首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The complexities inherent in land use, land-use change and forestry (LULUCF) activities have led to contentious and prolonged debates about the merits of their inclusion in the 2008–2012 first commitment period of the Kyoto Protocol. Yet the inclusion of these activities played a key role in agreement on the general framework of the Kyoto Protocol, and LULUCF will likely continue to play a substantial part in negotiations on national commitments post-2012. The Marrakech Accords dictate which LULUCF activities are to be included under the Kyoto Protocol and provide rules on how they are to be accounted in the first commitment period. However, these rules have limitations and drawbacks that may be avoided in the structure of future commitments beyond 2012. Through adherence to the objectives of the United Nations Framework Convention on Climate Change (UNFCCC), and the incorporation of several critical features, a future framework can more effectively address the mitigation challenges and opportunities of this sector.  相似文献   

2.
This paper provides an overview of the rules for accounting emissions of land use, land use change and forestry (LULUCF) for the first commitment period of the Kyoto Protocol. It first describes the rules in detail, it then provides an overview of the history of negotiations that led to these rules and provides resulting conclusions for future international climate negotiations. We conclude that the current rules can be better understood in the light of the negotiation history. For the future, we conclude that first an agreement on the objectives of including LULUCF in the future climate regime should be developed, e.g. to contribute significantly to the ultimate objective of the convention. Further, a solid set of data should be developed that can assess the magnitude of possible options. The rules should be scientifically sound, complete and balanced as well as unambiguous before the quantitative targets are defined. They should further be simple and inclusive to include all carbon pools, i.e. provide incentives to avoid deforestation and unsustainable logging in all countries.  相似文献   

3.
Greenhouse gas (GHG) data submitted in April 2014 on land use, land use change and forestry (LULUCF), energy, industrial processes, solvents and other product use, agriculture, and waste for 37 developed countries was analyzed to estimate the relative contributions of different sectors to GHG emission reductions. This GHG data from the first commitment period of the Kyoto Protocol included 35 parties to Annex B of the Kyoto Protocol, the United States and Canada. Results show that the contribution of each sector was, in order: energy (36.9%), industrial processes (12.4%), agriculture (9.9%), LULUCF (7.7%), waste (3.4%), and solvents and other product use (0.1%). The average proportion of base year emissions reduced in each sector by countries in Annex B was, in order: energy (7.4%), agriculture (2.7%), LULUCF (1.9%), industrial processes (1.2%), waste (0.5%), and solvents and other product use (0.1%). Overall, the energy sector contributed the highest GHG emission reductions, while the agriculture and LULUCF sectors also made contributions. Most countries achieved limited absolute GHG reductions from their chosen LULUCF activities, but the relative contribution of GHG emission reductions from LULUCF was significant but small. This suggests that, unless there are substantial changes to accounting rules, future emission reductions will mainly result from mitigation actions targeting fossil fuel consumption, while the agriculture and LULUCF sectors will continue to play auxiliary roles.  相似文献   

4.
The clean development mechanism (CDM) is a flexible mechanism under the Kyoto Protocol, which makes it possible for developed countries to offset their emissions of greenhouse gases through investing in climate change mitigation projects in developing countries. When the mitigation benefit of a CDM project is quantified, measurable uncertainties arise that can be minimised using established statistical methods. In addition, some unmeasurable uncertainties arise, such as the rebound effect of demand-side energy efficiency projects. Many project types related to land use, land-use change and forestry (LULUCF) have been excluded from the CDM in part because of the high degree of statistical uncertainty in measurements of the carbon sink and risk of non-permanence. However, recent discussions within the United Nations Framework Convention on Climate Change (UNFCCC) have opened up for the possibility of including more LULUCF activities in the future. In the light of this discussion, we highlight different aspects of uncertainties in LULUCF projects (e.g. the risk of non-permanence and the size of the carbon sink) in relation to other CDM project categories such as renewables and demand-side energy efficiency. We quantify the uncertainties, compare the magnitudes of the uncertainties in different project categories and conclude that uncertainties could be just as significant in CDM project categories such as renewables as in LULUCF projects. The CDM is a useful way of including and engaging developing countries in climate change mitigation and could be a good source of financial support for LULUCF mitigation activities. Given their enormous mitigation potential, we argue that additional LULUCF activities should be included in the CDM and other future climate policy instruments. Furthermore, we note that Nationally Appropriate Mitigation Actions (NAMAs) are currently being submitted to the UNFCCC by developing countries. Unfortunately, the under-representation of LULUCF in comparison to its potential is evident in the NAMAs submitted so far, just as it has been in the CDM. Capacity building under the CDM may influence NAMAs and there is a risk of transferring the view on uncertainties to NAMAs.  相似文献   

