首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Law YH  Rosenheim JA 《Ecology》2011,92(2):333-341
A greater diversity of natural enemies can in some cases disrupt prey suppression, particularly when natural enemies engage in intraguild predation, where natural enemies compete with and prey upon each other. However, empirical studies have often demonstrated enhanced prey suppression despite intraguild predation. A recent theoretical study proposed the hypothesis that, when the intermediate predator is cannibalistic, intraguild predation can reduce cannibalism within the intermediate predator population, leading to little change in intermediate predator mortality and thus enhanced prey suppression. The goal of this study was to examine this hypothesis empirically. Two summer-long field enclosure experiments were conducted in cotton fields. We investigated the effects of adding an intraguild predator, Zelus renardii, on (1) the abundance of a cannibalistic intermediate predator, Geocoris pallens, (2) the abundance of a herbivore, Lygus hesperus, and (3) cotton plant performance. G. pallens adult abundance did not increase, even when food availability was high and natural enemies were absent, suggesting that density-dependent cannibalism imposes an upper limit on its densities. Furthermore, although Z. renardii is an intraguild predator of G. pallens, G. pallens long-term densities were unaffected by Z. renardii. In the presence of the intermediate predator, the addition of the intraguild predator Z. renardii enhanced suppression of L. hesperus, and there were suggestions that Z. renardii and G. pallens partitioned the L. hesperus population. Effects of herbivore suppression cascaded to the plant level, improving plant performance. In conclusion, we provide empirical support for the hypothesis that the addition of an intraguild predator may enhance prey suppression if the intermediate predator expresses density-dependent cannibalism. Intraguild predation and cannibalism co-occur in many communities; thus their joint effects may be broadly important in shaping predator effects on herbivores and plant performance.  相似文献   

3.
《Ecological modelling》2005,183(4):451-462
Since many predators can live under certain circumstances as saprophytes or consume more than one prey, and different enzymes are generally required for each prey or nutrient digestion, the predator must be sufficiently adaptive for effective utilization of the prey mass. Control modes as induction and repression, however, act at the level of genes and cause changes in the biosynthesis rate of these enzymes. In this work, an extension of the catabolic repression control mode from the level of genes to the level of the behavior of the predator is proposed, in order to model the balanced attack of the predator on the prey. It is demonstrated that, when the prey population has the competitive advantage over the predator (in using the common substrate), the catabolic repression mechanism favors the prey population, which dominates over the predator even at low specific dilution rate values, whereas, the stable steady or periodic coexistence state is not favored. When the predator has the competitive advantage at low substrate concentrations and the prey at high substrate concentrations, the introduction of the catabolic repression mechanism in the model again favors the stable steady state of the prey, while the coexistence region is dramatically reduced. Conversely, when the prey population has the competitive advantage at low and the predator at high substrate concentrations, dominance of prey and coexistence steady state could be favored by the catabolic repression mechanism. It is concluded that the catabolic repression control favors dominance of the prey population and, under certain circumstances, coexistence of both prey and predator populations.  相似文献   

4.
Cahill JF  Elle E  Smith GR  Shore BH 《Ecology》2008,89(7):1791-1801
Plants engage in diverse and intimate interactions with unrelated taxa. For example, aboveground floral visitors provide pollination services, while belowground arbuscular mycorrhizal fungi (AMF) enhance nutrient capture. Traditionally in ecology, these processes were studied in isolation, reinforcing the prevailing assumption that these above- and belowground processes were also functionally distinct. More recently, there has been a growing realization that the soil surface is not a barrier to many ecological interactions, particularly those involving plants (who live simultaneously above and below ground). Because of the potentially large impact that mycorrhizae and floral visitors can have on plant performance and community dynamics, we designed an experiment to test whether these multi-species mutualisms were interdependent under field conditions. Using benomyl, a widely used fungicide, we suppressed AMF in a native grassland, measuring plant, fungal, and floral-visitor responses after three years of fungal suppression. AMF suppression caused a shift in the community of floral visitors from large-bodied bees to small-bodied bees and flies, and reduced the total number of floral visits per flowering stem 67% across the 23 flowering species found in the plots. Fungal suppression has species-specific effects on floral visits for the six most common flowering plants in this experiment. Exploratory analyses suggest these results were due to changes in floral-visitor behavior due to altered patch-level floral display, rather than through direct effects of AMF suppression on floral morphology. Our findings indicate that AMF are an important, and overlooked, driver of floral-visitor community structure with the potential to affect pollination services. These results support the growing body of research indicating that interactions among ecological interactions can be of meaningful effect size under natural field conditions and may influence individual performance, population dynamics, and community structure.  相似文献   

