首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation of ignition of dust clouds by the use of electric spark discharges triggered by the explosive dust cloud itself has been conducted. This method of triggering capacitive sparks probably represents a realistic mechanism for initiating accidental dust explosions in industrial practice. Unlike the conventional method for determining the minimum ignition energy (MIE) in the laboratory, the delay between dust dispersion and spark discharge is not a degree of freedom. In stead, the transient dust cloud itself is used to initiate spark breakdown between electrodes set at a high voltage lower than breakdown in pure air. In the present study, different kinds of dusts were tested as ‘spark triggers’, and they exhibited quite different abilities to trigger breakdown. Large particles were found to initiate breakdown at lower voltages than smaller ones. In general, conductive particles were not found to initiate breakdown at lower voltages than dielectric ones when using the same dust concentration.Minimum ignition energies (MIE) of three dusts (Lycopodium clavatum, sulphur and maize starch) were determined using the authors' method of study. The MIEs were somewhat higher than those obtained using conventional methods, but relatively close to the values obtained through conventional methods.  相似文献   

2.
典型静电放电火花点燃危险性评价方法研究   总被引:5,自引:2,他引:5  
通过研究典型静电放电火花的实际点燃能力 ,对实际生产工艺工程中的静电放电火花的点燃危险性进行定量评价。静电放电火花的放电相当能量、放电火花空间分布范围和放电火花持续时间 ,决定了静电放电火花实际点燃可燃物的可能性大小 ,因此不同类型的静电放电火花点燃可燃物的差异性很大。根据数据序列理论分析 ,引入静电放电火花点火源序列和可燃物危险性序列之间存在的关联性 ,反映了静电放电火花点燃可燃物的危险程度 ,可用于对静电放电火花的实际点燃危险性进行量化评价。对聚烯烃粉体生产工艺过程中典型和频发性的静电放电火花的点燃危险性进行了定量评价。  相似文献   

3.
The knowledge of the ignition behavior of dust–air mixtures due to electrical sparks (MIE, Minimum Ignition Energy) and hot surfaces (MIT, Minimum Ignition Temperature) is important for risk assessments in chemical production plants. The ignition behavior determines the extent and hence the cost of preventive protection measures.This paper describes the use of the minimum ignition energy and minimum ignition temperature as very important safety indexes in practice.  相似文献   

4.
When metal alloys are used as mechanical equipment or tools in explosive atmospheres, the occurrence and incendivity of mechanically generated sparks as ignition sources should be taken into consideration. The formation of mechanically generated sparks was investigated for seven metals, including Q235 steel, 304 stainless steel, TC4 titanium alloy, 6061 aluminum alloy, H62 bronze alloy, AMAK3 zinc alloy, and AZ31B magnesium alloy. The relationship between the physical-chemical properties and generation and incendivity of friction sparks was evaluated. For 6061 aluminum alloy, H62 bronze alloy, AMAK3 zinc alloy, and AZ31B magnesium alloy, no bright friction sparks were observed in the maximum friction velocity of 12 m/s and maximum surface pressure of 3.75 N/mm2, because of low hardness, high thermal conductivity, low melting point, and the absence of carbon content. Ignition testing indicated that nano titanium dust layers with MIEL (minimum ignition energy of dust layer) of 1 mJ were not ignited by friction particles from the four metal alloys. However, bright particles were clearly observed for 304 stainless steel, Q235 steel, and TC4 titanium alloy. Friction sparks at the maximum power densities showed incendivity with micro titanium layers having an MIEL of 17.5–25 mJ but not with PMMA, corn starch, and wood dust having MIELs greater than 1 J. Two different particle burning behaviors with different fragmentation mechanisms during the friction process were determined, namely the micro explosion phenomenon for TC4 titanium alloy and particle burst for Q235 steel. Results indicate that the physical-chemical properties of friction metal rods are useful for preliminary evaluation of spark generation. Powder layers with known MIEL can be considered as indicator testing materials to evaluate spark incendivity.  相似文献   

5.
为准确评价高密度聚乙烯(HDPE)粉尘爆炸敏感性和开展有效的粉尘防爆工作,采用Godbert-Greenwald恒温炉标准实验装置研究了典型HDPE粉尘云最低着火温度的分布特性,着重探讨了粉尘云浓度对不同喷尘压力条件下HDPE粉尘云最低着火温度的影响规律。研究表明:测试条件下HDPE粉尘云最低着火温度的变化处于360~445 ℃范围,随粉尘云浓度的增加呈现先降低后升高的总体趋势,粉尘云浓度为1.111 kg/m3时出现拐点,且粉尘云最低着火温度随喷尘压力的增加而降低。  相似文献   