5.
Climate change caused by excessive emission of greenhouse gases (GHGs) into the atmosphere has gained serious attention from the global community for a long time. More and more countries have decided to propose their goals such as Paris agreements, to reduce emitting these heat trapping compounds for sustainability. The Asian region houses dramatic changes with diverse religions and cultures, large populations as well as a rapidly changing socio-economic situations all of which are contributing to generating a mammoth amount of GHGs; hence, they require calls for related studies on climate change strategies. After pre-filtering of GHG emission information, 24 Asian countries have been selected as primary target countries. Hierarchical cluster analysis method using complete linkage technique was successfully applied for appropriate grouping. Six groups were categorized through GHG emission properties with major and minor emission sectors based on the GHG inventory covering energy, industrial processes, agriculture, waste, land use change, and forestry and bunker fuels. Assigning six groups using cluster analysis finally implied that the approach to establish GHG emission boundaries was meaningful to develop further mitigation strategies. Following the outcome of this study, calculating amount of reduction potential in suitable sectors as well as determining best practice, technology, and regulatory framework can be improved by policy makers, environmental scientists, and planners at the different levels. Therefore, this work on reviewing a wide range of GHG emission history and establishing boundaries of emission characteristics would provide further direction of effective climate change mitigation for sustainability and resilience in Asia.  相似文献   

6.
Carbon emissions from tropical deforestation account for about 25% of all anthropogenic carbon dioxide emissions but cannot be credited under current climate change agreements. In the discussions around the architecture of the post-2012 climate regime, the possibility of including credits for reduced emissions from deforestation arises. The paper reviews two approaches for this, compensated reductions (CR) as proposed by Santilli et al. and the Joint Research Centre proposal that combine voluntary commitments by non-Annex I countries to reduce emissions from deforestation with carbon market financing. Both approaches have the clear advantages of simplicity and the possibility of fitting to an evolving greenhouse gas emission reduction regime. The authors consider the strengths and limitations of each proposal and build upon them to address several implementation challenges and options for improvement. Given the urgency of avoiding dangerous climate change, the timely development of technically sound, politically acceptable, cost-effective and practicable measures to reduce emissions from deforestation and forest degradation is essential. These two approaches take us a step closer to this goal, but they need to be refined rapidly to enable this goal to be realised.  相似文献   

7.
The Kyoto Protocol was agreed on by more than 150 nations in December, 1997 and (if and when ratified) will establish international commitments to reduce emissions of greenhouse gases to the atmosphere. Under the Kyoto Protocol, some of the carbon emissions and removals within the land-use change and forestry sector can be counted toward a country's commitments for greenhouse gas emissions reductions. In addition to the impacts that land-use practices have on CO2 emissions from fossil-fuel combustion, changes in the carbon stocks of forests (possibly including forest soils) caused by the direct human activities afforestation, reforestation and deforestation and taking place in the `first commitment period' (2008–2012), are to be accounted for under the Kyoto Protocol. Credits for carbon sinks in the biosphere are limited to projects initiated since 1990. A modified version of the model GORCAM has been used to assess eligible emission-reduction credits under the Kyoto regime and to illustrate how the optimal forest-based strategy for carbon dioxide mitigation might change under the provisions of the Kyoto Protocol. The Kyoto Protocol offers rewards for only some of the changes in carbon stocks that might occur and hence the forestry project that produces the most emission reduction credits under the Kyoto Protocol is not necessarily the same project that produces the greatest benefit for net emissions of carbon dioxide to the atmosphere. Supplementing the Protocol with appropriate definitions, interpretations and agreements could help to make sure that it does not provide incentive for activities that run counter to the objectives of the Framework Convention on Climate Change.  相似文献   