5.
Norkko A  Hewitt JE  Thrush SE  Funnell GA 《Ecology》2006,87(1):226-234
Facilitation by habitat modifiers is common in ecological communities, but the potential for temporal and spatial variations in environmental conditions to modify the outcome of these interactions and influence the strength of feedbacks is poorly understood. Suspension-feeding bivalves are important habitat modifiers that can facilitate surrounding communities by providing refuge from predation and changing boundary flows and through the production of organically enriched biodeposits. However, numerous studies have highlighted the problem of finding generalizable patterns. We tested the strength and generality of the relationship between the large suspension-feeding bivalve Atrina zelandica and surrounding macrofauna and hypothesized that facilitation by Atrina is conditional and modulated by site-specific suspended sediment concentration (SSC), which influences the quantity and quality of biodeposit production. We found temporally consistent patterns of higher rates of biodeposition and increased abundance and species richness in close proximity to Atrina under low SSC conditions. Facilitation strength decreased with increasing SSC, suggesting that the facilitation effect of Atrina is reduced and reversed along this environmental stress gradient.  相似文献   

6.
The rate of species loss is increasing at a global scale, and human-induced extinctions are biased toward predator species. We examined the effects of predator extinctions on a foundation species, the eastern oyster (Crassostrea virginica). We performed a factorial experiment manipulating the presence and abundance of three of the most common predatory crabs, the blue crab (Callinectes sapidus), stone crab (Menippe mercenaria), and mud crab (Panopeus herbstii) in estuaries in the eastern United States. We tested the effects of species richness and identity of predators on juvenile oyster survival, oyster recruitment, and organic matter content of sediment. We also manipulated the density of each of the predators and controlled for the loss of biomass of species by maintaining a constant mass of predators in one set of treatments and simultaneously using an additive design. This design allowed us to test the density dependence of our results and test for functional compensation by other species. The identity of predator species, but not richness, affected oyster populations. The loss of blue crabs, alone or in combination with either of the other species, affected the survival rate of juvenile oysters. Blue crabs and stone crabs both affected oyster recruitment and sediment organic matter negatively. Mud crabs at higher than ambient densities, however, could fulfill some of the functions of blue and stone crabs, suggesting a level of ecological redundancy. Importantly, the strong effects of blue crabs in all processes measured no longer occurred when individuals were present at higher-than-ambient densities. Their role as dominant predator is, therefore, dependent on their density within the system and the density of other species within their guild (e.g., mud crabs). Our findings support the hypothesis that the effects of species loss at higher trophic levels are determined by predator identity and are subject to complex intraguild interactions that are largely density dependent. Understanding the role of biodiversity in ecosystem functioning or addressing practical concerns, such as loss of predators owing to overharvesting, remains complicated because accurate predictions require detailed knowledge of the system and should be drawn from sound experimental evidence, not based on observations or generalized models.  相似文献   

7.
Social facilitation of selective mortality   总被引:2,自引:0,他引:2  
McCormick MI  Meekan MG 《Ecology》2007,88(6):1562-1570
Territorial defense by breeders influences access to resources near defended nest sites by intruder species and may have indirect effects on other species within the territory, leading to local patchiness in distribution patterns. The present study demonstrates that adult males of a damselfish, Pomacentrus amboinensis, indirectly facilitate the increased survival of conspecific juveniles through the territorial defense of their nesting site from potential egg predators. Moreover, male territoriality results in a shift in the selectivity of predation on newly settled juveniles. We monitored the fate of pairs of predator-naive, newly settled P. amboinensis placed inside and outside nesting territories. Individuals within a pair differed in size by approximately 1 mm and were tagged for individual identification. Away from male territories larger juveniles had greater survival, while within territories, larger juveniles suffered higher mortality. Behavioral observations indicated that the moonwrasse Thalassoma lunare, a predator of benthic eggs and small fishes, had reduced access to juveniles within male territories, while another predator on small fishes, the dottyback Pseudochromis fuscus, had unobstructed access to male territories. Experimental removal of P. fuscus indicated that the shift in the direction of phenotypic selection on newly settled juveniles was the indirect effect of aggression by nest-guarding male damselfish, which resulted in differential access to male territories by these two predators of small fishes. Evidence suggests that behavioral interactions between the resident community and intruders will influence patchiness in selective pressures imposed on benthic prey by influencing both the composition of predator types that can access the prey resource and their relative abundance. How this spatial and temporal patchiness in predator pressure interacts with spatial patchiness of recruiting prey will have a major influence on the resulting distribution of juveniles and their phenotypic traits.  相似文献   