6.
Nearly 130 years ago Holtzwart and von Meyer (1891) demonstrated by experiments that explosible dust clouds could be ignited by inductive electric sparks. Then more than half a century passed before the publication of the important quantitative research of Boyle and Llewellyn (1950) and Line et al. (1959). They worked with capacitive electric sparks and found that the minimum capacitor energies ½CU2 required for ignition of various dust clouds in air decreased substantially when a large series resistance, in the range 104–107 Ω, was introduced in the discharge circuit. When considering that the net energies of the sparks themselves were only of the order of 10% of the ½CU2 discharged, the minimum net spark energies required for ignition with a large series resistance were only a few per cent of the net energies required without such a resistance.Line et al. observed that the essential effect of increasing the series resistance, and hence increasing the discharge time of the sparks, was to reduce the disturbance of the dust cloud by the blast wave from the spark. This phenomenon was explored further by Eckhoff (1970, 2017), and subsequently by some simple experiments by Eckhoff and Enstad (1976). Franke (1974, 1977) and Laar (1980) confirmed the additional finding of Line et al. (1959) that the minimum ½CU2 for ignition is also substantially reduced by including a series inductance in the discharge circuit, rather than a series resistance. The basic reason is the same as with a large series resistance, viz. increased spark discharge time and hence decreased disturbance of the dust cloud by blast wave from the spark. For this reason inclusion of an appreciable series inductance in the spark discharge circuit is an essential element in current standard MIE test methods.In experiments with spark ignition of transient dust clouds produced by a blast of air in a closed vessel, it is necessary to synchronize the occurrence of the spark with the formation of the dust cloud. The precision required from this type of synchronization is typically of the order of 10 ms, which can be obtained even by mechanical arrangements, such as rapid change of spark gap length, or of the distance between two capacitor plates. The present paper reviews some methods that have been/are being used for achieving adequate synchronization of dust cloud appearance and spark discharge. Some current standard experimental methods for determining MIEs of dust clouds experimentally have also been reviewed. The same applies to some theories of electric-spark ignition of dust clouds.At the end of paper some suggestions for possible future modifications of current standard methods for measuring MIEs of explosible dust clouds are presented. With regard to justifying significant modifications of existing standard methods, the “bottom line” is, as quite often in many connections, that any modifications should be based on realistic cost/benefit evaluations.  相似文献   

7.
In general terms, the purpose of any safety standard is to define borderlines between safe and unsafe conditions, with reasonable safety margins. The electrical spark ignition sensitivity of dust clouds (MIE) varies over at least eight orders of magnitude. Therefore, in the case of intrinsically safe electrical apparatus to be used in the presence of explosive dust clouds, substantial differentiation of the minimum requirements to prevent ignition by electrical sparks is needed. The present paper proposes a method by which adequate differentiation of required maximum permissible currents and/or voltages in intrinsically safe electrical circuits to be used in explosive dust clouds can be achieved. In essence, the concept is to use conservative first-order ignition curves, calculated or estimated from the experimental MIE value of clouds in air of the actual dust. Charts to be used for design purposes are given in the paper. Internationally standardised test methods allow MIE for clouds of any dust to be determined, at least down to the range of a few mJ. There is, however, a need for a supplementary method covering the range of lower energies, down to 0.01 mJ.  相似文献   

8.
Frictional processes caused by malfunctions may lead to hot surfaces and mechanical sparks. Whenever mechanical sparks occur due to friction, there are also hot surfaces. The time until the ignition source becomes effective is largely dependent on the thermal conductivity of the friction partners. Based on this, it was examined whether classification into the explosion groups and temperature classes of IEC 60079-0 is possible and useful. This research therefore focuses on the development of hot surfaces and their effectiveness. To assess the formation of hot surfaces, tests for temperature development according to the applied power density and the different materials were performed in a friction apparatus. The experimental setup is realised via a friction pin which is pressed onto a rotating friction disc. The variation of the power density was carried out by changing the velocity and load per area. The temperature distribution was detected by thermocouples, two pyrometers and an infrared camera. For the investigation of the incendivity of hot surfaces, the ignition curves were determined by characteristic reference gases and vapours of the IEC explosion groups and temperature classes. Tests have been carried out with hydrogen, ethylene, diethyl ether, propane and pentane. The experiments have shown that a larger thermal conductivity of the steel used can lead to slow down heating of the pin material. With an increasing wear rate the maximum temperature decreases. It was possible to determine the maximum temperatures at specific power inputs. The ignition tests show that ignitions are possible even at low velocities. The effective ignition source was thereby always the hot surface. The result was a graduation of the explosion limits analogous to the order of Maximum experimental safe gap (MESG) values. In contrast, no significant relationship between the ignition limits and the temperature class of the respective substances was revealed.  相似文献   

