首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Conceptual design of pressure relief systems is an important stage in the design of a safe process plant. The conceptual design stage consists of the following steps: deciding on the location of pressure relief devices, selecting the general type of pressure relief device for each identified location, i.e. safety valve and/or bursting disc (rupture disc), or other relief device, and selecting the special features for the chosen device type. Some regulations, codes and standards, and a decision tree for the selection of a relief device have been described in the literature. This paper presents four decision trees that have been developed for the different steps in the conceptual design stage. Only positive pressure in pressure vessels is considered here.  相似文献   

2.
Process safety plays a key role in modern industries. This is more significant specifically in off-shore oil and gas platforms where releasing hydrocarbons could cause irreversible damages to both environment and personnel. An important instrument device which can provide safety for process equipment in oil and gas fields is safety relief valve. Correct sizing procedure of such devices depends strongly on physical properties of fluid and relieving condition. The present study revolved around applying thermodynamic concepts and modeling to throw some light on the behavior of trapped fluid exposed to fire in order to evaluate precise temperature and fluid properties at relieving condition. Peng–Robinson equation of state together with a three phase flash has been utilized to handle the calculation. Effect of different design parameters has been evaluated for three distinct categories of fluids namely natural gas, gas-condensate mixture, and gas-oil mixtures. These parameters encompass of operating temperature, operating pressure, Difference of Operating and Design Pressure, gas and oil specific gravities, gas-oil ratio, and water cut. The study depicted that American Petroleum Institute practice number 521 which suggests an ideal gas assumption fails to provide reliable predictions as it significantly overestimate the relieving temperature. Moreover, black oil correlations were also used for the relief temperature estimation of gas-oil-water mixtures. Comparison with HYSYS results as a prominent engineering software proved that black oil models are reliable tools to predict relief temperature.  相似文献   

3.
Multi-purpose plants are frequently protected with mechanical safety devices like safety valves or bursting disks. Due to many changes of recipes it must be checked regularly whether the safety devices are sufficiently sized. But the sizing procedure of individual safety devices can be very tedious. Therefore energy specific relief areas (effective relief area per kW of energy input) have been determined for approx. 60 typical solvents. They are indicated for reactors with safety devices which have a set pressure of 7 bar (abs) or 11 bar (abs). These values are independent of the size of the reactors for vaporizing systems and arbitrary safety valves. The energy specific relief areas allow the minimum required relief area quickly to recalculate if the energy input of the reactor is known. In addition, the application of solvents in multi-purpose plants can be evaluated from a safety point of few.The energy specific relief areas are calculated based on a relief of two-phase gas/liquid mixtures. The data have been determined with the non-equilibrium HNE-DS method, which takes into account the boiling delay of the liquid in the safety device and the slip between gases and liquids. The method is recommended in the international standard ISO 4126 part 10. In addition, practical advice and possible improvements are outlined. The method leads to significantly smaller relief areas than according to the API 520. For multi-purpose plants with available safety devices this method allows for a considerable expansion of the application range of reactors.  相似文献   

4.
Incidents involving uncontrolled chemical reactions continue to result in fatality, injury and economic loss. These incidents are often the result of inadequate pressure relief system designs due to a limited knowledge of the chemical reactivity hazard. A safe process design requires knowledge of the chemical reactivity of desired as well as undesired chemical reactions due to upset conditions. Simplified, cost effective methods to relief system sizing are presented by The Design Institute of Emergency Relief Systems (DIERS). They require multiple experiments, and sizing is only valid for the system composition and thermal inertia represented by the small scale experiments. Results are often conservative, especially for gassy systems. Detailed, dynamic computer simulation is highly accurate and can be used for iterative design and multiple scenario evaluation.In this study, an accelerating rate calorimeter (ARC®) and a low thermal inertia calorimeter (automatic pressure tracking adiabatic calorimeter – APTAC™) were used to collect chemical reactivity data for the dicumyl peroxide and toluene system. Results of the pressure relief system sizing using the dynamic simulation method are presented and compared with DIERS simplified methods.  相似文献   

