首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Individuals of the siphonophore Rosacea cymbiformis (Chiaje, 1822) were collected in surface waters of the Gulf of California during July/August 1978, off Southern California during May 1980, and in the Sargasso Sea during July 1979. Specimens were preserved within 30 min after capture, and the ingested prey in the gastrozooids were examined microscopically and identified to the closest practical taxon. Most gastrozooids (50 to 84%) contained recognizable prey organisms. The prey were primarily copepods, but crab zoeae, pelagic molluscs, juvenile shrimps and mysids were also commonly eaten. There were significant differences between the sizes and types of prey organisms that had been ingested and that were available in the environment of the siphonophores. Electivity indices for the prey demonstrated that the large and/or active prey were selected. The feeding selectivity exhibited by the siphonophores probably depends upon speed and diameter of the prey, which affect the frequency of contact with the siphonopore tentacles. Behavioral observations suggest that R. cymbiformis feeds primarily in the light. Digestion experiments indicate that most prey remain in the gastrozooids for 8 h or more before egestion. The caloric values of common prey types were derived from their length to dry weight regressions. The caloric consumption of R. cymbiformis during the 4 to 6 h feeding period following sunrise was estimated to be from 0.109 to 0.365 cal per gastrozooid; the daily caloric consumption was projected to be at least 2.4 to 8.2 times that required to balance metabolism.  相似文献   

2.
We have examined the variability and potential adaptive significance of the wavelengths of light produced by gelatinous zooplankton. Bioluminescence spectra were measured from 100 species of planktonic cnidarians and ctenophores collected between 1 and 3500 m depth. Species averages of maximal wavelengths for all groups ranged from 440 to 506 nm. Ctenophores (41 species) had characteristically longer wavelengths than medusae (34 species), and the wavelengths from siphonophores (25 species) had a bimodal distribution across species. Four species each produced two different wavelengths of light, and in the siphonophore Abylopsistetragona these differences were associated with specific body regions. Light from deep-dwelling species had significantly shorter wavelengths than light from shallow species in both ctenophores (p = 0.010) and medusae (p = 0.009). Although light production in these organisms was limited to the blue-green wavelengths, it appears that within this range, colors are well-adapted to the particular environment which the species inhabit. Received: 27 April 1998 / Accepted: 27 October 1998  相似文献   

3.
Diurnal changes in abundance caused by vertical migrations have been examined in populations of copepods, ostracods, euphausiids, amphipods, decapods, chaetognaths, siphonophores and fish. The animals were taken in a series of hauls made over a 24 h period with an opening-closing midwater trawl system (RMT 1+8), consisting of a net of 1 m2 mouth area combined in the same frame as one of 8 m2 mouth area. The samples were taken at 250 m depth in a position 30°N; 23°W on 7/8 April 1972. The specific composition of the community and the numbers of individuals changed continuously with time. The numbers of fish, decapods and chaetognaths increased at night, but those of copepods, ostracods and euphausiids decreased. More species of fish, decapods and copepods were present by night than by day, whereas the numbers of species per haul for other groups remained fairly constant. The relative abundances of groups caught by the RMT 1 have been analysed, but similar treatment of the RMT 8 samples was impossible as only 3 groups were taken from this net. Non-migrants were a minority in every group except chaetognaths. Migrant species have been put into one of 6 transitory categories according to their patterns of abundance and hence migrations. Within each category, migratory behaviour varied both inter- and intraspecifically. The patterns of abundance of many species were smooth and continuous, suggesting slow migratory cycles of small amplitude. Conversely, extensive migrants had discontinuous patterns and presumably more rapid movements. Few migrants had a steady numerical plateau between their upward and downward migrations, and most apparently moved up or down continuously. The presence of migratory species in the sampled layer depended upon the time of day or night. It is concluded that, in a vertical series of hauls, the depths of occurrence of migrants will vary with the sampling time. Further-more, a vertical series will show a species minimum migration range but not necessarily its maximum. Individuals of some species were out of phase with the migrations of their main populations. There is evidence that the distributions and migrations of some species of decapods, euphausiids, copepods and fish could be related to the distribution of underwater light. Three pairs of congeneric copepod species were both spatially and temporally segregated for at least part of their diurnal cycles. Such an orderly arrangement could provide a means of reducing competition between species. Some species, however, overtook others on their migrations and the pattern of underwater light cannot, therefore, regulate the distribution of all species in the same way.  相似文献   

