首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: The Southern Blue Ridge Province, which encompasses parts of northern Georgia, eastern Tennessee, and western North Carolina, has been predicted to be sensitive to impacts from acidic deposition, owing to the chemical composition of the bedrock geology and soils. This study confirms the predicted potential sensitivity, quantifies the level of total alkalinity and describes the chemical characteristics of 30 headwater streams of this area. Water chemistry was measured five times between April 1983 and June 1984 at first and third order reaches of each stream during baseflow conditions. Sensitivity based on total alkalinity and the Calcite Saturation Index indicates that the headwater streams of the Province are vulnerable to acidification. Total alkalinity and p11 were generally higher in third order reaches (mean, 72 μeq/θ and 6.7) than in first order reaches (64 μeq/θ and 6.4). Ionic concentrations were low, averaging 310 and 340 μeq/θ in first and third order reaches, respectively. A single sampling appears adequate for evaluating sensitivity based on total alkalinity, but large temporal variability requires multiple sampling for the detection of changes in pH and alkalinity over time. Monitoring of stream water should continue in order to detect any subtle effects of acidic deposition on these unique resource systems.  相似文献   

2.
ABSTRACT: The last few decades have seen an increased reliance on the use of stream attributes to monitor stream conditions. The use of stream attributes has been criticized because of variation in how observers evaluate them, inconsistent protocol application, lack of consistent training, and the difficulty in using them to detect change caused by management activity. In this paper, we evaluate the effect of environmental heterogeneity and observer variation on the use of physical stream attributes as monitoring tools. For most stream habitat attributes evaluated, difference among streams accounted for greater than 80 percent of the total survey variation. To minimize the effect that variation among streams has on evaluating stream conditions, it may be necessary to design survey protocols and analysis that include stratification, permanent sites, and/or analysis of covariance. Although total variation was primarily due to differences among streams, observers also differed in their evaluation of stream attributes. This study suggests that if trained observers conducting a study that is designed to account for environmental heterogeneity can objectively evaluate defined stream attributes, results should prove valuable in monitoring differences in reach scale stream conditions. The failure to address any of these factors will likely lead to the failure of stream attributes as effective monitoring tools.  相似文献   

3.
We investigate natural inter-annual variability of fish community measures within streams of the Lake Ontario basin. Given this variability, we examined coefficients of variation (CV) among the community measures and three scenarios pertaining to the capacity of biologists to detect changes in the fish community at the stream site level. Results indicate that Ontario's stream fish communities are highly variable in time. Young-of-the-year rainbow trout growth was the least variable whereas biomass density scored the highest CV of 0.50 among streams (range 0.22-0.99). Given the CVs and relatively equal sample sizes, our measures of the fish community can be ranked from least to most powerful: biomass, density, richness, diversity, and growth of young-of-the-year rainbow trout. Only large changes in measures can typically be detected. For instance, it would take 4-6 years of monitoring before and after a pulse perturbation to detect a 50 % change in species richness or diversity. We suggest that monitoring abundance is unlikely to result in the detection of small impacts within a short period of time and that large effects can be masked by low statistical power. This evidence voices the need for more research into better sampling methods, experimental designs, and choice of indicators to support monitoring programs for flowing waters.  相似文献   

4.
We review long-term changes that have occurred in factors affecting water quality in East Fork Poplar Creek (EFPC; in East Tennessee) over a nearly 25-year monitoring period. Historically, the stream has received wastewaters and pollutants from a major United States Department of Energy (DOE) facility on the headwaters of the stream. Early in the monitoring program, EFPC was perturbed chemically, especially within its headwaters; evidence of this perturbation extended downstream for many kilometers. The magnitude of this perturbation, and the concentrations of many biologically significant water-quality factors, has lessened substantially through time. The changes in water-quality factors resulted from a large number of operational changes and remedial actions implemented at the DOE facility. Chief among these were consolidation and elimination of many effluents, elimination of an unlined settling/flow equalization basin, reduction in amount of blow-down from cooling tower operations, dechlorination of effluents, and implementation of flow augmentation. Although many water-quality characteristics in upper EFPC have become more similar to those of reference streams, conditions remain far from pristine. Nutrient enrichment may be one of the more challenging problems remaining before further biological improvements occur.  相似文献   