8.
Climate change adaptation in the ski industry   总被引:4,自引:0,他引:4  
Regardless of the success of climate change mitigation efforts, the international community has concluded that societies around the world will need to adapt to some magnitude of climate change in the 21st century. While some economic sectors (e.g., agriculture, water resources and construction) have been actively engaged in climate change adaptation research for years, adaptation has received scant consideration within the tourism-recreation industry. This is particularly the case for adaptation by tourism operators (supply-side). One exception where progress on supply-side climate adaptation has been made is the ski industry. This paper provides a brief overview of the literature on the implications of climate change for the international ski industry and how adaptation by ski area operators has been treated within these studies. This is followed by an inventory of climate adaptation practices currently used by ski industry stakeholders, including the historical development of certain key adaptations and constraints to wider use. The characteristics of ski areas with higher adaptive capacity are identified. Considering the highly competitive nature of the ski industry and the generally low climate change risk appraisal within the industry, climate change adaptation is anticipated to remain individualistic and reactive for some time. With only a few exceptions, the existing climate change literature on winter tourism has not considered the wide range of adaptation options identified in this paper and has likely overestimated potential damages. An important task for future studies is to develop methodologies to incorporate adaptation so that a more accurate understanding of the vulnerability of the international ski industry can be ascertained.  相似文献   

9.
The purpose of this research is to analyze different factors behind the disclosure of corporate information on issues related to opportunities arising from climate change worldwide.To achieve that purpose we formulated a dependency model in which the dependent variable corresponds to the creation of a disclosure index on greenhouse gas emissions based on the opportunities arising from climate change and disclosed by companies on their websites. The sample used comprises companies from different countries and activity sectors considered as the most sensitive to greenhouse gas emissions.The results obtained point out that companies with higher environmental performance disclose a larger volume of information on opportunities arising from climate change on their websites, compared to companies with lower environmental performance. Likewise, companies from countries that have ratified the Kyoto Protocol disclose a higher volume of information on greenhouse gas emissions on their websites, compared to companies from countries which have not ratified it.  相似文献   

10.
The Kyoto Protocol accounting system and its market mechanisms, Clean Development Mechanism (CDM) and Joint Implementation (JI), are built on the key principle that emission and emission reduction units generated by afforestation/reforestation activities under national systems and projects are fully comparable, no matter their origin. Lack of consistency in the quality of emission and emission reduction units can undermine the environmental integrity of the climate stabilization actions. Therefore, it is the ambition that units generated in the land-use, land-use change and forestry (LULUCF) sector are of similar quality with those from non-LULUCF sectors. In this paper, the authors pose the question of whether there is full estimation and accounting consistency between Annex I Party’s national GHG systems and CDM projects methodologies in the LULUCF sector, in terms accuracy, completeness, levels of uncertainty and permanence risk. We focus on methodological aspects related to the applicability and practicability of using approved afforestation/reforestation CDM methodologies; estimation, reporting and accounting rules; the small pools and sources issue, uncertainty of removal estimate; leakage and handling of non-permanence risk. We conclude that there is significant scope for improving the consistency of greenhouse gas emission accounting from land use activities in the post-2012 climate change agreement, between Annex I domestic and project activities. As well, we conclude that the preparation and implementation of project activities has to be made simpler by a project framework guideline, which is then adapted to any project circumstances.  相似文献   

