe processes that involve movement of individuals. These movements are an essential part of contemporary ecological models, and understanding how movement is affected by biotic and abiotic factors is important for effectively modeling ecological processes that depend on movement. We asked how phenotypic heterogeneity (body size) and environmental heterogeneity (food resource level) affect the movement behavior of an aquatic snail (Tarebia granifera), and whether including these phenotypic and environmental effects improves advection-diffusion models of movement. We postulated various elaborations of the basic advection diffusion model as a priori working hypotheses. To test our hypotheses we measured individual snail movements in experimental streams at high- and low-food resource treatments. Using these experimental movement data, we examined the dependency of model selection on resource level and body size using Akaike's Information Criterion (AIC). At low resources, large individuals moved faster than small individuals, producing a platykurtic movement distribution; including size dependency in the model improved model performance. In stark contrast, at high resources, individuals moved upstream together as a wave, and body size differences largely disappeared. The model selection exercise indicated that population heterogeneity is best described by the advection component of movement for this species, because the top-ranked model included size dependency in advection, but not diffusion. Also, all probable models included resource dependency. Thus population and environmental heterogeneities both influence individual movement behaviors and the population-level distribution kernels, and their interaction may drive variation in movement behaviors in terms of both advection rates and diffusion rates. A behaviorally informed modeling framework will integrate the sentient response of individuals in terms of movement and enhance our ability to accurately model ecological processes that depend on animal movement.  相似文献   

5.
Codling EA  Pitchford JW  Simpson SD 《Ecology》2007,88(7):1864-1870
Traditional studies of animal navigation over both long and short distances have usually considered the orientation ability of the individual only, without reference to the implications of group membership. However, recent work has suggested that being in a group can significantly improve the ability of an individual to align toward and reach a target direction or point, even when all group members have limited navigational ability and there are no leaders. This effect is known as the "many-wrongs principle" since the large number of individual navigational errors across the group are suppressed by interactions and group cohesion. In this paper, we simulate the many-wrongs principle using a simple individual-based model of movement based on a biased random walk that includes group interactions. We study the ability of the group as a whole to reach a target given different levels of individual navigation error, group size, interaction radius, and environmental turbulence. In scenarios with low levels of environmental turbulence, simulation results demonstrate a navigational benefit from group membership, particularly for small group sizes. In contrast, when movement takes place in a highly turbulent environment, simulation results suggest that the best strategy is to navigate as individuals rather than as a group.  相似文献   

6.
We describe aspects of the anatomy and suspension-feeding mechanism of a single Planctosphaera pelagica captured from the plankton in June 1992 off Bermuda in the western Atlantic. We also describe several unusual features of the larva, including its occurrence in surface waters, unusually large size, and limited swimming ability. Our account of the form and feeding behavior of P. pelagica is the first based on observations of a specimen captured and observed alive. Our limited observations suggest that the planctosphaera may use a suspension-feeding mechanism much like that of the other feeding deuterostome larvae (the pluteus and bipinnaria larvae of echinoderms and the tornaria larva of enteropneust hemichordates) known to capture food particles using a single ciliated band. Although we could not observe cilia directly, the movement of dye streams and food particles and the structure of the ciliated band suggest that some particles may be captured at the ciliated band by the reversal of ciliary beat. The planctosphaera possesses many prominent mucous glands near the food grooves. This suggests an important role of mucus in the biology of the larva, but we were not able to observe directly any role of mucus in particle capture.  相似文献   

7.
Rudolf VH 《Ecology》2006,87(2):362-371
Nonlethal indirect interactions between predators often lead to nonadditive effects of predator number on prey survival and growth. Previous studies have focused on systems with at least two different predator species and one prey species. However, most predators undergo extreme ontological changes in phenotype such that interactions between different-sized cohorts of a predator and its prey could lead to nonadditive effects in systems with only two species. This may be important since different-sized individuals of the same species can differ more in their ecology than similar-sized individuals of different species. This study examined trait-mediated indirect effects in a two-species system including a cannibalistic predator with different-sized cohorts and its prey. I tested for these effects using larvae of two stream salamanders, Gyrinophilus porphyriticus (predator) and Eurycea cirrigera (prey), by altering the densities and combinations of predator size classes in experimental streams. Results showed that the presence of large individuals can significantly reduce the impact of density changes of smaller conspecifics on prey survival through nonlethal means. In the absence of large conspecifics, an increase in the relative frequency of small predators significantly increased predation rates, thereby reducing prey survival. However, with large conspecifics present, increasing the density of small predators did not decrease prey survival, resulting in a 14.3% lower prey mortality than predicted from the independent effects of both predator size classes. Small predators changed their microhabitat use in the presence of larger conspecifics. Prey individuals reduced activity in response to large predators but did not respond to small predators. Both predators reduced prey growth. These results demonstrate that the impact of a predator can be significantly altered by two different types of trait-mediated indirect effects in two-species systems: between different-sized cohorts and between different cohorts and prey. This study demonstrates that predictions based on simple numerical changes that assume independent effects of different size classes or ignore size structure can be strongly misleading. We need to account for the size structure within predator populations in order to predict how changes in predator abundance will affect predator-prey dynamics.  相似文献   