8.
Maron JL  Pearson DE  Fletcher RJ 《Ecology》2010,91(12):3719-3728
Historically, small mammals have been focal organisms for studying predator-prey dynamics, principally because of interest in explaining the drivers of the cyclical dynamics exhibited by northern vole, lemming, and hare populations. However, many small-mammal species occur at relatively low and fairly stable densities at temperate latitudes, and our understanding of how complex predator assemblages influence the abundance and dynamics of these species is surprisingly limited. In an intact grassland ecosystem in western Montana, USA, we examined the abundance and dynamics of Columbian ground squirrels (Spermophilus columbianus), deer mice (Peromyscus maniculatus), and montane voles (Microtus montanus) on 1-ha plots where we excluded mammalian and avian predators and ungulates, excluded ungulates alone, or allowed predators and ungulates full access. Our goal was to determine whether the relatively low population abundance and moderate population fluctuations of these rodents were due to population suppression by predators. Our predator-exclusion treatment was divided into two phases: a phase where we excluded all predators except weasels (Mustela spp.; 2002-2005), and a phase where all predators including weasels were excluded (2006-2009). Across the entire duration of the experiment, predator and/or ungulate exclusion had no effect on the abundance or overall dynamics of ground squirrels and deer mice. Ground squirrel survival (the only species abundant enough to accurately estimate survival) was also unaffected by our experimental treatments. Prior to weasel exclusion, predators also had no impacts on montane vole abundance or dynamics. However, after weasel exclusion, vole populations reached greater population peaks, and there was greater recruitment of young animals on predator-exclusion plots compared to plots open to predators during peak years. These results suggest that the impacts of predators cannot be generalized across all rodents in an assemblage. Furthermore, they suggest that specialist predators can play an important role in suppressing vole abundance even in lower-latitude vole populations that occur at relatively low densities.  相似文献   

9.
Calanoid copepods typically exhibit escape reactions to hydrodynamic stimuli such as those generated by the approach of a predator. During the summers of 2000, 2001 and 2004, two small calanoid species, Temora turbinata Dana, 1849 and Paracalanus parvus Claus, 1863 were exposed to a visual predatory fish, the blenny Acanthemblemaria spinosa Metzelaar, 1919, and their predator–prey interactions were recorded using both high-speed and standard videographic techniques. Copepod escape reaction components, including swimming pattern, reactive distance, turning rate, and jump kinetics, were quantified from individual predation events using motion analysis techniques. Among the observed escape reaction components, differences were noted between the species’ swimming patterns prior to attack and their response latencies. Temora turbinata was a continuous cruiser and P. parvus exhibited a hop-and-sink swimming pattern. During periods of sinking, P. parvus stopped beating its appendages, which presumably reduced any self-generated hydrodynamic signals and increased perceptual abilities to detect an approaching predator. Response latency was determined for each copepod species using a hydrodynamic stimulus produced by a 1 ms acoustic signal. Response latencies of T. turbinata were significantly longer than those of P. parvus. Despite some apparent perceptual advantages of P. parvus, the blenny successfully captured both species by modifying its attack behavior for the targeted prey.  相似文献   