9.
针对井喷爆炸事故造成的巨大经济和环境问题,从消除井场点火源出发,讨论了井喷发生后防止爆炸的问题。基于井喷爆炸事故统计信息,利用事故树法,分析了井场可能存在的点火源,在此基础上提出井场防止井喷爆炸的措施。分析发现井喷爆炸主要分布在井喷后小于5分钟和井喷后大于1小时时间段,点火源主要为井场存在的点火源和后续抢救工作时带入的点火源;井场点火源主要分为明火、电火花、撞击火花和静电火花,通过井喷爆炸事故统计分析,电火花和撞击火花同样应该引起重视。  相似文献   

10.
为防止木材加工中木质粉尘燃爆事故的发生,以纤维板生产中常见的原材料速生杨木粉尘作为研究对象,在分析粉尘粒径分布、元素分析、工业分析及形貌特征的基础上,采用1.2 L哈特曼管对3种不同粒径(0~50,>50~96,>96~180 μm)速生杨木粉尘进行最小点火能实验,探究点火延迟时间、喷粉压力、质量浓度和粒径分布对速生杨木粉尘最小点火能的影响及变化规律。研究结果表明:在质量浓度为500 g/m3时,分别增加点火延迟时间和喷粉压力,最小点火能都先减小后增大;最佳点火延迟时间和最佳喷粉压力分别为120 ms和120 kPa;粒径对最佳点火延迟时间和最佳喷粉压力无显著影响。在点火延迟和喷粉压力分别为120 ms和120 kPa条件下,最小点火能随质量浓度的增加先减小后增大。粉尘粒径与最小点火能呈正相关性,3种样品的最小点火能分别为1~3,1~3和7~13 mJ,对应的敏感质量浓度分别为500 ,750和1 250 g/m3,属于特别着火敏感性粉尘。  相似文献   

11.
采用MIE-D1.2型最小点火能测试装置及20 L球型粉尘爆炸测试装置,对苯乙烯丙烯酸共聚物/碳黑混合体系粉尘的爆炸特性进行研究。结果表明,过74μm、58μm、47μm孔径筛的粉尘对静电火花敏感,其最小点火能表征值分别为610 mJ、361 mJ、201 mJ。随粉尘质量浓度增加,最小点火能呈现先减小后增加的规律。随粉尘粒径减小,最小点火能与粉尘质量浓度变化关系曲线向低粉尘质量浓度和低点火能量方向偏移,且对应的最敏感爆炸质量浓度从500 g/m~3降至200 g/m~3。随粉尘质量浓度增加,过147μm、74μm、47μm孔径筛的苯乙烯丙烯酸共聚物/碳黑混合体系粉尘爆炸压力及爆炸压力上升速率呈现先增加后减小趋势。在相同粉尘质量浓度下,中位径小于74μm的苯乙烯丙烯酸共聚物/碳黑混合体系粉尘,粉尘的爆炸压力增幅明显减小。苯乙烯丙烯酸共聚物/碳黑混合体系粉尘爆炸下限质量浓度为25 g/m~3,最大爆炸指数为14.636 MPa·m/s,爆炸危险等级划分为St1。  相似文献   