11.
Taking the European Union (EU) as a case study, we simulate the application of non-uniform national mitigation targets to achieve a sectoral reduction in agricultural non-carbon dioxide (CO2) greenhouse gas (GHG) emissions. Scenario results show substantial impacts on EU agricultural production, in particular, the livestock sector. Significant increases in imports and decreases in exports result in rather moderate domestic consumption impacts but induce production increases in non-EU countries that are associated with considerable emission leakage effects. The results underline four major challenges for the general integration of agriculture into national and global climate change mitigation policy frameworks and strategies, as they strengthen requests for (1) a targeted but flexible implementation of mitigation obligations at national and global level and (2) the need for a wider consideration of technological mitigation options. The results also indicate that a globally effective reduction in agricultural emissions requires (3) multilateral commitments for agriculture to limit emission leakage and may have to (4) consider options that tackle the reduction in GHG emissions from the consumption side.  相似文献   

12.
Most research linking global environmental change and food security focuses solely on agriculture: either the impact of climate change on agricultural production, or the impact of agriculture on the environment, e.g. on land use, greenhouse gas emissions, pollution and/or biodiversity. Important though food production is, many other factors also need to be considered to understand food security. A recent international conference on “Environmental Change and Food Security: Bridging Science, Policy and Development for Adaptation” included a range of papers that embraced the multiple dimensions of the food systems that underpin food security. The major conclusion from the conference was that technical fixes alone will not solve the food security challenge. Adapting to the additional threats to food security arising from major environmental changes requires an integrated food system approach, not just a focus on agricultural practices. Six key issues emerged for future research: (i) adapting food systems to global environmental change requires more than just technological solutions to increase agricultural yields; (ii) tradeoffs across multiple scales among food system outcomes are a pervasive feature of globalized food systems; (iii) within food systems, there are some key underexplored areas that are both sensitive to environmental change but also crucial to understanding its implications for food security and adaptation strategies; (iv) scenarios specifically designed to investigate the wider issues that underpin food security and the environmental consequences of different adaptation options are lacking; (v) price variability and volatility often threaten food security; and (vi) more attention needs to be paid to the governance of food systems.  相似文献   

13.
Mainstream literature on climate change concentrates overwhelmingly on technological solutions for this global long-term problem, while a change towards climate-friendly behaviour could play a role in emission reduction and has received little attention. This paper focuses on the potential climate mitigation by behavioural change in the European Union (EU) covering many behavioural options in food, mobility and housing demand which do not require any personal up-front investment. We use the Global Change Assessment Model (GCAM), capturing both their direct and indirect implications in terms of greenhouse gas emissions. Our results indicate that modest to rigorous behavioural change could reduce per capita footprint emissions by 6 to 16%, out of which one fourth will take place outside the EU, predominantly by reducing land use change. The domestic emission savings would contribute to reduce the costs of achieving the internationally agreed climate goal of the EU by 13.5 to 30%. Moreover, many of these options would also yield co-benefits such as monetary savings, positive health impacts or animal wellbeing. These results imply the need for policymakers to focus on climate education and awareness programs more seriously and strategically, making use of the multiple co-benefits related with adopting pro-environmental behaviour. Apart from that, the relevance of behavioural change in climate change mitigation implies that policy-informing models on climate change should include behavioural change as a complement or partial alternative to technological change.  相似文献   

14.
The papers in this Special Issue are the primary technical underpinnings for the Northeast Climate Impacts Assessment (NECIA), an integrated regional-scale assessment of projected climate change, impacts and options for mitigation and adaptation across the US Northeast. The consequences of future pathways of greenhouse gas emissions on projected climate and impacts across climate-sensitive sectors is assessed by using downscaled projections from three global climate models under both higher (Alfi) and lower (B1) emissions scenarios. The findings illustrate that near-term reductions in emissions can greatly reduce the extent and severity of regionally important impacts on natural and managed ecosystems and public health in the latter half of this century, and increase the feasibility that those impacts which are now unavoidable can be successfully managed through adaptation.  相似文献   