8.
Many organisms live in crowded groups where social density affects behavior and fitness. Social insects inhabit nests that contain many individuals where physical interactions facilitate information flow and organize collective behaviors such as foraging, colony defense, and nest emigration. Changes in nest space and intranidal crowding can alter social interactions and affect worker behavior. Here, I examined the effects of social density on foraging, scouting, and polydomy behavior in ant colonies—using the species Temnothorax rugatulus. First, I analyzed field colonies and determined that nest area scaled isometrically with colony mass—this indicates that nest area changes proportionally with colony size and suggests that ants actively control intranidal density. Second, laboratory experiments showed that colonies maintained under crowded conditions had greater foraging and scouting activities compared to the same colonies maintained at a lower density. Moreover, crowded colonies were significantly more likely to become polydomous. Polydomous colonies divided evenly based on mass between two nests but distributed fewer, heavier workers and brood to the new nests. Polydomous colonies also showed different foraging and scouting rates compared to the same colonies under monodomous conditions. Combined, the results indicate that social density is an important colony phenotype that affects individual and collective behavior in ants. I discuss the function of social density in affecting communication and the organization of labor in social insects and hypothesize that the collective management of social density is a group level adaptation in social insects.  相似文献   

9.
Small-scale fisheries collectively have a large ecological footprint and are key sources of food security, especially in developing countries. Many of the data-intensive approaches to fishery management are infeasible in these fisheries, but a strategy that has emerged to overcome these challenges is the establishment of territorial user rights for fisheries (TURFs). In this approach, exclusive fishing zones are established for groups of stakeholders, which eliminates the race to fish with other groups. A key challenge, however, is setting the size of TURFs—too large and the number of stakeholders sharing them impedes collective action, and too small and the movement of target fish species in and out of the TURFs effectively removes the community's exclusive access. We assessed the size of 137 TURFs from across the globe relative to this design challenge by applying theoretical models that predict their performance. We estimated that roughly two-thirds of these TURFs were sized ideally to overcome the challenges posed by resource movement and fisher group size. However, for most of the remaining TURFs, all possible sizes were either too small to overcome the resource-movement challenge or too large to overcome the collective action challenge. Our results suggest these fisheries, which target mobile species in densely populated regions, may need additional interventions to be successful.  相似文献   

10.
Phenomenological approaches to model species migration are usually based on kernel-based methods. These methods require a good knowledge of the dispersal agent behaviour for a given species. They also calculate the location of individuals independently to each other (except the mother plant) and then suppress some of them according to additional interactions such as competition, facilitation and recruitment. In this paper, we propose to use a new phenomenological method, the Gibbs method, to model tree species migration at large scale. The Gibbs method handles the location of adult individuals in terms of pairwise interactions described by a potential function. This function summarizes the set of known and unknown factors determining the spatial distribution of the individuals (or cohorts). The principle of the Gibbs method is to minimize the sum of all pairwise interactions, also called the cost function, in order to optimize the spatial point pattern according to the chosen potential function.  相似文献   

11.
Social structure emerges from the patterning of interactions between individuals and plays a critical role in shaping some of the main characteristics of animal populations. The topological features of social structure, such as the extent to which individuals interact in clusters, can influence many biologically important factors, including the persistence of cooperation, and the rate of spread of disease. Yet, the extent to which social structure topology fluctuates over relatively short periods of time in relation to social, demographic, or environmental events remains unclear. Here, we use social network analysis to examine seasonal changes in the topology of social structures that emerge from socio-positive associations in adult female rhesus macaques (Macaca mulatta). Behavioral data for two different association types (grooming and spatial proximity) were collected for females in two free-ranging groups during two seasons: the mating and birth seasons. Stronger dyadic bonds resulted in social structures that were more tightly connected (i.e., of greater density) in the mating season compared to the birth season. Social structures were also more centralized around a subset of individuals and more clustered in the mating season than those in the birth season, although the latter differences were mostly driven by differences in density alone. Our results suggest a degree of temporal variation in the topological features of social structure in this population. Such variation may feed back on interactions, hence affecting the behaviors of individuals, and may therefore be important to take into account in studies of animal behavior.  相似文献   