5.
6.
目前关于输电铁塔基础结构安全评价的文献较少。针对输电线路铁塔基础安全评价问题,首先,确定了输电线路铁塔基础安全评价指标体系;然后,采用层次分析法和模糊综合判断法构建了输电线路铁塔基础安全评价模型,详细分析了材料表观、环境及材料等多重指标,建立了一套比较完整的输电线路铁塔基础安全评价方法。采用该方法,先用层次分析法计算指标权重,再用模糊综合判断法进行安全评估。结果表明,输入铁塔基础结构的表观因素、环境因素及材质因素等,可对其各安全影响因素进行分级评价,确定输电线路铁塔基础的安全等级。  相似文献   

7.
The Leung method proposed by the Design Institute of Emergency Relief Systems (DIERS) is widely used in the design of relief systems involving two-phase flow. However, this method is not always suitable for all the situations. The calculating results may be unacceptably large, especially under high overpressure. To aid selection of appropriate vent sizing methods, a typical vapor system experiment (esterification of methanol-acetic and anhydride) was conducted by the vent sizing unit (VSU) of accelerating rate calorimeter (ARC). Seven different stationary methods were used to calculate the venting size under overpressure of 10%, 20%, 50%, 100% and 200%. Through the systematic comparison of different methods, a conservatism order of stationary methods was summarized as well as the selecting principles for these methods were discussed. Process simulation was also applied to investigate the relationship between reactor temperature/pressure and its relief size, which could be used in the prediction of vent size in vapor system conveniently without complex calculating procedure.  相似文献   

8.
The accidental spill of volatile solvents or the release of flammable gases within equipment and buildings is likely to form fuel concentration gradients unless efficient mixing is provided. As a consequence, even small amounts of fuel can form flammable clouds, and partial volume deflagrations may occur. Nevertheless, few indications are given in international guidelines for vent sizing and only over-conservative well-mixed stoichiometric assumptions are used. In this paper, we propose a predictive methodology for the evaluation of the dynamics of partial volume deflagration, aiming at defining useful correlations for the design of vent devices, starting from the fundamental equation for the rate of pressure rise and flame propagation in closed vessel. We define a ‘stratified gas deflagration index’ KG(m), where m is the filling ratio, and use it with the most common design equations for vent sizing. The approach has been validated by means of a CFD code for the simulation of stratified laminar methane–air explosion by varying both filling ratio and volume.  相似文献   

9.
The design of an emergency relief system (that is, a pressure safety valve or a rupture disk) for vessels, which may involve runaway reactions, requires knowledge of the chemical kinetics of the reactions involved. When safety-related problems are considered this is usually achieved using calorimetric tests, coupled with some suitable approximations on the kinetics of the reacting system. In this work we have analysed the extent to which the precise knowledge of the chemical kinetics influences the size of the relief system device for different reaction conditions. Decision criteria are proposed to identify situations where approximations in the kinetic mechanism lead to underestimation in the venting area.  相似文献   

10.
为研究加氢站用高压储氢容器在火灾下的安全性能,采用计算流体力学(CFD)方法对45 MPa高压储氢瓶式容器火烧试验过程进行模拟研究,结合气瓶火烧试验,分析高压储氢容器火灾下的热响应过程,研究不同因素对储氢容器压力泄放装置动作时间的影响。结果表明:613 s以内试验压力与模拟数据的最大相对误差为3.9%,模型误差在可接受范围;不同充装介质对安全泄放装置动作时间影响不大;不同充装压力对容器内介质压升速率影响较大,充装水平较高时压力泄放装置更快动作,较低的充装压力下容器内介质温升较快;不同环境温度对介质温升影响较小。  相似文献   

11.
Exothermic runaway reactions that generate non-condensible gas as the temperature increases, as is typical of decompositions for example, can reach extremely high rates of pressure rise necessitating emergency relief of the process vessel containing the reactant. Sizing of a relief device using presently recommended methods (e.g. DIERS) frequently leads to extremely large and expensive vents. This paper presents a methodology that leads to a simple but much improved method for vent sizing, fully allowing for two-phase release of the gas—liquid mixture. A number of examples are presented which lead to interesting conclusions about the influence of plant variables.  相似文献   