4.
Although scyphomedusae have received increased attention in recent years as important predators in coastal and estuarine environments, the factors affecting zooplankton prey vulnerability to these jellyfish remain poorly understood. Current models predicting feeding patterns of cruising entangling predators, such as Chrysaora quinquecirrha (Desor, 1948), fail to account for the selection of fast-escaping prey such as copepods. Nevertheless, our analysis of gastric contents of field-collected medusae showed that this scyphomedusa fed selectively on the calanoid copepod Acartia tonsa (Dana, 1846) and preferentially ingested adult over copepodite stages. We measured feeding rates in a planktonkreisel while simultaneously videotaping predator–prey interactions. C. quinquecirrha consumed adult A. tonsa ten times faster than copepodites. Differences in prey behavior, in the form of predator–prey encounter rates or post-encounter escape responses, could not account for the elevated feeding rates on adults. Prey size, however, had a dramatic impact on the vulnerability of copepods. In experiments using heat-killed prey, feeding rates on adults (1.5 times longer than copepodites) were 11 times higher than on copepodites. In comparison, medusae ingested heat-killed prey at only two to three times the rate of live prey. These results suggest that during scyphomedusan–copepod interactions, prey escape ability is important, but ultimately small size is a more effective refuge from predation. Received: 26 September 1997 / Accepted: 20 May 1998  相似文献   

5.
Central place foragers are constrained in their foraging distribution by the necessity to return to their nest site at regular intervals. In many petrels that feed on patchily distributed prey from the sea surface over large foraging areas, alternating long and short foraging trips are used to balance the demands of the chick with the requirements of maintaining adult body condition. When the local conditions are favourable for prey density and quality, adults should be able to reduce the number of long foraging trips. We studied the flexibility in foraging trip lengths of a small pelagic petrel, the thin-billed prion Pachyptila belcheri, over three breeding seasons with increasingly favourable, cold-water conditions. During a warm-water influx in February 2006, chicks were fed less frequently and adults carried out foraging trips of up to 8 days. When conditions became more favourable with colder water temperatures in 2007 and 2008, thin-billed prions decreased trip lengths, more often attended their chick every day, and long foraging trips of six to eight days were not registered during 2008. Chick growth rates mirrored this, as chicks grew poorly during 2006, intermediate during 2007 and best during 2008. Thin-billed prions preyed mainly on squid during incubation and mainly on amphipods and euphausiids during chick-rearing. In the poorest season only, the diet was substantially supplemented with very small copepods. Together, the present results indicate that during warm-water conditions, thin-billed prions had difficulties in finding sufficient squid, amphipods or euphausiids and were forced to switch to lower trophic level prey, which they had to search for over large ocean areas.  相似文献   

6.
R. R. Seapy 《Marine Biology》1980,60(2-3):137-146
In surface waters off Southern California (USA), Carinaria cristata forma japonica van der Spoel, 1972 feeds on a variety of zooplankton, although thaliaceans, chaetognaths, and copepods predominate numerically in the diet. Feeding intensity is greatest on the most abundant of two species of thaliaceans, depending on which one dominates in the plankton at the time. Some cannibalism occurs, with the prey being about one half the size of the predator. Feeding intensity is greatest during the day, possibly because heteropods depend on vision to locate prey and because prey species are more available by day. Comparisons of the proportion of each prey species in the diet and in the plankton indicate preferential feeding on thaliaceans, chaetognaths, and mollusks; in contrast, crustaceans and especially the copepods are non-preferred prey. These preference patterns may reflect differences among prey species in the ability to escape capture. Predator and prey size are positively correlated for Doliolum denticulatum gonozoids and oozoids, Thalia democratica aggregates, and Sagitta spp. Smaller individuals of D. denticulatum gonozoids and Sagitta spp. are selectively preyed on, resulting in size refuges for larger individuals.  相似文献   