12.
寡核苷酸探针(CAC)5/(GTG)5检测了五指山猪、枫泾猪、枫泾猪与长白山猪杂交子一代的基因指纹图.各个体的可分辨谱带,分布于0.7~21.2kb之间.在约1.3kb处的一条共有谱带,可能是家猪的特征带.  相似文献   

13.
The risk of infant injury or mortality influences maternal behaviour, particularly protectiveness. Mares are found in bands with a single stallion or bands with more than one stallion in which paternity is less certain. We investigated maternal behaviour in relation to band type. Mares in bands with more than one stallion were more protective of their foals, particularly when stallions and foals approached one another. The rate of aggression between the stallion and foal was a significant predictor of maternal protectiveness, and mare protectiveness was significantly correlated with reduced reproductive success in the subsequent year. Mares that changed band types with a foal at foot, or had their band type experimentally altered, were more protective of their foal in multi-stallion bands than they were in single-stallion bands. Equids are unusual amongst ungulates in that infanticide and feticide have been reported. Both occur where paternity has been uncertain, and equid social structure is similar to other species in which infanticide has been reported. Stallions benefit from infanticide as the mare has greater reproductive success in the subsequent year. Stallion aggression is a significant modifier of mare behaviour and maternal effort, probably due to the risk of infanticide.  相似文献   

14.
Vander Wal E  Yip H  McLoughlin PD 《Ecology》2012,93(1):206-212
For animals living in natural or semi-natural settings, empirical data on how sociality changes in response to increasing population density are few, especially with respect to true conspecific density and not group size. However, insight into this line of research may be far-reaching--from understanding density dependence in sexual selection to improving models of disease transmission. Using elk (Cervus elaphus Linnaeus) held in enclosures, we conducted sex-stratified experiments to test how the frequency of dyadic pairings (interaction rate) and their quality (duration) responded to manipulations in exposure to density. Using proximity-logging radio collars we recorded when and for how long individuals shared a space within 1.4 m of each other. As predicted, males increased their interaction rate as density increased. Female interaction rates, however, increased initially as density increased but soon declined to become indistinguishable from rates at low density. Females interacted for longer periods at medium densities, whereas male interaction length clearly decreased as density increased. We highlight a sexually dichotomous, density-dependent response in sociality that has yet to be reported. In addition to furthering our understanding of sociobiology (e.g., implications of time constraints presented by density on dyadic interactions), our results have implications for managing communicable disease in gregarious species of livestock and wildlife.  相似文献   

15.
Hydrodynamic forces are an important determinant of subtidal community structure, particularly when they limit the distribution and foraging ability of mobile consumers. We examined the effect of wave action on the rate of movement and destructive grazing of a kelp bed by the green sea urchin (Strongylocentrotus droebachiensis) under field conditions. We measured density and rate of advance at fixed intervals along ∼100 m of a grazing front over 1 year, and quantified individual movement rates in the barrens 5–10 m behind the urchin front using a time-lapse videography. Seasonal variation in the mean rate of advance of the front (range: 0–4 m month−1) was explained by changes in urchin density at the front (120–360 individuals m−2), which in turn varied inversely with significant wave height (0.5–2 m). Water temperature (0.8–17.6°C) had no effect on the rate of advance or on urchin density (aggregation) at the front, except when temperature exceeded 17°C. Movement of individual urchins also was affected by wave action: we observed a significant decrease in speed and displacement of urchins with increasing significant wave height. Wave action had no effect on the proportion of urchins moving or the degree of linearity of their movements. We propose that the decrease in urchin density at the front associated with increased wave action, results from de-aggregation, which reduces the risk of dislodgement, combined with a reduction in urchin movement in barrens, which supplies new urchins to the front.  相似文献   

16.
Alternate dense and less-dense skeletal bands in massive corals have been used for many years to record the history of growth in species such as Porites lutea and Montastrea annularis, based on the assumption that one dense band and one less-dense band is equivalent to a year's growth. This report demonstrates that specimens of Porites lutea Edwards and Haime (collected from the same neighbourhood in Phuket, Thailand, from November 1983 through November 1984) produce skeletal bands asynchronously and that one year's growth in corals from certain sites may regularly consist of four bands of varying density. The annual banding pattern observed at all sites includes the deposition of a dense band in response to high sedimentation loads and, probably, reduced light levels.  相似文献   

