首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An automated water-renewal toxicity test system is described for exposing benthic invertebrates to whole sediments. The system will intermittently deliver laboratory or on-site water for overlying water replacement in sediment exposures. A range of cycle rates can be used to produce different volume additions of overlying water per day to exposure chambers. The system can be used with six different treatments and eight replicates per treatment producing 48 exposure chambers. Three formulated sediments with variable organic carbon (1.5%, 7.5%) and sand (14%, 63%) content were prepared to test the system exposing amphipods, Hyalella azteca and midges, Chironomus tentans in 10 day whole sediment tests. Intermittent water flow was used with a 90 min cycle time to create two volume additions of laboratory water per 24 h in exposure chambers (180 ml sediment, 320 ml water). Overlying water quality conditions, and survival and growth of both species were consistent and within acceptable limits for the testing requirements of the U.S. EPA guidelines for sediments with freshwater invertebrates.  相似文献   

2.
以城市富营养化水体底泥和上覆水为材料,研究了扰动状态下底泥对外源磷的净化效果。结果表明,扰动状态下,200 g湿底泥从上覆水中共吸收外源磷19.92 mg,而静止状态下,200 g湿底泥仅吸收了13.61 mg。然而,厌氧状态下,前者内源磷释放量仅占吸收磷量的43%,而后者则高达63.4%。说明底泥扰动不仅强化了底泥对外源磷的吸收,而且也强化了内源磷的固定能力。这与扰动状态下外源磷在不同形态磷间的数量分布有关。底泥扰动和静止状态下,难释放态磷(HCl-P、闭蓄态Fe/Al-P)的增加量分别占底泥吸收外源磷量的36%和21%。  相似文献   

3.
Wang F  Goulet RR  Chapman PM 《Chemosphere》2004,57(11):1713-1724
The freshwater amphipod, Hyalella azteca, is widely used in laboratory sediment toxicity and bioaccumulation tests. However, its responses in the laboratory are probably very different from those in the field. A review of the literature indicates that in its natural habitat this species complex is primarily epibenthic, derives little nutrition from the sediments, and responds primarily to contaminants in the overlying water column (including water and food), not sediment or porewater. In laboratory sediment toxicity tests H. azteca is deprived of natural food sources such as algal communities on or above the sediments, and is subjected to constant light without any cover except that afforded by burial into the sediments. Under these constraining laboratory conditions, H. azteca has been reported to respond to sediment or porewater contamination. In nature, contamination of overlying water from sediment is less likely than in the laboratory because of the large, generally non-static sink of natural surface water. H. azteca does not appear to be the most appropriate test species for direct assessments of the bioavailability and toxicity of sediment contaminants, though it is probably appropriate for testing the toxicity of surface waters. Toxic and non-toxic responses will be highly conservative, though the latter are probably the most persuasive given the exposure constraints. Thus H. azteca is probably a suitable surrogate species for determining sediments that are likely not toxic to field populations; however, it is not suitable for determining sediments that are likely toxic to field populations.  相似文献   

4.
van Beelen P 《Chemosphere》2003,53(8):795-808
The results of microbial toxicity tests are needed for the risk assessment of polluted sediments. In comparison with animals the anaerobic microorganisms are more tolerant to natural sediment conditions whereas they are more sensitive for a number of specific pollutants. Microbial toxicity tests from a literature search were classified in seven categories. Category A, B and C use polluted sediments and are applied for sediment monitoring. In category D, a pure chemical is added and the organisms and the test conditions were derived from sediment. Therefore this category can be used for setting sediment quality guidelines which protect sediment functions for the toxic effects of chemicals. In category E, organisms from a polluted site are separated from the sediment and are tested with pure chemicals. Organisms from a more polluted site can be more tolerant to a local pollutant. This is called pollution-induced community tolerance and can be used as evidence for the occurrence of toxic effects in a specific sediment. In category F pure chemicals are tested with a pure culture of microorganisms under sediment conditions. The results of category F tests can be combined with single species tests with animals and plants to obtain sediment quality guidelines sufficient for species protection. This can be compared with the sediment quality guidelines which protect sediment functions. When one of these quality guidelines is exceeded for a compound at a specific location a category E test can be used to determine whether the compound shows toxic effects in that sediment.  相似文献   