7.
Laboratory studies show that predatory cane toads (Bufo marinus) exhibit specialized toe-luring behavior that attracts smaller conspecifics, but field surveys of toad diet rarely record cannibalism. Our data resolve this paradox, showing that cannibalism is common under specific ecological conditions. In the wet–dry tropics of Australia, desiccation risk constrains recently metamorphosed toads to the edges of the natal pond. Juvenile toads large enough to consume their smaller conspecifics switch to a primarily cannibalistic diet (67% of prey biomass in stomachs of larger toads). Cannibalistic attack was triggered by prey movement, and (perhaps as an adaptive response to this threat) small (edible-sized) toads were virtually immobile at night (when cannibals were active). Smaller metamorphs were consumed more frequently than were larger conspecifics. The switch from insectivory to cannibalism reflects the high dry season densities of small conspecifics (in turn, due to desiccation-imposed constraints to dispersal) and the scarcity of alternative (insect) prey during dry weather. Our study pond (102 m in circumference) supported >400 juvenile toads, which consumed many metamorphs over the course of our study. Toads appear to be low-quality food items for other toads; in laboratory trials, juvenile toads that fed only on conspecifics grew less rapidly than those that ate an equivalent mass of insects. This effect was not due to parotoid gland toxins per se. Thus, cane toads switch to intensive cannibalism only when seasonal precipitation regimes increase encounter rates between large and small toads, while simultaneously reducing the availability of alternative prey.  相似文献   

8.
The trophic ecology of the lanternfish Lampanyctus pusillus was investigated using individuals captured off the Balearic Islands (39°N, 2°E) (western Mediterranean) in December 2009. Based on gut content analyses, the trophic niche breadth, diet composition and selectivity were determined for the entire life cycle of L. pusillus. The larval stages fed actively near the surface during the day, with a feeding incidence (FI) of approximately 71 %. In contrast, the adults fed at night, both in near-surface depths and in the 400 m deep scattering layer, with a higher FI (83 %). Diet analysis revealed a shift in the prey choice throughout ontogenetic development, from preflexion individuals, which selected nauplii and small oncaeids, to postflexion larvae, which consumed a variety of calanoids, mainly Clausocalanus spp., to the adults, which preyed on large organisms, exhibiting positive selectivity for Pleuromamma spp. and euphausiids. These results show that the vertical distribution of larvae and adults is partly conditioned by their respective feeding habits, with larvae feeding on small zooplankton in the upper layer and adults preferring to consume larger taxa that perform nycthemeral migrations.  相似文献   

9.
J. Yen 《Marine Biology》1983,75(1):69-77
Adult females of the large carnivorous copepod Euchaeta elongata Esterly were collected from 1977 to 1980 in Port Susan, Washington, USA. Predation rates of the adult females increased with increasing prey abundance when fed the following 4 sizes of copepods: adult females of Calanus pacificus (average prosome length [PL] of 2 650 μm), adults of Aetideus divergens (PL of 1 560 μm), adult females of Pseudocalanus spp. (PL of 1 060 μm), and nauplii of C. pacificus (PL of 410 μm). Saturation feeding levels were reached when adult females of the predator were fed the small adult copepod, Pseudocalanus spp. Maximum biomass ingested of this small copepod was more than the maximum amount ingested of the larger copepods. Predation rates of the predatory copepodids at Stages IV and V also increased with increasing concentration of the 1 060 μm (PL) prey. High feeding rates exhibited by both adults and copepodids at Stage V of the predator indicate their importance as sources of mortality on populations of small copepods. Ingestion efficiency E i (prey wholly consumed [prey attacked]-1) varied as follows: adults of E. elongata were more efficient than copepodids of E. elongata; adults were more efficient than copepodids when ingesting smaller prey; starved adults were more efficient than fed ones; and both adults and copepodids were more efficient at low food concentrations. For adults of E. elongata, there were no marked seasonal variations in predation or respiratory rates that would represent acclimatory responses; however, small adults obtained during winter were more efficient at ingesting prey than were the larger adults gathered in summer. This seasonal variation in the efficiency of ingestion may be a useful indicator of physiological state: high E i values could indicate that predators are starving in winter, and low E i values could indicate that predators are satiated in summer.  相似文献   