12.
The Mediterranean area is responsible for about 98% of the olive oil worldwide production, with 900 million olive trees occupying 10 million hectares. However, the processing of 100 kg of olives leads to the production of 40 kg of wastes, mainly constituted by olive pomace, which is potentially recoverable as energetic or material source. In general, in the past 20 years, the exploitation of olive pomace has increased, but along with it, the need for further information about its chemical-physical characterization and the related hazard in industry. Thus, a risk analysis assessment was conducted. When pelletized or in chunks, olive pomace does not pose any greater hazard than a pile of woody material, but when pulverized, it might become dangerous. Two parallel series of experiments were carried out at Dalhousie University (Lab 1) and at Polytechnic of Turin (Lab 2) using the same olive pomace sample, according to slightly different experimental procedures. Olive pomace dust explosibility and flammability parameters were measured: minimum ignition energy (MIE), minimum ignition temperature (MIT), maximum pressure rise rate ((dP/dt)max and KSt), maximum pressure (Pmax), and minimum explosible concentration (MEC). Moreover, the chemical and physical characterization of olive pomace was carried out: moisture content, particle size analysis, Scanning Electronic Microscope (SEM) investigation, thermo-gravimetric analysis (TGA), solid-state Nuclear Magnetic Resonance (NMR), mass spectrometry, calorific value, and bulk density estimation. Different thermal behaviors were observed according to the sieving/grinding pre-treatment. As concern flammability tests, samples seemed not to be sensitive to electric arc ignition (a value of MIE could not be measured), while coarser samples demonstrated higher ignition sensitivity to hot environment sources (MIT furnace) than finer ones. On the other hand, explosion violence parameters were enhanced by decreasing the particle size, while peak pressures were significantly influenced by the heat of combustion and the moisture content. Finally, a new test was developed to quantify the propensity of the raw material to produce fines by abrasion. It is defined “Abrasion by Rolling Test” (ART). The properties of the fines produced were measured as well.  相似文献   

13.
This paper presents data on the limiting (minimum) concentrations of hydrogen in oxygen, in the presence of added helium, at elevated temperature and pressure related to the practical operational case. A 5 L explosion vessel, an ignition sub-system and a transient pressure measurement sub-system were used. Through a series of experiments carried out using this system, the limiting concentrations of hydrogen in oxygen and helium at different initial pressures and temperatures for the practical operational case were studied, and the influence of ignition energy and initial temperature on the limiting concentration of hydrogen in oxygen and helium was analyzed and discussed. The variation of ignition energy within the studied range is found to have a significant effect on the limiting concentration of hydrogen in oxygen and helium at lower initial temperature. However, when the ignition energy is higher than 32 mJ, the limiting hydrogen concentration remains almost changeless as the initial temperature increases from 21 °C to 90 °C. The limiting explosible concentration of hydrogen–oxygen–helium mixture decreases as the ignition energy increases when the initial temperature is lower. When the initial temperature is higher, the ignition energy has little effect on the limiting hydrogen concentration of hydrogen–oxygen–helium mixtures. When the initial temperature reaches 90 °C, the limiting hydrogen concentration remains almost changeless with an increase in ignition energy. The limiting explosible concentration of hydrogen in the mixtures, at the initial temperature of 21 °C and the ignition energy of 0.5 mJ, is 8.5% and that of oxygen is 11.25%.  相似文献   

14.
火灾中摩擦火花和热表面引燃能力的研究   总被引:3,自引:0,他引:3  
用摄影和热点偶等方法在一个有磨削轮的容器中研究了机械摩擦火花和热表面的引燃能力。在本研究中发现,对于某些材料,如碳钢等,由摩擦产生的磨屑可以被周围空气中的氧氧化而放出大量的热,从而使屑粒温度升高,达到白热程度。通常我们把一簇这样的颗粒中做“摩擦火花”。  相似文献   

15.
锚索拉断火花引爆瓦斯的实验研究   总被引:3,自引:0,他引:3  
设计了锚索拉断火花引爆瓦斯实验装置 ,在瓦斯浓度为爆炸范围的环境中 ,对锚索拉断时产生火花规律及引起瓦斯爆炸的可能性进行了一系列实验研究。结果表明 :锚索拉断产生火花的概率为 5 0 % ,锚索钢绞线破断产生的火花不能引起瓦斯爆炸。采用红外热成象仪对锚索拉断火花温度的测试表明 ,锚索拉断产生的火花最高温度远小于瓦斯爆炸所需的最低点燃温度 6 5 0℃。  相似文献   

16.
为了研究彩虹粉引燃危险性,应用固体燃烧速率试验仪初步甄别了彩虹粉传播燃烧能力,发现堆垛状彩虹粉固体火焰传播危险性较低;采用粉尘爆炸筛选装置,判定彩虹粉具有爆炸性;应用最小点火能测定装置测定彩虹粉粉尘云的最小点火能在24~60 mJ之间,最优爆炸浓度为1 167 g/m3;应用快速筛选量热仪测试,彩虹粉在227℃开始分解;固体自燃点测试仪显示彩虹粉在250℃附近会发生自燃。向彩虹粉内添加不同比例相近粒径分布的食用盐粉体进行抑爆研究,结果证明食用盐对彩虹粉具有明显的抑爆效果。  相似文献   

