首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Many eurythermal organisms alter composition of their membranes to counter perturbing effects of environmental temperature variation on membrane fluidity, a process known as homeoviscous adaptation. Marine intertidal gastropods experience uniquely large thermal excursions that challenge the functional integrity of their membranes on tidal and seasonal timescales. This study measured and compared membrane fluidity in marine intertidal snail species under three scenarios: (1) laboratory thermal acclimation, (2) thermal acclimatization during a hot midday low tide, and (3) thermal acclimatization across the vertical intertidal zone gradient in temperature. For each scenario, we used fluorescence polarization of the membrane probe DPH to measure membrane fluidity in individual samples of gill and mantle tissue. A four-week thermal acclimation of Tegula funebralis to 5, 15, and 25°C did not induce differences in membrane fluidity. Littorina keenae sampled from two thermal microhabitats at the beginning and end of a hot midday low tide exhibited no significant differences in membrane fluidity, either as a function of time of day or as a function of thermal microhabitat, despite changes in body temperature up to 24°C within 8 h. Membrane fluidities of a diverse group of snails collected from high, middle, and low vertical regions of the intertidal zone varied among species but did not correlate with thermal microhabitat. Our data suggest intertidal gastropod snails do not exhibit homeoviscous adaptation of gill and mantle membranes. We discuss possible alternatives for how these organisms counter thermal excursions characteristic of the marine intertidal zone.  相似文献   

2.
R. Kenny 《Marine Biology》1969,4(3):219-223
The resistance to high temperatures of two species of intertidal tube-dwelling polychaete worms has been tested to show seasonal and geographic variations. The summer 50% survival temperature at Beaufort, North Carolina, was 42.5 °C for Diopatra cuprea (Bosc) and 40.5 °C for Clymenella torquata (Leidy). Winter 50% survival temperatures for both species at Beaufort were approximately 4.0 C° lower. Both species showed a geographic difference in 50% survival temperature of more than 4.0 C° between North Carolina and Massachusetts in summer. D. cuprea from the Mississippi coast showed a lower survival temperature, probably due to combined temperature and salinity effects. Laboratory acclimation of C. torquata from Beaufort at low temperatures, during summer months, produced experimental results similar to those from winter animals. The seasonal differences in temperature tolerance are phenotypic expressions of a physiological response which can be related to environmental temperature patterns.  相似文献   

3.
Thermal metabolic acclimation patterns have been determined for cold-and warm-acclimated dimorphic males of the copepod Euterpina acutifrons. The copepods were acclimated either to 15° or 25°C. Metabolic measurements were made at the two acclimation temperatures. At 25 °C, the small males had a higher rate than the large ones. At 15 °C, the large males had the higher rate. The metabolic pattern of thermal acclimation is also distinctive in the two forms. Small males showed metabolic adaptation at the lower acclimation temperature (15 °C), but not at the higher acclimation temperature (25 °C). In the large males the acclimation patterns were reversed, i. e., these males acclimated at the higher temperature, not at the lower. The acclimation patterns based on Precht's (1958) scheme of acclimation are entirely different in the two forms.Supported by PHS grant 5-SO5-FR-07070-02.  相似文献   

4.
Along the west coast of North America, the invasive mussel Mytilus galloprovincialis and a native congener M. trossulus overlap in range and compete for habitat in an extensive hybrid zone along central California. The two species have been shown to exhibit differential abiotic tolerances in laboratory studies, yet little is known about how such tolerances affect spatial and temporal patterns of geographic distribution, particularly in areas of competition. We examined distributions of the two congeners and their hybrids in neighboring intertidal and subtidal habitats in Bodega Bay, CA over 2 years, and compared shell length and seasonal ubiquitin (Ub) conjugates to estimate protein turnover and physiological stress for the species at each site. The two species were spatially segregated, with M. galloprovincialis dominating the subtidal habitat, and M. trossulus constituting a majority of the intertidal mussel population. Hybrid individuals appeared in low numbers at both sites. For each habitat, there was no statistical difference between shell lengths of M. galloprovincialis and hybrids but M. trossulus mussels were statistically smaller than the other two. In regards to physiological performance, ubiquitin conjugate values showed different seasonal cycles for the two species, suggesting different periods of peak environmental stress. The highest levels of Ub-conjugated proteins were observed in winter for M. galloprovincialis and in summer for M. trossulus, consistent with the respective range edges for their distributions since Bodega Bay is near the northern range edge of the invader and the southern edge of the native species. These findings suggest that future assessments of Mytilus populations along the California coast may need to consider vertical distributions and seasonal cycles as part of monitoring and research activities.  相似文献   