10.
Willson JD  Hopkins WA 《Ecology》2011,92(3):744-754
Resource availability and accessibility are primary factors guiding the distribution and abundance of organisms. For generalists, prey availability reflects both prey abundance and differences in quality among prey taxa. Although some aspects of prey quality, such as nutritional composition, are well studied, our understanding of how prey morphology contributes to overall prey quality is limited. Because snakes cannot reduce prey size by mastication, many aspects of their feeding ecology (e.g., maximum prey size, feeding performance, and the degree of postprandial locomotor impairment) may be affected by prey shape. We conducted a uniquely comprehensive comparison of prey quality for a generalist species, the banded watersnake (Nerodia fasciata), using prey that were similar in mass and presumably similar in nutritional composition but different in shape and habitat association. Specifically, we compared nutritional composition and shape of paedomorphic salamanders (Ambystoma talpoideum) and sunfish (Lepomis MARGINATUS) and used a series of repeated-measures experiments to examine feeding performance (number of prey consumed, maximum prey size, and intra-oral transport time), digestive metabolism (specific dynamic action, SDA), and postprandial locomotor performance of snakes fed Ambystoma and Lepomis. Cost of digestion was similar between the prey types, likely reflecting their similar nutritional composition. However, snakes consumed larger Ambystoma than Lepomis and intra-oral transport time was much shorter for Ambystoma. Snakes fed Lepomis also suffered greater reduction in crawling speed than those fed Ambystoma. These differences highlight the need for behaviorally integrated approaches to understanding prey quality and support field observations of the importance of amphibian prey for juvenile watersnakes.  相似文献   

11.
Recruitment of capelin in the Barents Sea fail when juvenile herring and cod are abundant and the potential for feeding competition of wild sympatric capelin and herring larvae and small cod juveniles were investigated. The frequency of gut evacuation after capture of capelin larvae were also studied in mesocosms. Small capelin larvae (<35 mm length) fed on small prey including phytoplankton, invertebrate eggs and nauplii, bivalves, other invertebrate larvae and small copepods. Calanus copepodites were only observed in large capelin larvae (>26 mm length). Calanus copepodites were the major food sources for contemporary herring larvae (25–35 mm length) and Calanus and euphausiids were the major prey for small juvenile herring (37–60 mm length) and cod (18–40 mm length). Capelin larvae reared in mesocosms evacuated the guts shortly after capture. Capelin larvae had a smaller mouth and fed on smaller prey than herring and cod of the same length. This implies that the small capelin larvae, in contrast to sympatric small herring and cod, are not tightly linked to the food chain involving Calanus and euphausiids. Thus, exploitative competition between capelin larvae and planktivorous fish that rely on Calanus and euphausiids in the Barents Sea may be relaxed.  相似文献   

12.
The feeding ecology of Maurolicus muelleri, Lampanyctodes hectoris and Diaphus danae was examined from samples collected from continental slope waters of eastern Tasmania between April 1984 and April 1985. A total of 2 232 stomachs was analysed. M. muelleri, L. hectoris and D. danae fed primarily on euphausiids and secondarily on copepods, although larger D. danae (> 60 mm standard length) fed on other lanternfish (chiefly L. hectoris). The diets of M. muelleri and L. hectoris overlapped substantially. Diet overlaps between D. danae and the former species was low, however, due to the large biomass of fish present in D. danae. The prey taxa consumed changed with time of year and predator size. Stomach fullness (feeding intensity) varied seasonally in all three species, but only M. muelleri showed significant diel differences in fullness. The synchronization of the size structure of the predator populations and their feeding intensity, with seasonal variations in preferred prey, is proposed as a mechanism whereby each species maximizes its share of the available food resources.  相似文献   

13.
In order to assess diet composition and niche breadth of this species, we analysed the stomach content of 182 specimens collected monthly along the eastern coast of Sicily (Central Mediterranean Sea). Overall, 50 prey taxa belonging to five major groups (algae, gastropods, crustaceans, polychaetes, fishes) were identified in 102 full stomachs. Benthic or epibenthic crustaceans, such as decapods, amphipods and isopods were the most important prey, whereas algae, gastropods, polychaetes and fishes were only occasionally ingested. In terms of composition by species, the diet of Scorpaena maderensis was characterized by a variety of rare or unimportant prey, which was consumed by few individuals only, although sometimes in large amount. As a result, S. maderensis can be considered a generalized and opportunistic feeder. The feeding intensity followed roughly a seasonal trend, with a minimum food intake in summer. The individual fish size was the most important factor affecting diet. According to the observed ontogenetic shift, small-sized individuals fed primarily on small crustaceans (i.e. amphipods and isopods), whereas large-sized specimens consumed preferably bigger and more vagile prey, such as walking and swimming decapods. No significant differences in diet were observed in relation to sex of predator and sampling season.  相似文献   