5.
The use of water injection dredging (WID) is increasing in the UK's inland waterways and marinas. Jets of water are injected under low pressure directly into bottom sediment creating a turbulent water-sediment mixture that flows under the influence of gravity. Many of these sediments are highly contaminated and little is known of the effects of contaminant release on water quality or the risk to biota living in both the sediment and the water column. Sediment cores were collected from Limehouse Basin, a proposed WID site in SE England and current sediment toxicity was assessed using a number of techniques. Comparison of metal data to US sediment quality guidelines indicated intermediate levels of toxicity while, calculation of acid volatile sulphide to simultaneously extracted metal ratios underestimated the potential toxicity to sediment dwelling organisms. In contrast, porewater ammonia concentrations were in excess of all published ecotoxicological guidelines and indicate serious risk to biota. Re-suspension experiments were used to mimic the effects of WID on overlying water quality and ecotoxicity tests were carried out on elutriates using Daphnia magna to examine the impacts on biota. Concentrations of a range of metals in the elutriates predict that adverse biological effects would be observed during WID, however only 10% of the elutriate samples caused an adverse effect on Daphnia. Limehouse Basin is a complex aquatic environment receiving predominantly fresh waters while the sediments have high porewater chloride concentrations reminiscent of previous tidal inputs to the basin, making the choice of test organism problematic.  相似文献   

6.
Sediments from lakes near Rouyn-Noranda, Quebec, contain elevated concentrations of several metals, including Cd, Cu, Pb and Zn. Amphipods, fingernail clams, mayflies and tanytarsid midges were absent, and sediment toxicity was observed in chronic tests with Hyalella in sediments from Lac Dufault, the lake closest to Rouyn-Noranda. Bioaccumulation by Hyalella demonstrated elevated bioavailability of Cd, Co, Cr, Pb and Tl, but only Cd was accumulated to levels close to the toxic threshold. Copper, which is regulated by Hyalella, was not elevated in these amphipods, but it was elevated in overlying water in the toxicity tests. Toxic effects in Lac Dufault sediments are probably caused primarily by Cd, at least in amphipods, with a possible minor contribution from Cu. An integrated assessment, including sediment chemistry, benthic community composition, sediment toxicity, metal bioaccumulation in benthos, and comparison of bioaccumulation and/or overlying water concentrations with threshold effect concentrations, provides the best indication of effects and their cause.  相似文献   

7.
Sediment cores from Richard Lake near Sudbury, Ontario, were sectioned and analyzed for total metal content, plus metal bioavailability and toxicity to Hyalella azteca (after equilibration with oxygenated overlying water). Strong and similar sediment profiles were observed for Cd, Co, Cu and Ni in the sediment. However, these differed from metal bioavailability profiles (bioaccumulation by Hyalella and metals in overlying water). Bioavailability profiles for Cu also differed from those for Cd, Co or Ni. The deepest sediment layers, deposited prior to industrial development, were non-toxic. Sediment toxicity was attributed to Ni dissolution into overlying water. Moreover, differential bioavailability of Ni in surface and deeper sediment layers was observed. This can affect the interpretation of toxicity data for sediments collected by different methods (e.g. core vs. grab samples). Based on Pb-210 dating and trends in Ni in the core, chronic toxicity of surface sediments from Richard Lake might approach non-toxic levels in about 15 years.  相似文献   