5.
The upper lethal tolerances of Tellina tenuis da Costa and T. fabula Gmelin were studied under a variety of temperature regimes in which both short-term and long-term mortality were noted; these included steady temperatures, acclimation at a steady temperature then exposure to a steady tempeature, and acclimation at gradually increasing temperatures. T. tenuis alone was also tested for variation in mortality rate according to the date of collection or to the size (i.e., age) of the mollusc. The results suggested that T. tenuis was consistently more tolerant than T. fabula, and that the difference in tolerance was around 5 C°. Both species readily acclimated to higher temperatures after steady temperature acclimation, but not under a regime of gradually increasing temperature. There was no significant, variation in the mortality rate of T. tenuis with season or age. It is suggested that, since the difference in temperature tolerance is not reflected in their respective geographical distributions, there may be some other stage in their life cycle, e.g. the larvae, which is equally susceptible to temperature extremes. The difference in tolerance is, however, reflected in their respective littoral and sublittoral distributions.  相似文献   

6.
To be able to survive, marine macroalgae in shallow coastal waters need mechanisms for short-term acclimation to fast changes in their environment. Of major importance are mechanisms that regulate the efficiency of photosynthesis by protecting PS II from photo-oxidative damage. Carotenoids, xanthophyll cycles and non-photochemical quenching (NPQ) are central constituents of such protection mechanisms. Red algae as a group do not have a universal carotenoid composition. We screened ten red algal species and selected two species, originating from similar ecological conditions but with different carotenoid compositions, for use in irradiance-acclimation experiments. We selected the tropical intertidal species Gracilaria domingensis and Kappaphycus alvarezii with antheraxanthin and lutein as major xanthophylls, respectively. Simultaneous in vivo fluorescence and O2 evolution experiments were performed at different irradiance levels, which allowed a direct comparison of overall photosynthetic performance with NPQ. Interconversions of xanthophylls (violaxanthin, zeaxanthin, β-cryptoxanthin and one unidentified carotenoid) did occur in G. domingensis, but not in response to sudden exposure to light. Thus, NPQ was not correlated with any xanthophyll cycle during short-term acclimation to light. G. domingensis had five times higher weight-specific photosynthetic rates than K. alvarezii, which can be explained by the thicker thallus of K. alvarezii. Chlorophyll-specific gross photosynthetic rates were higher in K. alvarezii, but net rates were the same for both species. G. domingensis showed an immediate strong onset of NPQ upon exposure to irradiance, followed by downregulation to the NPQ level required. In K. alvarezii NPQ increased slowly until the required NPQ level was reached. At high irradiance G. domingensis downregulated photosynthesis while K. alvarezii continued to produce O2 even at 2,000 μmol photons m−2 s−1 without NPQ increase. The strategy of K. alvarezii may provide short-term gains but with the risk of oxidative damage. The fast onset of NPQ in G. domingensis even at subsaturating irradiance as well as downregulation of photosynthesis when NPQ is saturated might provide this species with a competitive advantage under conditions of changing irradiance in the field.  相似文献   

7.
A multi-factorial experiment was designed to investigate the effect of the following factors on the cardiac activity of the intertidal crab Pachygrapsus marmoratus: respiratory medium (air, water), temperature (four levels, 10, 17.5, 25, 32.5 °C), season (winter, summer) and body size (two levels, carapace ≤21 mm and carapace >21 mm). The results showed that the heart rate of P. marmoratus increased linearly with temperature and decreased when the specimens were exposed to air rather than water. Moreover, the heart rate values in summer were lower than those in winter at the corresponding temperature and body size. The summer heart rate–temperature regression line was laterally (to the right) shifted with respect to the winter line, suggesting a seasonal acclimation. Body size affected heart rate only at the acclimation temperature (17.5 °C), while no significant effect was detected at lower or higher temperatures. During the reproductive season a separate experiment was carried out to assess the effect of sex and reproductive status on heart rate. No significant difference was found among mean values of males, berried females and females without eggs. The results of the present study confirm the high physiological plasticity of this species, suggesting that P. marmoratus is a truly amphibious crab, able to deal with both water- and air-breathing during its activity. Received: 5 January 1999 / Accepted: 7 July 1999  相似文献   

