首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical composition of kelps (e.g. polyphenolics) deters grazing by herbivores, but kelp detritus is potentially a source of nutrition for suspension feeders. The effects of kelp detritus derived from two species [Agarum fimbriatum Harvey and Costaria costata (Turner) Saunders] on feeding of oysters, Crassostrea gigas Thunberg, and mussels, Mytilus trossulus Gould, were examined in feeding experiments. Fresh and aged kelp particles were sequentially presented in combination with the microalga Rhodomonas lens at an initial total concentration of 5᎒-4 ml-1. Aging of kelp particles for 4 days in seawater significantly reduced the concentration of polyphenolics without changing the total carbon or nitrogen content. Clearance rates of both mussels and oysters were significantly lower in the presence of fresh versus aged kelp particles, and clearance rates declined overall with declining polyphenolic concentrations. Video endoscopy was used to examine feeding selectivity at the level of the gill in oysters in the same food treatments used in the clearance rate experiments. Comparison of particle composition in the water versus the pseudofeces in both oysters and mussels was also used as a measure of feeding selectivity. When presented with R. lens in combination with fresh and aged kelp particles selectivity for R. lens tended to be greater against fresh than aged particles, and there was some indication that this was stronger for A. fimbriatum than for C. costata particles. The ability to select was lower at very high polyphenolic concentrations, which may reflect poisoning of sensory binding sites. These data suggest that bivalves distinguish among particles of varying chemical composition and respond by changing their clearance rates and their selectivity.  相似文献   

2.
The anatomical distributions of sterols and the incorporation of dietary phytosterols into different organs were studied in two populations of sea scallops, Placopecten magellanicus Gmelin, collected in 1989 from Georges Bank (Nova Scotia) and St. Pierre Bank (Newfoundland), respectively. In contrast to the well-established organ-specific lipid classes and fatty-acid compositions usually found in marine animals, the major organs of wild sea scallops (adductor muscle, digestive gland, gonads, gills and mantle) had the same sterol compositions. In order to know if anisomyarian bivalves require a uniform anatomical distribution of sterols, wild scallops were subjected to a microalgal diet containing high concentrations of brassicasterol, -sitosterol and cholesterol. The sterol composition of the scallop adductor muscle was not changed by 6 wk of feeding on the experimental diet. In contrast, the proportions of brassicasterol, -sitosterol and cholesterol in the digestive gland, and of brassicasterol and cholesterol in the male gonad, increased significantly (p<0.05). These results showed that the typical even anatomical distribution of sterols of bivalves can be disrupted by a drastic change in diet and is therefore not subject to strict internal regulation. Furthermore, the P. magellanicus results indicate that, although sea scallops may be capable of sterol biosynthesis, the incorporation of unmodified dietary phytosterols plays an influential role in establishing their sterol composition.ORNL is managed by Martin Marietta Energy Systems for the US Department of Energy, under contract DE-ACOS-8-10R21400  相似文献   

3.
Suspension-feeding molluscs are important members of coastal communities and a large body of literature focuses on their feeding processes, including the efficiency of particle capture. Some molluscs, such as bivalves, capture individual picoplankton cells (0.2–2.0 μm) with a retention efficiency of less than 50%, leading to the assumption that such particles are not an important food resource. Picoplankton, however, are often concentrated in particle aggregates of much larger size. This study investigates the ability of suspension feeders to ingest picoplankton-size particles (0.2–2.0 μm) bound in marine aggregates. We fed clams (Mercenaria mercenaria), mussels (Mytilus edulis), oysters (Crassostrea virginica), scallops (Argopecten irradians) and slipper snails (Crepidula fornicata) 1.0- and 0.5-μm fluorescent particles (either polystyrene beads or bacteria) that were (1) dispersed in seawater, or (2) embedded within laboratory-made aggregates. Dispersed 10-μm beads were also delivered so that feeding activity could be determined. Ingested fluorescent particles were recovered in feces or isolated digestive glands and quantified. Results indicate that aggregates significantly enhance the ingestion of 1.0- and 0.5-μm beads by all species of bivalves, and enhance the ingestion of bacteria (greatest cell dimension ca. 0.6 μm) by all suspension feeders examined. Differences among species in their ability to ingest aggregates and picoplankton-size particles, however, were evident. Compared to mussels and clams, scallops and oysters ingested fewer aggregates with 1.0-μm beads or bacteria, and slipper snails ingested the most dispersed beads and bacteria. These differences may be a consequence of variations in gill structure and mechanisms of particle processing. Our data demonstrate that suspension feeders can ingest picoplankton-size particles that are embedded within aggregates, and suggest that such constituent particles may be an important food resource.  相似文献   