5.
Abstract: Consistency in determining Rosgen stream types was evaluated in 12 streams within the John Day Basin, northeastern Oregon. The Rosgen classification system is commonly used in the western United States and is based on the measurement of five stream attributes: entrenchment ratio, width‐to‐depth ratio, sinuosity, slope, and substrate size. Streams were classified from measurements made by three monitoring groups, with each group fielding multiple crews that conducted two to three independent surveys of each stream. In only four streams (33%) did measurements from all crews in all monitoring groups yield the same stream type. Most differences found among field crews and monitoring groups could be attributed to differences in estimates of the entrenchment ratio. Differences in entrenchment ratio were likely due to small discrepancies in determination of maximum bankfull depth, leading to potentially large differences in determination of Rosgen’s flood‐prone width and consequent values of entrenchment. The result was considerable measurement variability among crews within a monitoring group, and because entrenchment ratio is the first discriminator in the Rosgen classification, differences in the assessment of this value often resulted in different determination of primary stream types. In contrast, we found that consistently evaluated attributes, such as channel slope, rarely resulted in any differences in classification. We also found that the Rosgen method can yield nonunique solutions (multiple channel types), with no clear guidance for resolving these situations, and we found that some assigned stream types did not match the appearance of the evaluated stream. Based on these observations we caution the use of Rosgen stream classes for communicating conditions of a single stream or as strata when analyzing many streams due to the reliance of the Rosgen approach on bankfull estimates which are inherently uncertain.  相似文献   

6.
Effects of placer mining on the hydrology and water quality of several interior Alaska streams were studied as part of a project on the impacts of placer mining on stream ecosystems. Surface and subsurface waters were analyzed in the field for conductivity, pH, temperature, alkalinity, total and calcium hardnesses, iron, copper, manganese, ammonia-N, nitrate-N, nitrite-N, settleable solids, and turbidity. Total, nonfiltrable, and filtrable residues were determined in the laboratory. In the streams placer mining increased turbidity, settleable solids, nonfiltrable and filtrable residues and total iron. Surface and subsurface water levels, as measured in wells driven in the stream beds, were correlated with stream flow. Fine sediment deposited on stream beds in mined drainages reduced the hydraulic contact between the surface and subsurface waters of the stream and caused the piezometric water level to be below the surface water level of the mined streams. This resulted in higher specific conductance and significantly lower dissolved oxygen concentrations in the subsurface waters of mined streams compared to their surface waters. No significant differences were found for any water quality characteristics comparing surface to subsurface waters for the unmined streams.  相似文献   

7.
ABSTRACT: Regression models to predict baseflow alkalinity from basin hydrogeology were developed and verified for headwater streams on the Laurel Hill anticline in southwestern Pennsylvania. Predicted baseflow alkalinities were then used to estimate sensitivity to acidification and presence of trout (Salvelinus fontinalis) populations for 61 headwater streams. Sensitivity classifications were verified by surveying trout populations. Geologic variables relating to the carbonate rock burial depth, extent of carbonate rock recharge areas, and length of stream channel flowing through effluent carbonate rock outcrops were much more useful in predicting baseflow alkalinity than areal extent of carbonate rocks. Baseflow alkalinity was not well related to status of trout populations on these anticlinal basins, especially on noneffluent basins where bedrock dip exceeded surface slope.  相似文献   

8.
The movement of individuals among populations can be critical in preventing local and landscape-scale species extinctions in systems exposed to human perturbation. Current understanding of spatial population dynamics in streams is largely limited to the reach scale and is therefore inadequate to address species response to spatially extensive perturbation. Using model simulations, I examined species response to perturbation in a drainage composed of multiple, hierarchically arranged stream-patches connected by in-stream and overland pathways of dispersal. Patch extinction probability, the proportion of initially occupied patches extinct after 25 years, was highly sensitive to the extent of species occupancy and perturbation within the drainage, longitudinal species distribution, perturbation decay rate and the covariance pattern of stochastic effects on colonization and extinction probabilities. Results of these simulations underscore the importance of identifying and preserving source populations and dispersal routes for stream species in human-impacted landscapes. They also highlight the vulnerability of headwater specialist taxa to anthropogenic perturbation, and the strong positive effect on species resilience of habitat rehabilitation when recolonization is possible. Efforts to conserve and manage stream species may be greatly improved by accounting for landscape-scale spatial population dynamics.  相似文献   