14.
We tested the influence of limiting access to prey on larval development of the crabs Cancer magister and Hemigrapsus oregonensis by raising their Stage 1 larvae in the laboratory on different prey densities and with various periods of access to prey. Experiments were conducted in 1995 and 1996 at the Shannon Point Marine Center in Anacortes, Washington, USA. Our results show that crab larvae do not require continuous access to prey for optimal development nor do they appear to require light for prey capture. Survival and duration of Stage 1 C. magister fed continuously on only one-fourth the amount of the control density of prey and those fed at the control density for only 6 h per day were the same as for larvae fed continuously at the control density (20 ml−1). Larvae with cyclic access to prey at the control density for 24 h and then starved for 72 h showed significantly lower survival and longer instar duration to Stage 2. Experiments on Stage 1 H. oregonensis which investigated a combination of prey density, period of access to prey and light/dark conditions during feeding revealed that survival decreased with decreasing prey density or with decreasing feeding period, but no differences were observed during periods of limited prey availability as a function of light or dark conditions. Stage duration was not affected by reduced prey density nor by the light/dark condition at the time of feeding, but it was prolonged when the period of access to prey was limited. The period of access to prey did not affect the weight of Day 1 Stage 2 larvae. Larvae fed high densities of prey for 4 h followed by 20 h of reduced-density diet exhibited the same survival and stage duration as controls that were continuously fed high-density prey. Our results define sub-optimal diets that can be used experimentally to determine the nutritional contributions made by naturally-occurring prey organisms during larval development in the two species. In nature, larvae may satisfy nutritional requirements through periodic encounters with dense prey patches during vertical migrations by day or night. Received: 12 August 1997 / Accepted: 5 February 1998  相似文献   

15.
Diel changes in the composition of crustacean zooplankton and the diets of fish predators from an intertidal eelgrass flat were monitored concurrently. The zooplankton is characterized by two major components. The obligate zooplankters (holoplanktonic calanoid copepods and meroplanktonic decapod larvae) appear to exhibit vertical migration, being present in higher densities near the surface of the water column at night. The facultative zooplankton (amphipods and ostracods) are benthic during the day, but move up into the water column at night. Planktivorous midwaterdwelling fish consume calanoid copepods and decapod larvae during the day and cease feeding or switch their diet to amphipods at night. Benthic-dwelling fish consume some amphipods during both day and night. The factors important in prey selection by fish and the functional significance of vertical migration in both components of the zooplankton are discussed in the light of the changing patterns of fish predation.This paper is Publication No. 183 in the Ministry for Conservation of Victoria, Environmental Studies Series.  相似文献   

16.
Small-scale (100 to 2 400 m) horizontal distributions of major taxonomic categories (class and order) of zooplankton were measured at a depth of 90 m with an opening-closing plankton net over a 3 d period in October 1978 in the California Current. Some zooplankton categories showed evidence of diurnal vertical migration, while others had long-period temporal changes in mean abundance. Variance-to-mean ratio for large copepods and euphausiids was higher at night than during the day, while the opposite was true for chaetognaths and pteropods. Within a given category, the variance-to-mean ratio generally increased with a category's abundance. Spatial abundance variations were characterized by trends (i.e., fluctuations larger than length of the net hauls) in some taxonomic categories. No consistent differences in scales of variability were found as a function of animal size or from day to night. Correlation analysis of taxonomic counts implied that significant biological interactions occurred. The proportions of counts of taxonomic groups showed no large changes over the time-space scales sampled. However, the proportions of biomass in taxonomic groups differed from day to night due to the large variability of euphausiids. Comparisons of wet weight biomass to taxonomic counts indicated that biomass was usually less variable than taxonomic counts.  相似文献   