4.
Paralytic shellfish poisoning (PSP) toxins can be accumulated by bivalves through the feeding process; therefore, knowledge on feeding and the assimilation of PSP-toxin-containing algae is critical to understand the kinetics of PSP toxins in these bivalves. In the South China Sea, it has been documented that the scallop Chlamys nobilis has a much higher PSP toxin burden than the clam Ruditapes philippinarum. Experiments were therefore carried out to assess whether the difference in toxin burden between these two species of bivalves was due to differences in feeding and absorption. In a mixed diet of Alexandrium tamarense (a PSP-toxin-producing dinoflagellate) and Thalassiosira pseudonana (a non-toxic diatom), the maximum clearance and filtration rates were about two times higher in the scallop C. nobilis than in the clam R. philippinarum. Furthermore, the clams produced pseudofeces at a lower cell density than the scallops. However, we found that the clams were unable to selectively exclude the toxic dinoflagellates by pseudofeces production. The scallop C. nobilis also possessed a greater ability to assimilate A. tamarense with a comparable carbon absorption efficiency to the diatom T. pseudonana. In contrast, the carbon absorption in the clam R. philippinarum was lower when feeding on A. tamarense than on the diatom. In general, the absorption efficiency decreased with increasing concentration of A. tamarense. Thus, it is likely that the higher PSP toxin levels in the scallops compared with clams can be partly explained by differences in their feeding and absorption behavior. Other processes, especially the biotransformation and biokinetics of PSP toxins, may also play a significant role in defining the inter-species differences in PSP body burden in marine bivalves.  相似文献   

5.
We examined trace metal ingestion and assimilation (Cd, Se, Zn) by the green mussel Perna viridis in a mixture of diatoms and sediment at concentrations below and above the pseudofeces production levels. Dual gamma radiotracers (109Cd, 65Zn) were used to investigate particle selection on marine diatoms and sediments. The diatom (Thalassiosira weissflogii) was radiolabeled with 109Cd, and the natural sediment was radiolabeled with 65Zn. By comparing the ratios of 109Cd:65Zn in the particle mixture, mussel tissues and pseudofeces within a short-term exposure period (35 min), the results demonstrated that the green mussels were able to selectively ingest the diatom particles at a high particle load. Efficiency of selection for nutritious particles (e.g. diatoms) increased with increasing ratio of sediments in the particle mixture. Pseudofeces contained a higher ratio of sediments relative to that in the feeding suspension. No major particle selection was observed at concentrations below the level for pseudofeces production. The assimilation of Cd, Se and Zn by the green mussels was quantified using a pulse-chase feeding technique. The assimilation of Se and Zn by the green mussels from ingested diatoms was reduced with the presence of sediment within the mussel gut, presumably due to the resorption of metals onto the sediment, leading to a quicker passage of metals through the digestive tract and a lower proportion of metals subjected to intensive digestion. In contrast, the presence of diatoms did not significantly affect metal assimilation from ingested sediment. A significant correlation between metal assimilation efficiency and metal gut passage time was also observed. Metal assimilation by the green mussels appeared to be little dependent on the particle concentration in seawater. Our study suggests that particle selection may potentially alter metal influx from ingested food sources, particularly at high particle concentrations. Selective feeding of nutritious particles, coupled with a high assimilation efficiency from these ingested particles, may increase metal influx into mussels from the dietary phase.  相似文献   