9.
Stream restoration projects are often based on morphological form or stream type and, as a result, there needs to be a clear tie established between form and function of the stream. An examination of the literature identifies numerous relationships in naturally forming streams that link morphologic form and stream processes. Urban stream restoration designs often work around infrastructure and incorporate bank stabilization and grade control structures. Because of these imposed constraints and highly altered hydrologic and sediment discharge regimens, the design of urban channel projects is rather unclear. In this paper, we examine the state of the art in relationships between form and processes, the strengths and weaknesses of these existing relationships, and the current lack of understanding in applying these relationships in the urban environment. In particular, we identify relationships that are critical to urban stream restoration projects and provide recommendations for future research into how this information can be used to improve urban stream restoration design. It is also suggested that improving the success of urban restoration projects requires further investigation into incorporating process-based methodologies, which can potentially reduce ambiguity in the design and the necessity of using an abundant amount of in-stream structures.  相似文献   

10.
In areas of varying geology, it is difficult to infer water quality from specific conductance or electrical conductivity (EC) data without an understanding of the expected range of EC values based on local bedrock composition. This paper describes a user-friendly graphical screening method that addresses this issue by plotting the EC against concurrent alkalinity data, which correlates well with the presence of carbonate bedrock under natural conditions, and thus serves as an index of bedrock type. The upper limit of EC vs. alkalinity expected in a stream is determined using regional groundwater quality data, based on the assumption that stream chemistry reflects groundwater under baseflow conditions. Stream samples with EC/alkalinity values that consistently plot above this limit are considered impacted by anthropogenic sources. The effect of dilution and runoff on the EC vs. alkalinity plot of stream samples is considered using a simple baseflow/storm runoff-mixing model. The graphical method's utility as a screening tool is demonstrated by application to stream chemistry data from watersheds of southeastern Pennsylvania and northwestern New Jersey in several distinct geologic settings; however the method is general and widely applicable to watersheds in humid temperate regions. Its use is intended for watershed stewards of both professional and nonprofessional qualification.  相似文献   

11.
Abstract: Stream monitoring programs commonly measure physical attributes to assess the effect of land management on stream habitat. Variability associated with the measurement of these attributes has been linked to a number of factors, but few studies have evaluated variability due to differences in protocols. We compared six protocols, five used by the U.S. Department of Agriculture Forest Service and one by the U.S. Environmental Protection Agency, on six streams in Oregon and Idaho to determine whether differences in protocol affect values for 10 physical stream attributes. Results from Oregon and Idaho were combined for groups participating in both states, with significant differences in attribute means for 9 out of the 10 stream attributes. Significant differences occurred in 5 of 10 in Idaho, and 10 of 10 in Oregon. Coefficients of variation, signal‐to‐noise ratio, and root mean square error were used to evaluate measurement precision. There were differences among protocols for all attributes when states were analyzed separately and as a combined dataset. Measurement differences were influenced by choice of instruments, measurement method, measurement location, attribute definitions, and training approach. Comparison of data gathered by observers using different protocols will be difficult unless a core set of protocols for commonly measured stream attributes can be standardized among monitoring programs.  相似文献   

12.
Laboratory stream microcosms have been used to study transport, fate, and effects of toxic substances in stream ecosystems. Several general concerns exist in utilizing laboratory streams in this way. We summarize some of the most important and difficult of these problems and endeavor to provide theoretical understanding, evaluation, and empirical approaches necessary for making laboratory stream ecosystem studies more useful in solving problems of toxic substance behavior in natural stream ecosystems. Well-designed laboratory streams and other microcosms are complex dynamic systems that can contribute to our understanding of the behavior of toxic substances. But such systems are far too complex and dynamic to be employed as bioassay, monitoring, or predictive tools, as individual organisms have been.  相似文献   