17.
为了预防甘薯粉尘爆炸事故的发生,本文研究点火延迟时间对甘薯粉尘爆炸的影响规律,利用20 L球形爆炸仪研究甘薯粉尘的爆炸特性及其在200 g/m3,500 g/m3和800 g/m3质量浓度下通过改变点火延迟时间的爆炸规律。结果表明:粉尘的最佳点火延迟时间与浓度有关,在该点火时间下所测得的最大爆炸压力均高于在固定点火延迟时间下的测量值,60 ms的固定点火延迟时间不适用于甘薯粉尘爆炸测试。  相似文献   

18.
The possibility of ignition and flame propagation in accumulated difluoromethane (CH2F2, R32) was examined experimentally, simulating a situation in which a service operative uses a kerosene lighter for smoking. To simulate the situation where a kerosene cigarette lighter is used in accumulated R32, electrodes fixed in the windbreak of the lighter were remotely supplied with electricity to generate sparks of various durations but of similar energies to those of actual sparks generated by rubbing a flint to ignite the fuel in the lighter. We identified several cases of ignition and formation of an open flame in the windbreak of the lighter, and the flame propagated to the accumulated R32 when it was supplied with sufficient energy from the spark. Gas chromatographic analyses confirmed that the mixture in the windbreak of the kerosene lighter consisted mainly of vaporized fuel and air, with no R32. Therefore, even if the lighter is located in accumulated R32, an open flame can be generated in the windbreak of the kerosene cigarette lighter through ignition by the spark energy generated by friction between the flint and the flint wheel. Our results confirmed that there is a real possibility of ignition and flame propagation when a kerosene cigarette lighter is used in accumulated R32 under the leak rate conditions of the present experiment.  相似文献   

19.
Mixing an inert solid or a less flammable compound with a combustible dust can be regarded as a direct application of the inherent safety principle of moderation. An experimental investigation was carried out to determine the evolution of the ignition sensitivity and the explosion severity of such various mixtures as a function of their compositions. It demonstrates that the introduction of small amounts of highly combustible powders (such as sulphur or nicotinic acid) to a less flammable dust (such as microcrystalline cellulose or carbon black) can strongly influence the ignition sensitivity as well as the explosion severity.It has notably been shown that the ignition sensitivity of solid/solid mixtures significantly rises up when only 10–5%wt. of highly flammable dust is introduced. Simple models can often be applied to estimate the minimum ignition energy, minimum ignition temperature and minimum explosive concentration of such mixtures. Concerning the dust explosivity, three cases have been studied: mixtures of combustibles dusts without reaction, dusts with reactions between the powders, combustible dusts with inert solid. If the evolution of the maximum explosion pressure can be estimated by using thermodynamic calculations, the maximum rate of pressure rise is more difficult to predict with simple models, and both combustion kinetics and hydrodynamics of the dust clouds should be taken into account. These results were also extended to flammable dust/solid inertant mixture. They clearly show that the concentration of solid inertant at which the ignition is not observed anymore could reach 95%wt. As a consequence, the common recommendation of solid inertant introduction up to 50–80%wt. to prevent dust explosion/ignition should be reconsidered.  相似文献   

20.
In the last decade, the use of renewable resources has increased significantly in order to reduce the energetic dependence on fossil fuels, as they have an important contribution to the global warning and greenhouse gasses effect. Because of that, research on biofuels has been increased in the last years as its characteristics of use match those of the conventional fuel's: solid biomass can be used instead of coals, and biodiesel could replace diesel. Research on solid biomass ignition properties has been considerably developed because of the amount of industrial accidents related to the treatment and use of solid biomass (self-ignition, dust explosions, etc.). On the other hand, thermogravimetric analysis (TGA) is becoming and important characterization technique as it can be used to determine a wide spectrum of properties, such as kinetics, composition, proximate analysis, etc. This research aims to combine thermal analysis and ignition properties, by using the TGA to obtain the elemental composition of lignocellulosic biomass and compare those results to Minimum Ignition Energy (MIE) values test output, so a relation between composition and MIE can be found.To achieve this aim, biomass samples from different origins have been used: oil palm wastes (empty fruit bunches, mesocarp fiber and palm kernel shell), agricultural wastes (straw chops) and forestry wastes (wood chips and wood powder). Also, raw materials and torrefied biomass were compared. The hemicellulose/cellulose ratio was calculated and compared to different flammability properties, finding out that the greater the ratio and the lower the onset temperature (temperature at which the pyrolysis reaction accelerates), the lower was the minimum ignition energy. From this basis it was possible to define “tendency areas” that grouped the samples whose MIE values were similar. Three tendency areas were found: high minimum ignition energy, medium minimum ignition energy, and low ignition energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号