6.
Sources of mortality in both wild and cultured populations of marine bivalves during postlarval stages remain largely unknown, but may be partly associated with the inability to meet energetic demands during intense morphogenesis. The development of the gills in postsettlement scallops (Placopecten magellanicus) from 0.35 to 14 mm in shell height (SH) was investigated using scanning electron microscopy to determine the degree of size-specific differentiation of the gills and evaluate potential ontogenetic constraints in food acquisition. Key transitional stages in morphogenesis, likely to exert pronounced effects on feeding function, were identified and correlated with scallop size. The gill was initially homorhabdic, with unreflected inner demibranchs forming a basket-like structure maintained by ciliary junctions. Gill reflection, immediately followed by accelerated proliferation of gill filaments and formation of outer demibranchs, occurred at ~1 mm SH. Outer demibranchs were fully formed at ~2 mm SH. Suspension-feeding is probably rather inefficient prior to attaining 1-2 mm sizes. The onset of the heterorhabdic, adult form of the gill, which allows bidirectional particle transport and the potential for selection and for volume regulation of ingested material on the gill, occurred fairly late in development, at ~3.3-5.0 mm SH. Full development of gill plication was delayed until scallops attained ~7 mm. Gill differentiation in this species is thus relatively protracted and punctuated by critical transitional stages, which may be important in determining feeding and growth capacity of postlarval wild and cultured populations.  相似文献   

7.
Multilocus allozyme heterozygosity (MLH) has been positively correlated with growth in some marine bivalves and was suggested to facilitate swimming activity in pectinids. Using two highly mobile scallops, Placopecten magellanicus and Argopecten purpuratus, we examined escape response performance and morphometric characteristics as a function of allelic variability at metabolic loci. Ten allozyme systems were used for A. purpuratus and 7 for P. magellanicus. In each species, the morphometric characteristics and escape response parameters were analyzed separately using principal components analysis (PCA) and the scores of the major principal components were related to allozyme heterozygosity. In both P. magellanicus and A. purpuratus, positive correlations were found between MLH and morphometric parameters, but escape response parameters were only positively linked to MLH in P. magellanicus, and then weakly. The hypothesis that MLH improves fitness of pectinids by increasing the capacity to escape predators is not supported.  相似文献   

8.
Eighteen percent and 47% of two populations of Ophiocoma echinata in the Florida Keys were undergoing regeneration. An individual would take approximately 720 days to completely regenerate three arms. Regeneration of three arms had a greater effect on gonad production in females than in males, and reduced storage material in the stomach of both. Regeneration in O. echinata was estimated to be 0.07 kJ m-2 day-1, which could provide the equivalent of 0.07% of primary production on a reef to higher trophic levels per day.  相似文献   

9.
In the larvae of many marine teleosts, the stomach is absent until they approach or attain metamorphosis. Consequently, the formation of chyme containing specific free amino acids from the gastric digestion of protein, which are believed to be signals initiating the release of the digestive hormone cholecystokinin (CCK), is lacking. CCK, when secreted into the blood circulation from specialized intestinal cells, stimulates gallbladder motility and is a key factor causing the release of pancreatic digestive enzymes into the gut lumen. Using first-feeding Atlantic herring larvae (Clupea harengus) as a model, the aim of the present study was to determine if a CCK response together with tryptic activity could be elicited in larvae ingesting dietary protein and/or FAA. Larvae were tube fed single lamellar liposome vesicles (SLV) containing: (1) physiological saline (PS), (2) bovine serum albumin (BSA), (3) specific free amino acids (FAA), or (4) a ratio (1:1) of BSA and FAA. The CCK and trypsin levels were then assayed (radio-immunoassay) at 0, 15, 60 and 120 min after tube feeding. A marked CCK response was elicited in all treatments compared to the PS control at 15 and 30 min and was significant (p<0.05) at 120 min after tube feeding. Larvae tube fed the FAA treatment exhibited CCK levels that increased linearly from 1.6 to 5.6 fmol mg-1 dry weight (DW) after 2 h of digestion, although this response was below the BSA and BSA:FAA treatments. The BSA and BSA:FAA treatments, after 15 min of digestion, showed a rapid CCK increase, over the PS and the FAA liposome treatments, to 8.1 and 5.4 fmol mg-1 DW, respectively. At the end of the assay, BSA and BSA:FAA demonstrated similar levels (10.2 and 9.2 fmol mg-1 DW, respectively). Larvae tube fed the PS control or the FAA liposome treatment did not demonstrate any appreciable increase in tryptic activity during the 2 h digestion period (0.03-0.071 and 0.03-0.048 mU mg-1 DW, respectively). In contrast, the BSA:FAA treatment increased from 0.03-0.148 mU mg-1 DW 1 h after feeding, which was significantly (p<0.05) higher than the PS and FAA liposomes, and then decreased markedly (0.085 mU mg-1 DW) after 2 h of digestion. The larvae tube fed BSA liposomes, however, demonstrated steadily increasing tryptic activity throughout the sampling period, attaining 0.255 mU mg-1 DW after 2 h, which was significantly (p<0.05) more than all the other treatments. The results showed that ingested liposomes containing FAA or the protein BSA or a combination of these two nutrients effectively stimulated CCK production in first-feeding herring larvae. In contrast, liposomes containing only physiological saline did not elicit a CCK response. In addition, liposomes containing BSA stimulated tryptic activity in herring larvae, which was not observed in fish fed liposomes that included only FAA or PS. This suggests that a suitable protein substrate is required to regulate protein digestion.  相似文献   