15.
Adaptation pathways are developed to design adaptive policies to handle climate change uncertainty. Use of this tool varies across planning practices and adaptation challenges and adjusting the tool to particular practices can foster its adequate use. To gain insight into the use of adaptation pathways, we compared four initiatives (one each in Portugal and the Czech Republic and two in the Netherlands) with regard to design choices made. We found six design choices which need to be considered when adjusting adaptation pathways. Design choices about the geographic scale, inclusion of sectors, the generation and delineation of adaptation options, specification of possible pathways, the related performance metrics and the type of assessment are interdependent, but they are also influenced by contextual aspects. Analysis of the institutional diversity, planning culture and framing shows that the use of adaptation pathways is flexible enough to be adjusted for diverging planning practices. However, the tool is best suited to deliver local adaptation solutions, and adequate use depends on consensus about the adaptation problem, setting objective thresholds and determining uncertainty about future change. We conclude that understanding the customised use of tools for local planning practices is essential for adaptive policy design.  相似文献   

16.
Anthropogenic climate change is progressively transforming the environment despite political and technological attempts to reduce greenhouse gas emissions to tackle global warming. Here we propose that greater insight and understanding of the health-related impacts of climate change can be gained by integrating the positivist approaches used in public health and epidemiology, with holistic social science perspectives on health in which the concept of ‘wellbeing’ is more explicitly recognised. Such an approach enables us to acknowledge and explore a wide range of more subtle, yet important health-related outcomes of climate change. At the same time, incorporating notions of wellbeing enables recognition of both the health co-benefits and dis-benefits of climate change adaptation and mitigation strategies across different population groups and geographical contexts. The paper recommends that future adaptation and mitigation policies seek to ensure that benefits are available for all since current evidence suggests that they are spatially and socially differentiated, and their accessibility is dependent on a range of contextually specific socio-cultural factors.  相似文献   

17.
This two-part paper considers the complementarity between adaptation and mitigation in managing the risks associated with the enhanced greenhouse effect. Part one reviews the application of risk management methods to climate change assessments. Formal investigations of the enhanced greenhouse effect have produced three generations of risk assessment. The first led to the United Nations Intergovernmental Panel on Climate Change (IPCC), First Assessment Report and subsequent drafting of the United Nations Framework Convention on Climate Change. The second investigated the impacts of unmitigated climate change in the Second and Third IPCC Assessment Reports. The third generation, currently underway, is investigating how risk management options can be prioritised and implemented. Mitigation and adaptation have two main areas of complementarity. Firstly, they each manage different components of future climate-related risk. Mitigation reduces the number and magnitude of potential climate hazards, reducing the most severe changes first. Adaptation increases the ability to cope with climate hazards by reducing system sensitivity or by reducing the consequent level of harm. Secondly, they manage risks at different extremes of the potential range of future climate change. Adaptation works best with changes of lesser magnitude at the lower end of the potential range. Where there is sufficient adaptive capacity, adaptation improves the ability of a system to cope with increasingly larger changes over time. By moving from uncontrolled emissions towards stabilisation of greenhouse gases in the atmosphere, mitigation limits the upper part of the range. Different activities have various blends of adaptive and mitigative capacity. In some cases, high sensitivity and low adaptive capacity may lead to large residual climate risks; in other cases, a large adaptive capacity may mean that residual risks are small or non-existent. Mitigative and adaptive capacity do not share the same scale: adaptive capacity is expressed locally, whereas mitigative capacity is different for each activity and location but needs to be aggregated at the global scale to properly assess its potential benefits in reducing climate hazards. This can be seen as a demand for mitigation, which can be exercised at the local scale through exercising mitigative capacity. Part two of the paper deals with the situation where regional bodies aim to maximise the benefits of managing climate risks by integrating adaptation and mitigation measures at their various scales of operation. In north central Victoria, Australia, adaptation and mitigation are being jointly managed by a greenhouse consortium and a catchment management authority. Several related studies investigating large-scale revegetation are used to show how climate change impacts and sequestration measures affect soil, salt and carbon fluxes in the landscape. These studies show that trade-offs between these interactions will have to be carefully managed to maximise their relative benefits. The paper concludes that when managing climate change risks, there are many instances where adaptation and mitigation can be integrated at the operational level. However, significant gaps between our understanding of the benefits of adaptation and mitigation between local and global scales remain. Some of these may be addressed by matching demands for mitigation (for activities and locations where adaptive capacity will be exceeded) with the ability to supply that demand through localised mitigative capacity by means of globally integrated mechanisms.  相似文献   