8.
Abstract

This study investigated the toxicity of various concentrations of technical resmethrin and Scourge® on adult and larval Palaemonetes pugio, a common grass shrimp species. Two types of tests were conducted for each of the resmethrin formulations using adult and larval grass shrimp life stages, a 96-h static renewal aqueous test without sediment, and a 24-h static nonrenewal aqueous test with sediment. For resmethrin, the 96-h aqueous LC50 value for adult shrimp was 0.53 μg/L (95% confidence interval (CI): 0.46–0.60 μg/L), and for larval shrimp was 0.35 μg/L (95% CI: 0.28–0.42 μg/L). In the presence of sediment, technical resmethrin produced a 24-h LC50 value for adult shrimp of 5.44 μg/L (95% CI: 4.52–6.55 μg/L), and for larval shrimp of 2.15 μg/L (95% CI: 1.35–3.43 μg/L). For Scourge®, the 96-h aqueous LC50 for adult shrimp was 2.08 μg/L (95% CI: 1.70–2.54 μg/L), and for larval shrimp was 0.36 μg/L (95% CI: 0.24–0.55 μg/L). The 24-h sediment test yielded an LC50 value of 16.12 μg/L (95% CI: 14.79–17.57 μg/L) for adult shrimp, and 14.16 μg/L (95% CI: 12.21–16.43 μg/L) for larvae. Adjusted LC50 values to reflect the 18% resmethrin concentration in Scourge® are 0.37 μg/L (adult), 0.07 μg/L (larvae) for the 96-h aqueous test, and 2.90 μg/L (adult), 2.6 μg/L (larvae) for the 24-h sediment test. Larval grass shrimp were more sensitive to technical resmethrin and Scourge® than the adult life stage. The results also demonstrate that synergized resmethrin is more toxic to P. pugio than the nonsynergized form, and that the presence of sediment decreases the toxicity of both resmethrin and Scourge®  相似文献   

9.
The fate and toxicity of a polyethoxylated tallowamine (POEA) surfactant system, MON 0818, was evaluated in water-sediment microcosms during a 4-d laboratory study. A surfactant solution of 8 mg l(-1) nominal concentration was added to each of nine 72-l aquaria with or without a 3-cm layer of one of two natural sediments (total organic carbon (TOC) 1.5% or 3.0%). Control well water was added to each of nine additional 72-l aquaria with or without sediment. Water samples were collected from the microcosms after 2, 6, 24, 48, 72, and 96 h of aging to conduct 48-h toxicity tests with Daphnia magna and to determine surfactant concentrations. Elevated mortality of D. magna (43-83%) was observed in overlying water sampled from water-only microcosms throughout the 96-h aging period, whereas elevated mortality (23-97%) was only observed in overlying water sampled from water-sediment microcosms during the first 24h of aging. Measured concentrations of MON 0818 in water-only microcosms remained relatively constant (4-6 mg l(-1)) during the 96-h period, whereas the concentrations in overlying water from microcosms containing either of the two types of sediment dissipated rapidly, with half-lives of 13 h in the 3.0% TOC sediment and 18 h in the 1.5% TOC sediment. Both toxicity and the concentration of MON 0818 in overlying water decreased more rapidly in microcosms containing sediment with the higher percent TOC and clay and with a higher microbial biomass. Mortality of D. magna was significantly correlated with surfactant concentrations in the overlying water. These results indicate that the toxicity of the POEA surfactant in water rapidly declines in the presence of sediment due to a reduction in the surfactant concentration in the overlying water above the sediment.  相似文献   

10.
Bioaccumulation and chronic toxicity of nickel (Ni) to Hyalella azteca in Ni-spiked sediments was strongly affected by the source of sediment used. The total range in LC50s on a sediment concentration basis ranged over 20 fold. Differences in Ni toxicity generally matched differences in Ni bioaccumulation, and toxicity expressed on a body concentration basis varied less than three fold. Body concentrations, therefore, provide a much more reliable prediction of Ni toxicity in sediments than do concentrations in the sediment. Ni in overlying water was also a reliable predictor of Ni toxicity, but only in tests conducted in Imhoff settling cones with large (67:1) water to sediment ratios. Overlying water LC50s for tests in beakers varied 18 fold. Sediment and body concentrations of Ni tolerated by Hyalella were slightly higher in cones than in beakers. Reproduction was not affected significantly by Ni at concentrations below the LC50 and 10-week EC50s for survival and biomass production (including survival, growth and reproduction) were only marginally lower than 4-week EC50s (survival and growth only).  相似文献   

11.
To determine changes in metal distribution, bioavailability and toxicity with sediment depth, two 20-cm-long replicate cores were collected from a lake historically subjected to the influence of metal mining and smelting activity. The vertical distribution of Pb, Cd and Cu in sediment was similar for all three metals, with the surface layers showing enrichment and the deeper (pre-industrial) layers showing lower concentrations. Toxicity of each sediment core section was determined in laboratory tests with the freshwater amphipod Hyalella azteca. Bioavailable metal in each sediment slice was estimated from metal concentrations in overlying water in these toxicity tests and, for Cd, also from metal bioaccumulation. The profile for Cd in tissue was comparable to Cd in sediment and overlying water, but relative Cd bioavailability from sediment increased with sediment depth. Survival increased with increasing sediment depth, suggesting that surface sediments were probably less or non-toxic before industrialization.  相似文献   