10.
Under laboratory conditions, the scallop Chlamys nobilis and the mussel Perna viridis were exposed to N-sulfocarbamoyl toxins (C2 toxin), a paralytic shellfish toxin (PST), by feeding a local toxic strain of the dinoflagellate Alexandrium tamarense (ATDP) that produced C2 toxin exclusively. The bivalves were subsequently depurated in the field, and their depuration kinetics, biotransformation and toxin distribution were quantified. Depuration was characterized by a rapid loss within the first day, followed by a secondary slower loss of toxins. In the fast depuration phase, scallops detoxified PSTs more quickly than the mussels (depuration rate constants for scallops and mussels were 1.16 day–1 and 0.87 day–1, respectively). In contrast, the mussels detoxified PSTs more quickly than the scallops in the slow depuration phase, and the calculated depuration rate constants (mean+SE) from day 2 to day 13 were 0.063+0.009 day–1 and 0.040+0.019 day–1 for mussels and scallops, respectively. The differences in the appearances of gonyautoxins, GTX2 and GTX3, and their decarbamoyl derivatives, dcGTX2, dcGTX3 and GTX5, which are all derivatives of C2 toxin, indicated active and species-specific biotransformation of the algal toxins in the two bivalves. In both species of bivalves, the non-viscera tissue contained fewer toxins and lower concentrations than the viscera-containing tissue compartment. In scallops, very little toxin was distributed in the adductor muscle. In mussels, most of the PSTs were found in the digestive gland with significant transport of toxins into the digestive gland from other tissues during the course of depuration. The toxin profiles of scallops and mussels differed from each other and from that of the toxic algae fed. A significant fraction of GTX5 was detected in the mussels but not in the scallops. Our study demonstrates a species specificity in the depuration kinetics, biotransformation and tissue distribution of PSTs among different bivalves.Communicated by T. Ikeda, Hakodate  相似文献   

11.
K. Hollertz 《Marine Biology》2002,140(5):959-969
This study of the burrowing heart urchin Brissopsis lyrifera includes measurements on feeding and food selection, ingestion rate, absorption efficiency, ventilation and respiration. B. lyrifera regulated feeding depth, ingestion rate and absorption efficiency in relation to food source. When food was added to the top layer of sediment, B. lyrifera burrowed closer to the surface and ingested mainly enriched surface material, whereas it burrowed deeper and ingested deep-seated sediment in the controls. In non-enriched sediment, the feeding rate was 0.04 g sediment DW h-1 ind.-1, and, in macro- and microalga-enriched sediment the feeding rate was 0.06 and 0.08 g sediment DW h-1 ind.-1, respectively. Absorption efficiency of TOC was about 43% in non-enriched sediment and in microalga-enriched sediment, but was significantly lower (34%) in macroalga-enriched sediment. Absorption efficiency of N varied between 48% and 55%, and was independent of food source. B. lyrifera feed selectively, enriching the gut TOC content about 2-fold and N content about 2.5-fold. The C/N ratio was therefore lower within the gut compared to the surrounding sediment, while the faecal C/N ratio was almost equal to the surrounding sediment. The faeces were, however, slightly richer in TOC and N compared to the surrounding sediment. For 3-5 cm long B. lyrifera, water current rate varied between 4 and 24 ml water h-1, with a mean of 11 ml h-1. Mean respiration rate was 205 µl O2 h-1 ind.-1. The water current rate was not sufficient for B. lyrifera to sustain itself by filter feeding only. However, organic-rich particles from the surface are suggested to be an important contribution to the diet. A carbon budget was calculated for B. lyrifera from measured values of consumption, absorption efficiency and respiration, in order to estimate annual production of B. lyrifera. Compared to literature values, growth was overestimated about tenfold in the budget. A large proportion of the absorbed carbon was suggested to leave the animal as dissolved carbon, through mucus production or through anaerobic pathways, either by the heart urchin or by micro-organisms in the gut.  相似文献   