13.
ABSTRACT: Macroinvertebrate community data collected from streams in Wyoming were assessed at various scales: within one stream reach, between stream reaches within one stream, between streams, and between stream classes. Fourteen indices including number of individuals/m2, biomass/m2, number of taxa, Shannon's diversity index, and functional feeding group ratios were used to compare macroinvertebrates by stream reach and stream class. Statistical analysis indicated that for five of the 14 indices, significant variability occurred between macroinvertebrate communities within one reach. For two of the remaining nine indices there was significant variability between communities from several reaches within the same stream. For seven of the nine indices, there was significant variability among macroinvertebrate communities from streams of the same class. Variability among the macroinvertebrate communities from the three stream classes was significantly different for seven of the nine indices. ANOVA results suggest that macroinvertebrate communities from different samples within one reach and between reaches within one stream were more comparable than those from different streams and different stream classes.  相似文献   

14.
Pebble counts have been used for a variety of monitoring projects and are an important component of stream evaluation efforts throughout the United States. The utility of pebble counts as a monitoring tool is, however, based on the monitoring objectives and the assumption that data are collected with sufficient precision to meet those objectives. Depending upon the objective, sources of variability that can limit the precision of pebble count data include substrate heterogeneity at a site, differences in substrate among sample locations within a stream reach, substrate variability among streams, differences in when the substrate sample is collected, differences in how and where technicians pick up substrate particles, and how consistently technicians measure the intermediate axis of a selected particle. This study found that each of these sources of variability is of sufficient magnitude to affect results of monitoring projects. Therefore, actions such as observer training, increasing the number of pebbles measured, evaluating several riffles within a reach, evaluating permanent sites, and narrowing the time window during which pebble counts are conducted should be considered in order to minimize variability. The failure to account for sources of variability associated with pebble counts within the study design may result in failing to meet monitoring objectives.  相似文献   

15.
Defining stream reference conditions is integral to providing benchmarks to ecological perturbation. We quantified channel geometry, hydrologic and environmental variables, and macroinvertebrates in 62 low‐gradient, SE United States (U.S.) Sand Hills (Level IV ecoregion) sand‐bed streams. To identify hydrogeomorphic reference condition (HGM), we clustered channel geometry deviation from expectations given watershed area (Aws), resulting in two HGM groups discriminated by area at the top of bank (Atob) residuals <0.6 m2 and >0.6 m2 predicted to be HGM reference/nonreference streams, respectively. Two independent partial least squares discriminate analyses used (1) hydrologic/environmental variables and (2) macroinvertebrate mean trait values (mT) on 10 reference/nonreference stream pairs of similar Aws for classification validation. Nonreference streams had flashier hydrographs and altered flow magnitudes, lower organic matter, coarser substrate, higher pH/specific conductivity compared with reference streams. Macroinvertebrate assemblages corresponded to HGM groupings, with mT indicative of multivoltinism, collector‐gatherer functional feeding groups, fast current‐preference taxa, and lower Ephemeroptera, Plecoptera, and Trichoptera richness and biotic integrity in nonreference streams. HGM classifications in Sand Hills, sand‐bed streams were determined from channel geometry. This easily implemented classification is indicative of contemporary hydrologic disturbance resulting in contrasting macroinvertebrate assemblages.  相似文献   

16.
The Road Erosion and Delivery Index (READI) is a new geographic information system–based model to assess erosion and delivery of water and sediment from unpaved road networks to streams. READI quantifies the effectiveness of existing road surfacing and drain placements in reducing road sediment delivery and guides upgrades to optimize future reductions. Roads are draped on a digital elevation model and parsed into hydrologically distinct segments. Segments are further divided by engineered drainage structures. For each segment, a kinematic wave approximation generates runoff hydrographs for specified storms, with discharge directly to streams at road–stream crossings and onto overland‐flow plumes at other discharge points. Plumes are attenuated by soil infiltration, which limits their length, with delivery occurring if plumes intersect streams. Sediment production and sediment delivery can be calculated as a relative dimensionless index. READI predicts only a small proportion of new drains and new surfacing results in the majority of sediment delivery reductions. The model illustrates how the spatial relationships between road and stream networks, controlled by topography and network geometries, influence patterns of road–stream connectivity. READI was applied in seven northern California basins. The model was also applied in a recent burn area to examine how reduced hillslope infiltration can result in increased hydrologic connectivity and sediment delivery.  相似文献   