12.
Valves and orifices are the most widely devices of flow control used in oil and gas industry. In particular, they are installed in relief piping system in order to control the discharge flow during potential plant overpressuring scenarios, thus ensuring plant safety. It is a common practice to flow liquid and gas mixtures through such restriction devices.Rigorous models are available to precisely size pressure relief devices operating in single phase flow; however for two-phase flow, no models are considered sufficiently reliable for predicting the relevant flow conditions.In the present paper, two-phase flow of hydrocarbons fluids through an orifice under critical conditions has been numerically investigated.The existing literature has been analyzed and data on two-phase flow of highly volatile mixtures of hydrocarbons through openings have been collected. A comparison has been carried out with numerical simulations carried out by the multiphase flow simulation tool OLGA by SPT.The Henry–Fauske model has been used as orifice choke model and the orifice discharge flow coefficient, required as input by OLGA, has been calculated by Chisholm's model.Comparison between OLGA's results and experimental data shows that Henry–Fauske model markedly underestimates the mass flow rate through the orifice, if Chisholm's model is used to calculate discharge coefficient. It was found that the error of the model could be minimized using different values of orifice discharge coefficient (Cd).A new discharge flow coefficient model, suitable for choked two-phase flow across orifices, is proposed in this study and it has been determined to match the above mentioned experimental measurements.  相似文献   

13.
Safety analysis of nuclear and chemical/petrochemical facilities is the systematic process that is carried out throughout the design process to ensure that all the relevant safety requirements are met by the proposed design of the plant. Safety analysis should incorporate both deterministic and probabilistic approaches. These approaches have been shown to complement each other and both should be used in the decision making process on the safety and ability of the plant to be licensed.This paper deals with the deterministic safety approach in order to distill the experience of nuclear and chemical/petrochemical protection engineering through a safety analysis approach aiming at analysis of chemically reacting processes including thermodynamic and chemical reactions modelling that are present in both industries. For instance, there are some similarities between the Bhopal disaster and Three Mile Island-Fukushima-like H2 deflagration-detonation scenarios in nuclear containments. The phenomenology is similar in that the temperature and the pressure caused by exothermic reactions had increased dramatically leading to a loss of containment.The study aims to translate and adapt to general chemically reacting modelling, major features of the equivalent analysis inside the nuclear containments. Compartment containment for H2 deflagrations has been translated and adapted, with fixed tools, to the methyl-isocyanate storage tank 610 of the Bhopal plant.  相似文献   

14.
Recent debates regarding the criteria for evaluating occupational health and safety interventions have focused on the need for incorporating qualitative elements and process evaluation, in addition to attempting to live up to the Cochrane criteria. Reflecting fundamental epistemological conflicts and shortcomings of the Cochrane criteria in evaluating intervention studies, the debate challenges the traditional (quasi-) experimental design and methodology, which are often used within safety research. This article discusses a revised ‘realistic evaluation’ approach as a way to meet these challenges.Evidence from the literature as well as examples from an integrated (leader-based/worker-based) safety intervention study (2008-2010) in a large wood manufacturing company are presented, with focus on the pros and cons of using randomised-controlled-trials and a revised realistic evaluation model.A revised realistic evaluation model is provided which includes factors such as role behaviour, leader and worker motivation, underreporting of accidents/injuries, production pressure, unplanned organisational change and accounting for multilayer effects. These can be attained through qualitative and/or quantitative methods, allowing for the use of realistic evaluation in both large and small scale studies, as well as in systematic reviews. The revised realistic evaluation model offers a promising new way of designing and evaluating occupational safety research. This model can help safety science move forward in setting qualitative and/or quantitative criteria regarding context, mechanisms and processes for single studies and for reviews. Focus is not limited to whether the expected results appear or not, but include suggestions for what works for whom, under what circumstances, in what respects and how.  相似文献   

15.
建筑物内人员安全疏散"性能化"评价方法的研究   总被引:1,自引:0,他引:1  
安全疏散设计是建筑防火设计的重要方面,而建筑安全疏散评价对于确保火灾中人员的生命安全具有重要意义.本文基于"性能化"防火设计的思想,对影响建筑安全疏散的因素进行了分析,并对安全疏散的必要性能和评价程序进行较为全面的研究,其中包括烟气的评价、人员疏散能力的评价、疏散路线合理性的评价、疏散对策的评价等,最后以具体的案例进行了分析,目的在于为我国"性能化"防火设计提供理论及方法上的指导与帮助.  相似文献   