12.
Significance of food type for growth of ephyrae Aurelia aurita (Scyphozoa)   总被引:1,自引:0,他引:1  
We studied growth of newly released Aurelia aurita ephyra larvae fed five different food types, including a large-sized copepod, a phytoflagellate, and suspended POM (particulate organic matter) made from bivalve meat. Experiments were run at saturated food concentration in two different temperatures over 10 days. The effect of small differences in temperature was inconsistent and interacted with the effect of food type, which, in turn, was highly significant. A low average growth rate (4-9% day-1) was shown when feeding on the large-sized copepod Calanus finmarchicus (80 µg AFDW individual-1), in spite of an extremely high daily ration of up to 1500% of body AFDW. When feeding on the cryptophyte Rhodomonas baltica (ca. 8 µm cell diameter), the ephyrae showed an average growth rate over the 10 day experiment of 7-11%, but with a considerably higher growth rate during the first days. Suspended POM generated an average growth rate of 7-9% day-1, whereas fresh bivalve meat, manually placed into the stomach of the ephyra, gave an average growth rate of 12-14% day-1. Artemia nauplii (ca. 3 µg AFDW individual-1), used as a general reference, resulted in higher growth rates than any of the other food types (17-31% day-1). We conclude that A. aurita ephyrae can capture and feed on phytoplankton, large copepods, and POM; that phytoplankton might be of nutritive significance early in development; and that the high quantity of large-sized copepods ingested is inefficiently converted to growth during early development. POM is a potential food source because of the ability of the ephyrae to encounter and ingest it, although concentration, size distribution, and nutritional composition of natural POM probably constrain its effect on growth.  相似文献   

13.
With the aim of improving the formulation of diets for early stages of marine fish, post-larval Hippoglossus hippoglossus (56 days after first feeding; 23 mg dry weight) were tube-fed liquid diets of radiolabelled L-(14C) free amino acids (FAA diet), peptides (PEPT diet) and protein (PROT diet), in order to compare the kinetics of transfer from gut into the liver and carcass. The test diets were prepared using equal concentrations of amino acids (AA) and fed as a single pulse (0.3 µl, 2.2 µg AA). The PROT diet consisted of methylated-14C-labelled (mainly lysine) bovine serum albumin (BSA), the PEPT diet was the PROT diet digested with trypsin and the FAA diet consisted of an amino acid mixture based on BSA composition with added 14C-lysine. The common labelling with 14C-lysine permitted a comparison of the three diets. Based on dissection and distribution of the tracer in each compartment, the FAA diet was almost completely absorbed 1 h after the tube-feeding; PEPT and PROT diets required more time before they were processed by the digestive tract. The FAA diet was absorbed about eight times as fast as protein and about six times as fast as peptides from the gut. A low retention of label in the liver for all diets at all sampling times suggests that the liver does not store the AA at these absorption rates. The FAA diet had a higher assimilation efficiency (about 90%) than the PEPT diet (about 12%) and PROT diet (about 32%). FAAs, thus, appear to be superior to protein and peptides as a dietary source of amino acids in post-larval Atlantic halibut.  相似文献   