10.
Functional responses: a question of alternative prey and predator density   总被引:2,自引:0,他引:2  
Tschanz B  Bersier LF  Bacher S 《Ecology》2007,88(5):1300-1308
Throughout the study of ecology, there has been a growing realization that indirect effects among species cause complexity in food webs. Understanding and predicting the behavior of ecosystems consequently depends on our ability to identify indirect effects and their mechanisms. The present study experimentally investigates indirect interactions arising between two prey species that share a common predator. In a natural field experiment, we introduced different densities of mealworms (Tenebrio molitor), an alternative prey, to a previously studied predator-prey system in which paper wasps (Polistes dominulus) preyed on shield beetle larvae (Cassida rubiginosa). We tested if alternative prey affects predation on the first prey (i.e., the predator-dependent functional response of paper wasps) by modifying either interference among predators or the effective number of predators foraging on shield beetles. Presence of mealworms significantly reduced the effective number of predators, whereas predator interference was not affected. In this way, the experimentally introduced alternative prey altered the wasps' functional response and thereby indirectly influenced C. rubiginosa density. In all prey-density combinations offered, paper wasps constantly preferred T. molitor. This led to an asymmetrical, indirect interaction between both prey species: an increase in mealworm density significantly relaxed predation on C. rubiginosa, whereas an increase in C. rubiginosa density intensified predation on mealworms. Such asymmetrical outcomes of a fixed food preference can significantly affect the population dynamics of the species involved. In spite of the repeated finding of a Type III functional response in this system, our experiment did not reveal switching behavior in paper wasps. The variety of mechanisms underlying direct and indirect interactions within our study system exemplifies the importance of incorporating alternative prey when investigating the impact of a generalist predator on a focal prey population under realistic field conditions.  相似文献   

11.
Mast seeding involves the episodic and synchronous production of large seed crops by perennial plants. The predator satiation hypothesis proposes that mast seeding maximizes seed escape because seed predators consume a decreasing proportion of available seeds with increasing seed production. However, the seed escape benefits of masting depend not only on whether predators are satiated at high levels of seed production, but also on the shape of their functional response (type II vs. type III), and the actual proportion of available seeds that they consume at different levels of seed production. North American red squirrels (Tamiasciurus hudsonicus) are the primary vertebrate predator of white spruce (Picea glauca) mast seed crops in many boreal regions because they hoard unopened cones in underground locations, preempting the normal sequence of cone opening, seed dispersal, and seed germination. We document the functional response of cone-hoarding by red squirrels across three non-mast years and one mast year by estimating the number of cones present in the territories of individual red squirrels and the proportion of these cones that they hoarded each autumn. Even though red squirrels are not constrained by the ingestive and on-body (fat reserves) energy reserve limitations experienced by animals that consume seeds directly, most squirrels hoarded < 10% of the cones present on their territories under mast conditions. Cone availability during non-mast years also reached levels that satiated the hoarding activity of red squirrels; however, this occurred only on the highest-quality territories. Squirrels switched to mushroom-hoarding when cone production was low and mushrooms were abundant. This resulted in type III functional response whereby the proportional harvest of cones was highest at levels of cone availability that were intermediate within non-mast years. Overall, more cones escaped squirrel cone-hoarding during a mast event than when cone production was low in non-mast years, which supports the predator satiation hypothesis. However, the highly variable seed escape in non-mast years may help to explain why all spruce cone production is not concentrated into fewer, larger, mast years.  相似文献   

12.
Veblen KE 《Ecology》2008,89(6):1532-1540
Empirical and theoretical evidence suggests that facilitation between plants, when it occurs, is more likely during periods of abiotic stress, while competition predominates under more moderate conditions. Therefore, one might expect the relative importance of competition vs. facilitation to vary seasonally in ecosystems characterized by pronounced dry (abiotically stressful) and wet (benign) seasons. Herbivory also varies seasonally and can affect the net outcome of plant-plant interactions, but the interactive effects of seasonality and herbivory on the competition-facilitation balance are not known. I experimentally manipulated neighboring plants and herbivory during wet and dry periods for two species of grass: Cynodon plectostachyus and Pennisetum stramineum, in the semiarid Laikipia District of Kenya. These experiments indicate that Pennisetum was competitively dominant during the wet season and that it responded negatively to grazing, especially during the dry season. Cynodon showed more complex season- and herbivore-dependent responses. Cynodon experienced facilitation that was simultaneously dependent on presence of herbivores and on dry season. During the wet season Cynodon experienced net competition. These results illustrate how herbivory and seasonality can interact in complex ways to shift species-species competition-facilitation balance. Additionally, because Cynodon and Pennisetum are key players in a local successional process, these results indicate that herbivory can affect the direction and pace of succession.  相似文献   