17.
Abstract: Cool summertime stream temperature is an important component of high quality aquatic habitat in Oregon coastal streams. Within the Oregon Coast Range, small headwater streams make up a majority of the stream network; yet, little information is available on temperature patterns and the longitudinal variability for these streams. In this paper we describe preharvest spatial and temporal patterns in summer stream temperature for small streams of the Oregon Coast Range in forests managed for timber production. We also explore relationships between stream and riparian attributes and observed stream temperature conditions and patterns. Summer stream temperature, channel, and riparian data were collected on 36 headwater streams in 2002, 2003, and 2004. Mean stream temperatures were consistent among summers and generally warmed in a downstream direction. However, longitudinal trends in maximum temperatures were more variable. At the reach scale of 0.5‐1.7 km, maximum temperatures increased in 17 streams, decreased in seven streams and did not change in three reaches. At the subreach scale (0.1‐1.5 km), maximum temperatures increased in 28 subreaches, decreased in 14, and did not change in 12 subreaches. Models of increasing temperature in a downstream direction may oversimplify fine‐scale patterns in small streams. Stream and riparian attributes that correlated with observed temperature patterns included cover, channel substrate, channel gradient, instream wood jam volume, riparian stand density, and geology type. Longitudinal patterns of stream temperature are an important consideration for background characterization of water quality. Studies attempting to evaluate stream temperature response to timber harvest or other modifications should quantify variability in longitudinal patterns of stream temperature prior to logging.  相似文献   

18.
This study examines the effects of acidifying sulphur emissions on freshwater ecosystems in the traditional territory of Treaty 8 First Nations in British Columbia (BC). Due to the absence of detailed water chemistry data for most lakes in the region, revised empirical methods for estimating freshwater sensitivity to acidification are formulated using linear regression relationships between individual chemical measurements, and critical loads of acidity calculated using the Steady State Water Chemistry (SSWC) model. Lake alkalinity is the most effective chemical indicator of acidification sensitivity in northeast BC. Critical loads of acidity (CL(A)) estimated using alkalinity range from 0.0827 to 9.48 keq ha?1 yr?1. Sulphur deposition estimates range from 0.0113 to 0.303 keq ha?1 yr?1 and do not exceed the estimated CL(A) at any of the study lakes. The spatial situation of both the lakes and the emission sources is responsible for the lack of exceedances, and expanded/continued monitoring is recommended to account for geological variability and source proliferation. Measurements of lake conductivity and alkalinity provide a means of community monitoring for freshwater acidification sensitivity as part of cumulative effects management strategies.  相似文献   

19.
ABSTRACT: Incised channels are caused by an imbalance between sediment transport capacity and sediment supply that alters channel morphology through bed and bank erosion. Consistent sequential changes in incised channel morphology may be quantified and used to develop relationships describing quasi‐equilibrium conditions in these channels. We analyzed the hydraulic characteristics of streams in the Yazoo River Basin, Mississippi in various stages of incised channel evolution. The hydraulic characteristics of incising channels were observed to follow the sequence predicted by previous conceptual models of incised channel response. Multiple regression models of stable slopes in quasi‐equilibrium channels that have completed a full evolutionary sequence were developed. These models compare favorably with analytical solutions based on the extremal hypothesis of minimum stream power and empirical relationships from other regions. Appropriate application of these empirical relationships may be useful in preliminary design of stream rehabilitation strategies.  相似文献   

20.
Creating False Images: Stream Restoration in an Urban Setting   总被引:1,自引:0,他引:1  
Stream restoration has become a multibillion dollar business with mixed results as to its efficacy. This case study utilizes pre‐ and post‐monitoring data from restoration projects on an urban stream to assess how well stream conditions, publicly stated project goals, and project implementation align. Our research confirms previous studies showing little communication among academic researchers and restoration practitioners as well as provides further evidence that restoration efforts tend to focus on small‐scale, specific sites without considering broader land use patterns. This study advances our understanding of restoration by documenting that although improving ecological conditions is a stated goal for restoration projects, the implemented measures are not always focused on those issues that are the most ecologically salient. What these projects have accomplished is to protect the built environment and promote positive public perception. We argue that these disconnects among publicized goals for restoration, the implemented features, and actual stream conditions may create a false image of what an ecologically stable stream looks like and therefore perpetuate a false sense of optimism about the feasibility of restoring urban streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号