17.
Moving and spatial learning are two intertwined processes: (a) changes in movement behavior determine the learning of the spatial environment, and (b) information plays a crucial role in several animal decision-making processes like movement decisions. A useful way to explore the interactions between movement decisions and learning of the spatial environment is by comparing individual behaviors during the different phases of natal dispersal (when individuals move across more or less unknown habitats) with movements and choices of breeders (who repeatedly move within fixed home ranges), that is, by comparing behaviors between individuals who are still acquiring information vs. individuals with a more complete knowledge of their surroundings. When analyzing movement patterns of eagle owls, Bubo bubo, belonging to three status classes (floaters wandering across unknown environments, floaters already settled in temporary settlement areas, and territory owners with a well-established home range), we found that: (1) wandering individuals move faster than when established in a more stable or fixed settlement area, traveling larger and straighter paths with longer move steps; and (2) when floaters settle in a permanent area, then they show movement behavior similar to territory owners. Thus, movement patterns show a transition from exploratory strategies, when animals have incomplete environmental information, to a more familiar way to exploit their activity areas as they get to know the environment better.  相似文献   

18.
The emergence of an animal’s personality is the result of interactions between genetics, environment and experience. It is known that individuals are able to modulate their behaviour according to the context or the social environment. Many studies have shown for example, that familiarity among conspecifics diminishes aggressiveness, although little is known about the underlying processes. Nevertheless, personality traits have long been determined while ignoring the social context, especially in lower vertebrates such as fish. In the present experiment, we hypothesize that group connections (network density) may be positively correlated to consistency of aggressiveness by avoiding over-aggressive acts in further encounters. To test this hypothesis, we used eels (Anguilla anguilla) as a model species and monitored both aggressiveness and sociability in 64 individuals over their first 7 months of growth from the glass eel stage. As expected, social fish were less aggressive than their non-social counterparts at all times, highlighting the existence of a behavioural syndrome in eels. Additionally, rank-order consistency of aggressiveness was higher in groups of fish with high social connectivity, compared to those in less-connected fish groups. While aggressiveness must be consistent to be considered a personality trait, our results suggest that both aggressiveness and its consistency are influenced by initial social context.  相似文献   

19.
《Ecological modelling》2005,186(2):196-211
Ecological theory traditionally describes predator–prey interactions in terms of a law of mass action in which the prey mortality rate depends on the density of predators and prey. This simplifying assumption makes population-based models more tractable but ignores potentially important behaviors that characterize predator–prey dynamics. Here, we expand traditional predator–prey models by incorporating directed and random movements of both predators and prey. The model is based on theory originally developed to predict collision rates of molecules. The temporal and spatial dimensions of predators–prey encounters are determined by defining movement rules and the predator's field of vision. These biologically meaningful parameters can accommodate a broad range of behaviors within an analytically tractable framework suitable for population-based models. We apply the model to prey (juvenile salmon) migrating through a field of predators (piscivores) and find that traditional predator–prey models were not adequate to describe observations. Model parameters estimated from the survival of juvenile chinook salmon migrating through the Snake River in the northwestern United States are similar to estimates derived from independent approaches and data. For this system, we conclude that survival depends more on travel distance than travel time or migration velocity.  相似文献   

20.
Modelling populations on an individual-by-individual basis has proven to be a fruitful approach. Many complex patterns that are observed on the population level have been shown to arise from simple interactions between individuals. However, a major problem with these models is that the typically large number of individuals needed requires impractically large computation times. The common solution, reduction of the number of individuals in the model, can lead to loss of variation, irregular dynamics, and large sensitivity to the value of random generator seeds. As a solution to these problems, we propose to add an extra variable feature to each model individual, namely the number of real individuals it actually represents. This approach allows zooming from a real individual-by-individual model to a cohort representation or ultimately an all-animals-are-equal view without changing the model formulation. Therefore, the super-individual concept offers easy possibilities to check whether the observed behaviour is an artifact of following a limited number of individuals or of lumping individuals, and also to verify whether individual variability is indeed an essential ingredient for the observed behaviour. In addition the approach offers arbitrarily large computational advantages. As an example the super-individual approach is applied to a generic model of the dynamics of a size-distributed consumer cohort as well as to an elaborate applied simulation model of the recruitment of striped bass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号