14.
In aquaculture centers of the northern region of Japan, "Nami-ita" (waved polycarbonate plates), on which the green alga Ulvella lens Crouan frat. (Chaetophoraceae: Chaetophorales) was cultured, are used to promote larval settlement and metamorphosis of the sea urchin species Strongylocentrotus intermedius (A. Agassiz) and S. nudus (A. Agassiz). We investigated chemical inducer(s) for larval settlement and metamorphosis of these sea urchins with extracts of U. lens. Bioassay-guided separation of the methanol extract using a combination of column and thin-layer chromatography led to the isolation of several active compounds, the chemical structures of which were determined by spectral and chemical methods. These active compounds were identified as glycoglycerolipids, all comprising several molecular species: sulfoquinovosyl monoacylglycerols (SQMGs), sulfoquinovosyl diacylglycerols (SQDGs), monogalactosyl monoacylglycerols (MGMGs), monogalactosyl diacylglycerols (MGDGs), digalactosyl monoacylglycerols (DGMGs) and digalactosyl diacylglycerols (DGDGs). Among these glycolipids, SQMGs, MGMGs, MGDGs and DGMGs induced larval metamorphosis of the sea urchin S. intermedius. SQMGs and MGDGs induced larval metamorphosis at a concentration of 5 µg ml-1, whereas SQDGs and DGDGs only induced larval settlement. These glycoglycerolipids are new congeners of chemical inducers to settlement and metamorphosis of planktonic larvae of sea urchins. The findings would provide a better understanding of larval settlement and metamorphosis in sea urchins.  相似文献   

15.
D. Daby 《Marine Biology》2003,142(1):193-203
Seagrass distribution was recorded by snorkel dives on a grid of stations in the waterfront of Club Méditerranée at Mon Choisy-Trou Aux Biches lagoon (NW Mauritius) and subsequently mapped using SURFER 6 computer software. Above-ground (AG) and below-ground (BG) standing biomass in terms of dry weight (DW) and ash-free dry weight (AFDW) as well as shoot density and shoot length were monitored monthly from June1997 to May1998 in a mixed stand of Halodule uninervis and Syringodium isoetifolium (dominant) at a shallow, nearshore station in the lagoon. Measurements of physical and chemical parameters [water temperature, current speed, salinity, pH, dissolved oxygen (DO), nitrate and phosphate concentrations] were made simultaneously, as well as at a reference station (ORE) outside the coral reef. The bottom sediment was analysed for grain size and type composition. Variation patterns were examined and statistical correlations drawn to relate plant performance to the environmental variables measured. The SURFER 6 programme generated a satisfactory contour map of seagrass distribution in the lagoon with a cover range of 0-60%. The densest patches occurred adjacent to the shoreline experiencing weaker water currents (3-13 cm s-1) rather than near the reef (5-35 cm s-1), where seagrasses were absent. Sand (0.063-2 mm grain size) constituted 97.2% and 77.6% of the nearshore and near-reef sediment, respectively. The dominant grain types were derived from corals (about 80%) and mollusc shells (about 14%). The recorded range of total standing biomass for H. uninervis was 243.1-468.2 g DW m-2 (326.9ᇛ.7 g) or 71.7-141.2 g AFDW m-2 (96.8ᆨ.1 g) and for S. isoetifolium it was 271.7-758 g DW m-2 (460.4끯.1 g) or 119-220.5 g AFDW m-2 (155.1ᆮ.5 g), with a maximum biomass increase during September-December in both species. AG:BG biomass ratios were generally <1 and approximated 1 during the warmest months of December-February only. Mean shoot density (1,077-4,364 shoots m-2 in the overall range of 998-4,428 shoots m-2) and mean shoot length (10.9-20.8 cm in the overall range of 7-31 cm) in S. isoetifolium were higher than in H. uninervis (1,732-4,137 shoots m-2 in the overall range of 1,522-4,327 shoots m-2 and 7.9-13.7 cm in the overall range of 6-20 cm, respectively). Temperature showed strong positive correlations with total AFDW biomass of both species (r=0.755, P<0.01 for H. uninervis; r=0.679, P<0.02 for S. isoetifolium) and with DO (r=0.925, P<0.01). High DO levels (10.7-11.2 mg l-1) coincided with optimum standing biomass at 27.2°C. Correlations were also strong with shoot density (r=0.881, P<0.01 for H. uninervis; r=0.952, P<0.01 for S. isoetifolium) and shoot length (r=0.752, P<0.01 for H. uninervis; r=0.797, P<0.01 for S. isoetifolium). Under optimal environmental conditions, nutrient inputs from surface run-off or underground freshwater seepage in the lagoon due to heavy rainfall may boost up seagrass biomass, as suggested by positive significant correlations between phosphate levels and AG AFDW biomass (r=0.63, P<0.05 for H. uninervis; r=0.65, P<0.05 for S. isoetifolium) and shoot density (r=0.6, P<0.05 for H. uninervis; r=0.687, P<0.02 for S. isoetifolium). The results generated in this study suggest local seagrass standing biomass is comparable to that reported in monospecific stands from elsewhere. Anthropogenic activities increasingly draw down the resilience of the seagrass beds around Mauritius, and preventative measures are indispensable to achieve coastal ecological stability.  相似文献   