12.
Due to uncertainties as to appropriate procedures and dilution materials, most sediment tests are conducted only with undiluted, whole samples. Hence, it is not possible to use conventional concentration-response approaches to quantify toxicity of samples that elicit a 100% effect (e.g., mortality) at a preset test interval (typically 10 d). An alternative approach to quantifying the relative toxicity of test sediments is to determine time-to-effects. The objective of this study was to assess the utility of a time-to-effects approach for quantifying toxicity of freshwater sediments to the invertebrates Hyalella azteca and Chironomus tentans. Survival of both species and growth of C. tentans was determined using five sediments (four test samples and a control sediment) by destructively sampling replicate test chambers over the course of a "standard" 10-d assay. Studies with the control sediment and a non-toxic test sample indicated excellent recovery of test animals, even early in the test (e.g., <24 h) when individuals of both species are relatively small. Reasonable, typically monotonic, time-to-death relationships were observed for both H. azteca and C. tentans exposed to three comparatively toxic test sediments, all of which caused significant mortality by 10 d. Use of the time-to-effects approach allowed expression of toxicity of the three samples relative to one another, as well as documentation of decreases in toxicity of one of the sediments with increased storage time. These studies demonstrate the feasibility of use of time-to-effects as a basis for quantifying the relative toxicity of contaminated sediments.  相似文献   

13.
GOAL, SCOPE AND BACKGROUND: Orimulsion (stable emulsion of natural bitumen and water) is a new imported industrial fuel in Lithuania. No data on its toxicity to fish is freely available. The aim of this study was to investigate sensitivity of rainbow trout (Oncorhynchus mykiss) to acute and chronic toxicity of orimulsion and to estimate the Maximum Acceptable Toxicant Concentration (MATC) of orimulsion to fish. METHODS: Laboratory tests were conducted on rainbow trout in all stages of development (embryos, larvae, adults). Acute toxicity (96-hour duration) and long-term (28 or 60-day duration) tests evaluating the wide range spectrum of biological indices were performed under semi-static conditions. RESULTS AND DISCUSSION: Median lethal concentration (96-hour LC50) values and their 95% confidence intervals derived from the tests were: 0.1 (0.09-0.12) to embryos, 0.06 (0.05-0.07) to larvae and 2.22 (2.02-2.43) to adult fish, and 28-day LC50 to adult fish was found to be 0.26 (0.21-0.32) g/l of total orimulsion respectively. The acute toxicity of orimulsion to rainbow trout can be characterised by a narrow zone of toxic effect and a sharp boundary between lethal and sublethal concentrations. The lowest 'safe' or 'no-effect' concentration values of total orimulsion obtained in long-term tests were equal to 0.09 g/l to adult fish, 0.019 g/l to embryos, and 0.0017 g/l to larvae. Proposed value of 'application factor' for orimulsion was found to be equal to 0.03. Since orimulsion has the property to disperse in all water volume, its toxic effect on fish can be characterised by the combined effects of dispersion and water-soluble-fraction. CONCLUSIONS: Maximum Acceptable Toxicant Concentration (MATC) of 0.0017 g/l of total orimulsion to fish was derived from long-term tests based on the most sensitive parameter of rainbow trout larvae (relative mass increase at the end of the test). According to substance toxicity classification accepted for Lithuanian inland waters, orimulsion can be referred to substances of 'moderate' toxicity to fish. RECOMMENDATIONS AND OUTLOOK: For prediction and evaluation of toxic impact of orimulsion accident spills on fish, some recommendations should be given. Since orimulsion has the property to disperse in all water volume during short time periods, the amounts of both spilled orimulsion and polluted water should be ascertained. Once both parameters are known, the real concentration of orimulsion in the water body must be determined. Then this concentration must be compared with 'safe' concentration to fish. By use of 'application factor' 0.03, approximate MATC for other fish species can be estimated when only acute toxicity data (96-hour LC50 value) is available.  相似文献   