17.
Feeding in relation to temporal changes in the depth distribution of predator and prey is described for 9 species of mesopelagic decapods from an examination of 268 foreguts. Intensive nighttime feeding appears to be the rule in all species. The smaller decapods Sergestes (Sergestes) atlanticus, Sergestes (Sergestes) sargassi and Sergestes (Sergestes) pectinatus exploit the smaller prey, principally copepods and to a lesser extent ostracods. Larger decapod species Sergestes (Sergestes) henseni, Sergestes (Sergestes) curvatus, Sergestes (Sergia) grandis, Systellaspis debilis, and Acanthephyra purpurea mainly prey on macrozooplankton and micronekton, i.e., chaetognaths, euphausiids, decapods and fish, but copepods also occur in the foreguts. Gennadas valens is exceptional for the high incidence of foraminiferal remains, and a predator-prey relationship seems probable. All 9 decapod species have mixed diets, and pronounced feeding preferences are not evident. However, a high incidence of “secondary” feeding or “dietary contamination” has been deduced from the frequent occurrence of remains of the copepods Pleuromamma spp. and Oncaea spp. in the foreguts of the larger decapod species. Direct feeding cannot have occurred, since the depth distributions of these copepods and decapods are disjunct by day and night. It is concluded that the remains of Pleuromamma probably represent the food of the larger prey such as chaetognaths etc. which are eaten by the decapods. The presence of Oncaea is speculatively attributed to a possible ectoparasitic relationship with the larger prey items, but confirmatory evidence is required. These anomalies suggest that caution must be exercised in deducing predator-prey relationships simply from gut contents without consideration of distributional factors.  相似文献   

18.
Predation rates and prey selection of the pelagic mysid shrimp, Mysis mixta, were studied experimentally in the northern Baltic Sea in 1998 during their most intensive growth period, from June to October. Functional responses during 5 months were determined by providing the mysids with a natural zooplankton assemblage, diluted to several different concentrations. The results show that ingestion rate increased, along with mysid growth, from early summer to autumn and that saturation level was reached between 400 and 500 μg C l−1. Ingestion rates increased with increasing prey concentration, and sigmoidal curves explained mostly the variation in ingestion rates (explanatory levels of 86–97%). Prey selection was evident in June, July and August, though weaker during the latter 2 months. Selection differed between the studied months but, generally, copepods were more positively selected than cladocerans. Rotifers were the main prey during June and July, when mysids were small, while larger mysids fed on copepods and cladocerans. Of the copepods, Eurytemora affinis was a truly selected species. This study shows that mysids feed on many zooplankton taxa and that they undergo ontogenetic diet shifts. Received: 19 July 2000 / Accepted: 19 October 2000  相似文献   

19.
连续 2a实地调查了太湖鼋头渚地区鹭鸟的觅食生境 ,并搜集其雏鸟的反吐物 ,初步掌握了该地区不同鹭鸟对觅食生境的选择与食物组成情况。结果表明 ,无锡鼋头渚地区白鹭与夜鹭主要在鱼塘、湖泊觅食 ,白鹭在湖滨觅食 ,而夜鹭还会到湖中央水面觅食 ;池鹭觅食区域较广 ,主要在鱼塘。鹭群主要的食物类型是鱼类 ,白鹭食物几乎全为鱼类 ,夜鹭 95 %的食物为鱼类 ,兼有少量的蛙类、甲壳类和小型哺乳类动物。  相似文献   

20.
The gut contents of 169 individual Acartia tonsa from Los Angeles Harbor, California, USA, were measured during a 24 h period (16–17 June 1986) by gut pigment (fluorescence) and microscopic analyses. Individual gut-pigment levels varied 10-fold or more within sampling intervals. Some copepods with moderate (0.2 to 0.5 ng) to high (>0.5 ng) gut-pigment levels were present in samples from both day and night collections. While the percentage of copepods containing>0.5 ng pigment was about the same during the day (8%) as at night (10%), the percentage of copepods with 0.2 to 0.5 ng pigment rose from 17% during the day to 55% at night. Significant differences between pigment levels in copepods collected before and after evening twilight were suggestive of a nocturnal feeding habit regardless of intense individual variability in gut-pigment content. Food in the gut was distributed in parcels, indicative of intermittent feeding that potentially contributes to individual variability. Feeding was not synchronized during most of the day and night, but synchrony increased at evening and morning twilights. Although synchrony declined after evening twilight, individual gut-pigment contents were relatively elevated in most of the nighttime samples. Thus, active feeding seems neither to require nor to imply synchrony.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号