16.
J. McConaugha 《Marine Biology》2002,140(6):1227-1233
The apparent mismatch between the energy requirements for planktotrophic growth and prey availability has long been paradoxical. One hypothesis to explain this paradox is that planktotrophic larvae display plasticity in feeding mechanisms in response to variable prey types and concentrations. This hypothesis was tested by videotaping megalopae of the brachyuran crab Callinectes sapidus Rathbun feeding on various-sized prey. Frame-by-frame analysis of the videotapes indicated that C. sapidus megalopae used both raptorial and suspension feeding to capture prey while in the water column. Raptorial feeding was used to capture macro-zooplankton, including copepods. The swimming form of suspension feeding was based on a modified fling-and-clap mechanism using the chelipeds. Suspension feeding while at rest utilized a weak current generated by the mouthparts to direct prey to the mouth. Both suspension-feeding mechanisms resulted in the efficient capture of rotifer-sized particles. The energy/handling time ratios for all three feeding mechanisms are very similar (E/H range 0.016-0.019 µg C s-1) for the natural prey tested. These results support the hypothesis that feeding in brachyuran larvae is plastic and includes mechanisms of both raptorial and suspension feeding. The ability to suspension feed at rest is adaptive, since megalopae use selective tidal transport to re-invade an estuary and may spend up to 18 h day-1 clinging to a benthic substrate. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00227-002-0781-1.  相似文献   

17.
We developed a predictive relationship to determine the grazing rate of Brachionus plicatilis at given temperatures and food concentrations; this function could be applied to experimental culturing and aquaculture practices. Grazing experiments were conducted at temperatures between 5°C and 40°C and at food concentrations, of the flagellate Isochrysis galbana, ranging between ~0 and 106 ml-1. In total, 136 grazing rates were determined, using the prey depletion method, for rotifers acclimated to treatments for 0.5 or 4 h. The response of grazing rate to temperature and food concentration was described using a model that combined a rectangular hyperbolic function for food concentration and a sigmoidal function for temperature. Using non-linear curve-fitting methods an equation was obtained: G=(452F)/(159000+F)Ǵ.94/(1+2190002T-4.35) , where G is the grazing rate (flagellates rotifer-1 min-1), F is the food concentration (flagellates ml-1), and T is temperature (°C). The equation indicates a maximum grazing rate of ~35 prey rotifer-1 min-1, above ~4᎒5 prey ml-1 and 25°C.  相似文献   

18.
Mutlu  E. 《Marine Biology》2003,142(3):517-523
Swimming trajectories of Calanus euxinus Hulsemann in the Black Sea were studied using an echosounder at 120 and 200 kHz. C. euxinus were acoustically discriminated with respect to vertical migration and swimming speed, according to dissolved oxygen (DO) concentration and the timing of migrations. Species became torpid in water with DO values <0.5 mg lу. The time spent swimming under DO conditions between 2 and 5 mg lу was insignificant, and varied greatly from the 10% to 25% of total time spent swimming under normoxic conditions (5-10 mg lу). C. euxinus formed a concentration layer in the water of 1-3 m thickness. Upward migration was completed in about 3.5 h, starting 2.5 h before and ending 1 h after sunset (average rate: 0.95 cm sу) in summer. Species ascended discretely from the suboxic to the lower boundry of the cold intermediate layer (CIL) at 0.82 cm sу, and passed up the CIL and thermocline fast (2.3 cm sу). Downward migration took less time (2 h), starting ~1 h before and ending ~1 h after sunrise. Swimming speed within the thermocline and CIL was 2.7 cm sу; copepods subsequently returned to daylight depth at a sinking speed of 0.57 cm sу. Total time for C. euxinus to settle to their nocturnal depth layer was about 5 h.  相似文献   