14.
This study investigated the toxicity of various concentrations of technical resmethrin and Scourge on adult and larval Palaemonetes pugio, a common grass shrimp species. Two types of tests were conducted for each of the resmethrin formulations using adult and larval grass shrimp life stages, a 96-h static renewal aqueous test without sediment, and a 24-h static nonrenewal aqueous test with sediment. For resmethrin, the 96-h aqueous LC50 value for adult shrimp was 0.53 microg/L (95% confidence interval (CI): 0.46-0.60 microg/L), and for larval shrimp was 0.35 microg/L (95% CI: 0.28-0.42 microg/L). In the presence of sediment, technical resmethrin produced a 24-h LC50 value for adult shrimp of 5.44 microg/L (95% CI: 4.52-6.55 microg/L), and for larval shrimp of 2.15 microg/L (95% CI: 1.35-3.43 microg/L). For Scourge, the 96-h aqueous LC50 for adult shrimp was 2.08 microg/L (95% CI: 1.70-2.54 microg/L), and for larval shrimp was 0.36 microg/L (95% CI: 0.24-0.55 microg/L). The 24-h sediment test yielded an LC50 value of 16.12 microg/L (95% CI: 14.79-17.57 microg/L) for adult shrimp, and 14.16 microg/L (95% CI: 12.21-16.43 microg/L) for larvae. Adjusted LC50 values to reflect the 18% resmethrin concentration in Scourge are 0.37 microg/L (adult), 0.07 microg/L (larvae) for the 96-h aqueous test, and 2.90 microg/L (adult), 2.6 microg/L (larvae) for the 24-h sediment test. Larval grass shrimp were more sensitive to technical resmethrin and Scourge than the adult life stage. The results also demonstrate that synergized resmethrin is more toxic to P. pugio than the nonsynergized form, and that the presence of sediment decreases the toxicity of both resmethrin and Scourge.  相似文献   

15.
Increasing uses of engineered nanoparticles (ENPs) in commercial products and industrial applications has eventually resulted to their releases into atmospheric, terrestrial, and aquatic environments. However, knowledge gaps in ENPs toxicity, fate, and behaviour currently limit our ability to quantify risk assessment of materials with nanoscale dimensions, and therefore, the extent of the resultant environmental impacts remains unknown. In the present study, we evaluated the effects of γ-alumina, α-alumina, modified TiO(2) (M-TiO(2)), and commercial TiO(2) (C-TiO(2)) ENPs on the survival, behaviour, and early life stages of the freshwater snail Physa acuta (Draparnaud). The toxicity evaluation was carried out after spiking commercial sand with ENPs concentrations of 0.005, 0.05, or 0.5 gk g(-1). Our findings suggest that increases of γ-alumina and α-alumina concentrations at sub-lethal level concentrations caused significant reduction in the embryo growth rate and embryo hatchability. In addition, these ENPs induced observable developmental deformities of the embryos. In addition, toxicity evaluations using acute 96-h and chronic 28-d tests showed exposure duration may be a significant factor in ENPs-induced toxicity. Therefore, long-term exposure of aquatic organisms to ENPs - potentially can alter certain ecological populations at different trophic levels - and may compromise the entire aquatic ecological functionality. The percentage hatchlings in test chambers containing 0.5 gk g(-1) γ-alumina and α-alumina concentration was 50% less to those observed in the controls. Our results suggest the embryonic growth and hatchability tests are useful endpoints in chronic sediment toxicity tests for determining the toxic thresholds of ENPs in sediment environment. Although no snail mortalities were observed during the static 96-h test containing sediment spiked with different concentrations of M-TiO(2), C-TiO(2), γ-alumina and α-alumina - the antioxidant enzymatic assay results indicated a significant change in antioxidant levels which altered peroxidation at 0.05 or 0.5 gk g(-1)concentrations for both γ-alumina and α-alumina.  相似文献   