13.
According to the threat-sensitive predator avoidance hypothesis, selection favors prey that accurately assess the degree of threat posed by a predator and adjust their anti-predator response to match the level of risk. Many species of animals rely on chemical cues to estimate predation risk; however, the information content conveyed in these chemical signatures is not well understood. We tested the threat-sensitive predator avoidance hypothesis by determining the specificity of the information conveyed to prey in the chemical signature of their predator. We found that fathead minnows (Pimephales promelas) could determine the degree of threat posed by northern pike (Esox lucius) based on the concentration of chemical cues used. The proportion of minnows that exhibited an anti-predator response when exposed to a predator cue increased as the concentration of the pike cue used increased. More surprisingly, the prey could also distinguish large pike from small pike based on their odor alone. The minnows responded more intensely to cues of small pike than to cues of large pike. In this predator–prey system small pike likely represent a greater threat than large pike.Communicated by A. Mathis  相似文献   

14.
Variations in mortality of a coral-reef fish: links with predator abundance   总被引:3,自引:0,他引:3  
S. D. Connell 《Marine Biology》1996,126(2):347-352
The mortality rates of a pomacentrid Acanthochromis polyacanthus were examined in relation to the abundance of large predatory fish (>200 mm total length, TL) at two spatial scales. Survivorship was negatively related to patterns of predator abundance at a large spatial scale (hundreds of metres) over 3 yr, but not at a small spatial scale (tens of metres) over 2 yr. On the large scale, mortality was consistently greater (14 to 30%) in locations where there were greater numbers of predators, and lower in locations where predators occurred in smaller numbers. Among these locations, spatial differences in rank abundance of surviving juveniles were primarily due to mortality, whereas temporal differences in rank abundance were primarily due to initial juvenile abundance. These data suggest that impacts of large predatory fish were likely to have been greater in space than time and at the large spatial scale than the small spatial scale.  相似文献   

15.
Schreiber SJ  Bürger R  Bolnick DI 《Ecology》2011,92(8):1582-1593
Natural populations are heterogeneous mixtures of individuals differing in physiology, morphology, and behavior. Despite the ubiquity of phenotypic variation within natural populations, its effects on the dynamics of ecological communities are not well understood. Here, we use a quantitative genetics framework to examine how phenotypic variation in a predator affects the outcome of apparent competition between its two prey species. Classical apparent competition theory predicts that prey have reciprocally negative effects on each other. The addition of phenotypic trait variation in predation can marginalize these negative effects, mediate coexistence, or generate positive indirect effects between the prey species. Long-term coexistence or facilitation, however, can be preceded by long transients of extinction risk whenever the heritability of phenotypic variation is low. Greater heritability can circumvent these ecological transients but also can generate oscillatory and chaotic dynamics. These dramatic changes in ecological outcomes, in the sign of indirect effects, and in stability suggest that studies which ignore intraspecific trait variation may reach fundamentally incorrect conclusions regarding ecological dynamics.  相似文献   

16.
Although prey may not have commercial value, their economic value can be ascertained in a predator-prey model if the predator has a harvest value. The economic optimal (recovery) path of the predator and prey are carefully described when growth is quadratic in the predator (prey) and linear in prey (predator). Parameter values, in part, resembling Pacific halibut are used to provide numerical illustrations.  相似文献   