19.
The fecundity of nine species of adult female calanoid copepods, and molting rates for copepodite stages of Calanus marshallae were measured in 24 h shipboard incubations from samples taken during the upwelling season off the Oregon coast. Hydrographic and chlorophyll measurements were made at approximately 300 stations, and living zooplankton were collected at 36 stations on the continental shelf (<150 m depth) and 37 stations offshore of the shelf (>150 m depth) for experimental work. In our experiments, maximum egg production rates (EPR) were observed only for Calanus pacificus and Pseudocalanus mimus, 65.7 and 3.9 eggs fem-1 day-1 respectively, about 95% of the maximum rates known from published laboratory observations. EPR of all other copepod species (e.g., C. marshallae, Acartia longiremis and Eucalanus californicus) ranged from 3% to 65% of maximum published rates. Fecundity was not significantly related to body weight or temperature, but was significantly correlated with chlorophyll a concentration for all species except Paracalanus parvus and A. longiremis. Copepod biomass and production in on-shelf waters was dominated by female P. mimus and C. marshallae, accounting for 93% of the adult biomass (3.1 mg C m-3) and 81% of the adult production (0.19 mg C m-3 day-1). Biomass in the off-shelf environment was dominated by female E. californicus, P. mimus, and C. pacificus, accounting for 95% of the adult biomass (2.2 mg C m-3) and 95% of the adult production (0.08 mg C m-3 day-1). Copepodite (C1-C5) production was estimated to be 2.1 mg C m-3 day-1 (on-shelf waters) and 1.2 mg C m-3 day-1 (off-shelf water). Total adult + juvenile production averaged 2.3 mg C m-3 day-1 (on-shelf waters) and 1.3 mg C m-3 day-1 (off-shelf waters). We compared our measured female weight-specific growth rates to those predicted from the empirical models of copepod growth rates of Huntley and Lopez [Am Nat (1992) 140:201-242] and Hirst and Lampitt [Mar Biol (1998) 132:247-257]. Most of our measured values were lower than those predicted from the equation of Huntley and Lopez. We found good agreement with Hirst and Lampitt for growth rates <0.10 day-1 but found that their empirical equations underestimated growth at rates >0.10 day-1. The mismatch with Hirst and Lampitt resulted because some of our species were growing at maximum rates whereas their composite empirical equations predict "global" averages that do not represent maximum growth rates.  相似文献   

20.
Fine mesh enclosures (0.9 m2 in basal area, 1 m high, with 100 µm mesh) and a jet-net retrieval system were developed to test the influence of juvenile prawn stocking density on growth rates in (1) different months (April and October/November) and (2) different types of intertidal seagrass beds in the Embley River estuary of tropical Australia. Small juvenile tiger prawns (3-6 mm in carapace length, CL) were stocked in enclosures at densities of 4-32 prawns per enclosure (4.4-35.5 prawns m-2) on a high biomass seagrass bed (about 70 g m-2 of mostly Enhalus acoroides) and one with low biomass (about 10 g m-2 of mostly Halodule uninervis). After 2-3 weeks in the enclosures, recovery rates, and hence possibly survival, were greater on the high biomass Enhalus than on the low biomass Halodule. However, not all fish and crustaceans could be excluded from the enclosures. Growth rates were twice as fast on the high biomass Enhalus than on the low biomass Halodule. It is likely that the high biomass Enhalus, with its greater surface area, supported more epiphytic flora and fauna and reduced the potential for interference competition between prawns, compared with the low biomass Halodule. Growth rates on Enhalus were significantly faster at a stocking density of 4 prawns per enclosure (1.3 mm CL week-1) than at a stocking density of 16 and 32 prawns per enclosure (both 0.8 mm CL week-1), and did not differ significantly between April and October/November (temperatures were about 30°C at both times). The mean growth rate at 8 prawns per enclosure (1.1 mm CL week-1) did not differ significantly from those at 4, 16 and 32 prawns per enclosure. These results from two seagrass beds suggest that the carrying capacity for juvenile tiger prawns was greater in the high biomass Enhalus than the low biomass Halodule bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号