18.
Climate change objectives of mitigation and adaptation are being mainstreamed into many policies and strategies around the world. In Europe, this has included the Rural Development Programme, which aims to tackle multiple social, economic and environmental objectives in rural areas, and the integration of climate change objectives adds another strand of complexity to the decision making process. When formulating policies determining the likely effectiveness of any particular measure can be challenging, especially with respect to the spatial and temporal variability of greenhouse gas emissions. This is a challenge faced by all countries and regions around the world. This study uses Europe as an example to explore this issue. It highlights the variability in emissions from land use operations that may be encountered under different conditions and time horizons and considers this in the context of policy formulation. The Optimal Strategies for Climate change Action in Rural Areas software has been adapted to derive net greenhouse gas emissions for rural development operations for all regions in Europe. Operations have been classified into five categories based on their benefit/burden over different time horizons. The analysis shows that it is important to understand the time period over which benefits or burdens are realised and determine how this fits with policy instruments, such as land management agreements and the permanency of actions. It also shows that in some regions an operation can have benefits, but in other regions it has burdens; thus, location can be critical. Finally, in the context of developing operations to meet multiple social, economic and environmental objectives, it is important to acknowledge that seeking options that only reduce emissions may not always be practical or possible. In some instances, we may have to accept an increase in emissions in order to meet other objectives. It is important that we evaluate the net greenhouse gas emissions of all operations, not just those aimed at climate change mitigation. We can then select those with the least burden in the process of developing optimal solutions to meet multiple objectives.  相似文献   

19.
Climatic changes more rapid and extreme than assessed by the IPCC cannot be excluded, because of the possibility of positive earth system feedbacks and thresholds. Do today’s policy makers have to take these into account, and if so, are the options different from those considered today? The paper briefly summarizes the types of extreme climatic changes noted in the literature and then evaluates the options to address them in a what-if manner. Different from other studies, which usually look at only one type of measure, we consider a broader portfolio of options: drastic emissions reduction programmes, drawing greenhouse gases from the atmosphere (“carbon dioxide removal”), “emergency cooling” through influencing the radiative balance of the atmosphere (“solar radiation management”), and finally adaptation beyond the options considered seriously today. Politics will have to decide on the choice or mix of “emergency” measures, but research can ensure that such decisions are based on the best scientific information. If through concerted international efforts to mitigate greenhouse emissions low stabilization levels could be reached, such decisions may never have to be made. However, research in support of some form of a “plan B” is now warranted, focusing on those options that have the most positive ratio between potential effectiveness and feasibility on the one hand, and environmental and political risks on the other hand. Such plan should not be limited to one set of options such as geo-engineering and should explicitly take into account not only the relationships between the options but also the wide variety in characteristics of the individual options in terms of effectiveness, feasibility, environmental risks, and political implications.  相似文献   

20.
Over the last 20 years, climate change has become an increasing concern for scientists, public opinions and policy makers. Due to the pervasive nature of its impacts for many important aspects of human life, climate change is likely to influence and be influenced by the most diverse policy or management choices. This is particularly true for those interventions affecting agriculture and forestry: they are strongly dependent on climate phenomena, but also contribute to climate evolution being sources of and sinks for greenhouse gases (GHG). This paper offers a survey of the existing literature assessing cost-effectiveness and efficiency of greenhouse gas mitigation strategies or the effects of broader economic reforms in the agricultural and forestry sectors. The focus is mainly on European countries. Different methodological approaches, research questions addressed and results are examined. The main findings are that agriculture can potentially provide emissions reduction at a competitive cost, mainly with methane abatement, while carbon sequestration seems more cost-effective with appropriate forest management measures. Afforestation, cropland management and bioenergy are less economically viable measures due to competition with other land use. Mitigation policies should be carefully designed either to balance costs with expected benefits in terms of social welfare. Regional variability is one of the main drawbacks to fully assess the cost-effectiveness of different measures. Integration of models to take into account both social welfare and spatial heterogeneity seems to be the frontier of the next model generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号