16.
Nowadays many chemical industries are SMEs where multi-purpose batch or semi-batch reactors are commonly used. Vent sizing for realistic runaway scenario is not an easy task for such enterprises since they have usually few resources and use multi-purpose reactors with fast process turnovers. As a consequence these batch and semi-batch reactors are usually equipped with emergency relief systems sized once forever when the reactor is designed. This can lead to a large underestimation of the vent area in case of runaway reactions occurring when processes different from the ones considered for originally sizing the vent are carried out.The approach proposed in this work aims to identify the maximum reactor load leading to safe conditions even in case of runaway phenomena to be handled with the emergency relief system already installed (or even with a smaller vent area). This approach allows avoiding the change of the emergency relief system with a larger vent area (as required every time a new more hazardous process has to be carried out on existing reactors) at the price of lower plant productivity.  相似文献   

17.
阐述了直线电机轨道交通的技术特点,并就其安全评价体系做了介绍,应用ADAMS/Rail软件分别建立了轮对、构架、悬挂系统、止挡、自导向径向转向架、直线电机以及车体的模型,并考虑轮轨关系组合为直线电机轨道交通的车辆-轨道耦合动力学整体模型,进行了大量的计算仿真。笔者主要以脱轨系数为例进行了动力响应分析,给出考虑了径向转向架和直线电机后的安全评判指标,比较了与径向转向架和未安装直线电机的区别,验证了模型的正确性和有效性。为后续研究直线电机轨道交通车辆-轨道耦合动力学模型提供了理论基础,从而可以进一步从安全性角度研究线路设计参数。为我国今后直线电机轨道交通建设就线路参数对车辆运行安全性的影响研究方面起到理论指导作用。  相似文献   

18.
Since the 1950's, API Standards have provided guidance on determining relief loads for equipment exposed to pool fires. The API method is empirical based on tests performed in the 1940's. There is increasingly widespread interest in analytical methods based on heat transfer principles to model fire heat input. The API committee agreed to include an analytical method in the 6th edition of API Standard 521 to establish relief loads for pressure relief devices and to design depressuring systems for the fire scenario. The analytical method provides more flexibility than the empirical method but has limitations (e.g., too many permutations are possible leading to potential under-sizing of the pressure relief device).This paper discusses the basis for the empirical method in API Standard 521 and provides comparisons of the empirical and analytical method with two more recent large-scale pool fire tests. This pool fire test data indicates that the empirical method will provide a conservative estimate of pool fire heat input for most applications and is still the method of choice when designing pressure relief systems. However, these recent tests indicate the empirical method needs to be modified when a vessel or equipment is partially confined by adjacent embankments or walls equal or greater than the vessel height. In such cases, the wetted area exponent should be 1.0 instead of 0.82.The analytical method is useful in determining time-versus-temperature profiles for heating unwetted vessels of varying wall thicknesses and materials of construction. These profiles, which depend upon the type of fire (e.g., unconfined pool fire, jet fire, etc.), can be combined with tensile strength and stress-rupture data to specify a depressuring system's pressure-versus-time profile. This will minimize failure and/or mitigate the effects of failure due to overheating from fire exposure.  相似文献   

19.
呼吸器是一种自给式的呼吸保护器具,被广泛运用到消防、化工、船舶、石油、矿山等行业,其主要分为空气呼吸器、氧气呼吸器、氮氧混合呼吸器和潜水呼吸器。一直以来,作为特种设备的呼吸器用气瓶阀并没有相关的国家标准,而GB 15382-2011《气瓶阀通用技术条件》并不包括呼吸器用气瓶阀,因此有必要制定相关的国家标准来对其进行规范。目前,《空气呼吸器用气瓶阀技术条件》国家标准已经出台征求意见稿,本文针对意见稿的相关内容,对阀门进出气口连接型式、过滤装置、限流要求、泄压装置及爆破压力等方面提出相关意见和建议。  相似文献   

20.
Relieving rates in ethanol/water and ethylene glycol/water mixtures were investigated using dynamic models of an emergency relief scenario due to an external heat source. A commonly used shortcut method was compared to two rigorous calculation methods—one using ideal conditions and another using non-ideal conditions. In several cases, the shortcut method provides a reasonable estimate compared to the rate predicted by the more rigorous methods. However, in many cases the shortcut method over or under-predicts the required relieving rate—sometimes by a significant amount. Several discrepancies are also noted between non-ideal and ideal conditions. This study demonstrates that each multi-component mixture must be carefully considered before sizing emergency relief systems and devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号