16.
A suite of tests was conducted to evaluate and identify the cause or causes of toxicity in Passaic River sediments. Sediment toxicity was measured with three types of bioassays: a whole sediment bioassay with the marine amphipod, Ampelisca abdita, and interstitial water bioassays with A. abdita and the bioluminescent bacterium Vibrio fisheri (Microtox((R))). In addition, a Phase I Toxicity Identification Evaluation (TIE) was conducted to elucidate the cause of observed toxicity. Analytical concentrations of selected residues in whole sediment and interstitial water from the five sampling stations were considered in conjunction with the conclusions drawn from the toxicity tests and Phase I TIE results. Finally, a toxic units approach was used to evaluate the predicted toxicity of measured interstitial water residue concentrations. There was a lack of toxic response in the short-term interstitial water bioassays, indicating that oxidants, soluble forms of metals, and dissolved phase neutral organics were not likely toxicants. However, there was significant toxicity indicated by the whole sediment A. abidita bioassays. After 10 days, there was complete or near complete mortality in amphipods exposed to all of the sediment samples tested. Removal of interstitial water toxicity by filtration was common to all four stations that exhibited measurable initial toxicity. The observed toxicity characteristics are consistent with particle associated neutral organics. This conclusion is supported by toxicity removal via filtration, lack of toxicity in the Microtox((R)) assays, and the fact that whole sediments were more toxic than was interstitial water.  相似文献   

17.
Acid mine drainage (AMD) is frequently linked with changes in macroinvertebrate assemblages, but the relative contribution of water and sediment to toxicity is equivocal. We have shown that the macroinvertebrate fauna of Neubecks Ck, a mine impacted stream in New South Wales, Australia, was much poorer than in two reference streams. Multivariate RELATE analyses indicated that the patterns in the biological data were more strongly correlated with the concentrations of common metals in the surface water than the pore water of these streams. From this we hypothesised that the water was more toxic to the biota than the sediment and we tested this hypothesis with a sediment transplant experiment. Sediment from Neubecks Ck that was placed in reference streams retained high concentrations of metals throughout the experiment, yet supported a macroinvertebrate assemblage similar to that in the reference streams. Sediment from the reference streams that was placed in Neubecks Ck supported few, if any, animals. This indicates that water in Neubecks Ck is toxic to biota, but that sediment is able to support aquatic biota in clean water. Therefore, remediation should focus on improving water quality rather than sediment quality.  相似文献   

18.
不同水温时底泥扰动对不同形态磷分布的影响   总被引:3,自引:0,他引:3  
研究了江南地区典型水温条件下,底泥扰动对上覆水中不同形态磷迁移的影响.结果表明,不同水温条件下,底泥扰动均有利于上覆水中溶解态磷(即溶解性总磷酸盐(DTP),包括溶解性正磷酸盐(DIP)和溶解性有机磷(DOP))向底泥迁移.与对照试验相比,不同水温时的扰动均导致DIP/TP和DTP/TP明显降低.与初始状态(第0天时)相比,扰动导致DIP/TP分别降低了39.61百分点(冬季水温)和17.38百分点(夏季水温),而DTP/TP则分别降低了39.16百分点(冬季水温)和19.06百分点(夏季水温).相反,对照试验中,DTP/TP分别上升了24.90百分点(冬季水温)和23.37百分点(夏季水温).这说明底泥扰动促进了溶解态磷向颗粒态磷(PP)的转化.  相似文献   

19.
Seasonal variation of sediment toxicity in the Rivers Dommel and Elbe   总被引:3,自引:0,他引:3  
Contaminated sediment in the river basin has become a source of pollution with increasing importance to the aquatic ecosystem downstream. To monitor the temporal changes of the sediment bound contaminants in the River Elbe and the River Dommel monthly toxicity tests were applied to layered sediment and river water samples over the course of 10 months. There is an indication that contaminated sediments upstream adversely affected sediments downstream, but this process did not cause a continuous increase of sediment toxicity. A clear decrease of toxic effects in water and upper layer sediment was observed at the River Elbe station in spring related to high water discharge and algal blooms. The less obvious variation of sediment toxicity in the River Dommel could be explained by stable hydrological conditions. Future monitoring programmes should promote a more frequent and intensive sampling regime during these particular events for ecotoxicological evaluation.  相似文献   

20.
The nematode Caenorhabditis elegans receives increasing attention in sediment ecotoxicology and new toxicity tests with sensitive test parameters are under development. In this study, the motility of C. elegans could be measured for the first time online in sediment, using the Multispecies Freshwater Biomonitor. Whereas single nematodes could not be recorded, groups of 10 nematodes gave typical locomotive signals in different media (water, agar, sediment) with comparable precision and accuracy. The results of this study encourage to develop a new rapid online whole-sediment toxicity test with behaviour as sensitive test parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号