17.
Hines J  Megonigal JP  Denno RF 《Ecology》2006,87(6):1542-1555
Historically, terrestrial food web theory has been compartmentalized into interactions among aboveground or belowground communities. In this study we took a more synthetic approach to understanding food web interactions by simultaneously examining four trophic levels and investigating how nutrient (nitrogen and carbon) and detrital subsidies impact the ability of the belowground microbial community to alter the abundance of aboveground arthropods (herbivores and predators) associated with the intertidal cord grass Spartina alterniflora. We manipulated carbon, nitrogen, and detrital resources in a field experiment and measured decomposition rate, soil nitrogen pools, plant biomass and quality, herbivore density, and arthropod predator abundance. Because carbon subsidies impact plant growth only indirectly (microbial pathways), whereas nitrogen additions both directly (plant uptake) and indirectly (microbial pathways) impact plant primary productivity, we were able to assess the effect of both belowground soil microbes and nutrient availability on aboveground herbivores and their predators. Herbivore density in the field was suppressed by carbon supplements. Carbon addition altered soil microbial dynamics (net potential ammonification, litter decomposition rate, DON [dissolved organic N] concentration), which limited inorganic soil nitrogen availability and reduced plant size as well as predator abundance. Nitrogen addition enhanced herbivore density by increasing plant size and quality directly by increasing inorganic soil nitrogen pools, and indirectly by enhancing microbial nitrification. Detritus adversely affected aboveground herbivores mainly by promoting predator aggregation. To date, the effects of carbon and nitrogen subsidies on salt marshes have been examined as isolated effects on either the aboveground or the belowground community. Our results emphasize the importance of directly addressing the soil microbial community as a factor that influences aboveground food web structure by affecting plant size and aboveground plant nitrogen.  相似文献   

18.
19.
Biological control (the importation of enemies from an invader's native range) is often considered our best chance of controlling the most widespread invaders. Ideally, the agent reduces invader abundance to some acceptably low level, and the two coexist at low density with the agent providing continuous control over the long-term. But the outcome may be complicated when the agent is attacked by native predators and parasites. We used a spatially explicit, discrete-time, individual-based, coupled plant-seed predator-parasitoid model to estimate the impact of the biocontrol agent Eustenopus villosus (a seed predator) on the invasive, annual weed Centaurea solstitialis, both with and without the generalist parasitoid Pyemotes tritici. We estimated the agent's ability to reduce plant density, spread rate, and population growth rate over 50 years. We used long-term demographic data from two sites in central California, USA, to parameterize the model and assess how populations in different climatic zones might respond differently to the agent and the parasitoid. We found that the biocontrol agent reduced plant density (relative to predictions for an uncontrolled invasion), but its impact on the invader's spread rate was modest and inconsistent. The agent had no long-term impact on population growth rate (lambda). Parasitism caused a trophic cascade, the strength of which varied between sites. At our coastal site, the parasitoid entirely eliminated the impact of the agent on the plant. At our Central Valley site, even when parasitized, the agent significantly reduced plant density and spread rate over several decades (although to a lesser degree than when it was not parasitized), but not invader lambda. Surprisingly, we also found that the length of time the invader was allowed to spread across the landscape prior to introducing the agent (5, 25, or 50 years) had little influence over its ability to control the weed in the long-term. This is encouraging news for land managers attempting to control invasive plants that have already established widespread, high-density populations. Unfortunately, our results also show that attack by the native generalist parasitoid had a larger influence over how effectively the agent reduced invader performance.  相似文献   

20.
Navarrete SA  Manzur T 《Ecology》2008,89(7):2005-2018
Investigating how food supply regulates the behavior and population structure of predators remains a central focus of population and community ecology. These responses will determine the strength of bottom-up processes through the food web, which can potentially lead to coupled top-down regulation of local communities. However, characterizing the bottom-up effects of prey is difficult in the case of generalist predators and particularly with predators that have large dispersal scales, attributes that characterize most marine top predators. Here we use long-term data on mussel, barnacle, limpet, and other adult prey abundance and recruitment at sites spread over 970 km to investigate individual- and population-level responses of the keystone intertidal sunstar Heliaster helianthus on the coast of Chile. Our results show that this generalist predator responds to changes in the supply of an apparently preferred prey, the competitively dominant mussel Perumytilus purpuratus. Individual-level parameters (diet composition, per capita prey consumption, predator size) positively responded to increased mussel abundance and recruitment, whereas population-level parameters (density, biomass, size structure) did not respond to bottom-up prey variation among sites separated by a few kilometers. No other intertidal prey elicited positive individual predator responses in this species, even though a large number of other prey species was always included in the diet. Moreover, examining predator-prey correlations at approximately 80, 160, and 200 km did not change this pattern, suggesting that positive prey feedback could occur over even larger spatial scales or as a geographically unstructured process. Thus individual-level responses were not transferred to population changes over the range of spatial scales examined here, highlighting the need to examine community regulation processes over multiple spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号