8.
The Antarctic marine ecosystem changes seasonally, forming a temporal continuum of specialised niche habitats including open ocean, sea ice and meltwater environments. The ability for phytoplankton to acclimate rapidly to the changed conditions of these environments depends on the species’ physiology and photosynthetic plasticity and may ultimately determine their long-term ecological niche adaptation. This study investigated the photophysiological plasticity and rapid acclimation response of three Antarctic diatoms—Fragilariopsis cylindrus, Pseudo-nitzschia subcurvata and Chaetoceros sp.—to a selected range of temperatures and salinities representative of the sea ice, meltwater and pelagic habitats in the Antarctic. Fragilariopsis cylindrus displayed physiological traits typical of adaptation to the sea ice environment. Equally, this species showed photosynthetic plasticity, acclimating to the range of environmental conditions, explaining the prevalence of this species in all Antarctic habitats. Pseudo-nitzschia subcurvata displayed a preference for the meltwater environment, but unlike F. cylindrus, photoprotective capacity was low and regulated via changes in PSII antenna size. Chaetoceros sp. had high plasticity in non-photochemical quenching, suggesting adaptation to variable light conditions experienced in the wind-mixed pelagic environment. While only capturing short-term responses, this study highlights the diversity in photoprotective capacity that exists amongst three dominant Antarctic diatom species and provides insight into links between ecological niche adaptation and species’ distribution.  相似文献   

9.
Although acutely measured rate processes in coelenterates show close correlation with the Van't Hoff Q10 rule and the distribution of many coelenterate groups is correlated with temperature, little is known about coelenterate temperature adaptation. Analysis of lethal temperatures shows that the southern distribution of 3 species of North Atlantic actinians is correlated with their upper lethal temperature. Oxygen consumption data from acute measurements indicate conformity to the Q10 rule. Oxygen consumption data from animals pre-exposed to various temperatures indicate that oxygen consumption is capable of acclimation to temperature. Metridium senile from Massachusetts shows positive acclimation, typical of a poikilotherm partially regulating its metabolic rate in response to temperature change. Two species from Virginia, Haliplanella luciae and Diadumene leucolena, appear to show a reverse pattern. Their response includes encystment and negative adjustment of metabolic rate, showing evasion rather than regulation in response to environmental change. Temperature has a marked effect on parameters of the activity pattern of Diadumene leucolena, but the temperature sensitivity of activity is not correlated with that of oxygen consumption.  相似文献   

10.
We investigated physiological traits responsible for determining the tide-height and latitudinal distributions of Northeastern Pacific Nucella congeners. First, we determined the thermotolerances of two species of intertidal dogwhelks, N. ostrina and N. canaliculata, which co-occur on the Oregon coast. We found that N. ostrina, which are distributed higher on the shore, and thus experience higher habitat temperatures, than N. canaliculata, had correspondingly higher heat-coma temperatures. Second, we acclimated individuals of all five Northeastern Pacific Nucella congeners to a common temperature and determined their thermotolerances, measured as recovery from thermal exposure, after a 5-day, 3-week, and 7-week acclimation period. The south-latitude (N. emarginata) and mid-latitude (N. ostrina) high-intertidal species were more thermotolerant than the mid-latitude low-intertidal (N. canaliculata and N. lamellosa) and north-latitude high-intertidal (N. lima) species. The results of these two experiments suggest that temperature plays a role in determining the tide-height and latitudinal distributions of these Nucella species. Finally, we measured total and inducible levels of an evolutionarily conserved and ecologically relevant protein, the 70-kDa heat-shock protein (Hsp70), which has been found to confer thermotolerance in model laboratory organisms. The results showed that the level of total, not stress inducible, Hsp70 was a better predictor of thermotolerance and that there were species-specific differences in the relationship between Hsp70 expression and thermotolerance. We suggest that Hsp70 expression may be important in conferring thermotolerance in Nucella species in nature and that higher levels of molecular chaperones may underlie increased thermotolerance between conspecifics.Communicated by P.W. Sammarco, Chauvin  相似文献   

11.
Scleractinian coral species harbour communities of photosynthetic taxa of the genus Symbiodinium. As many as eight genetic clades (A, B, C, D, E, F, G and H) of Symbiodinium have been discovered using molecular biology. These clades may differ from each other in their physiology, and thus influence the ecological distribution and resilience of their host corals to environmental stresses. Corals of the Persian Gulf are normally subject to extreme environmental conditions including high salinity and seasonal variation in temperature. This study is the first to use molecular techniques to identify the Symbiodinium of the Iranian coral reefs to the level of phylogenetic clades. Samples of eight coral species were collected at two different depths from the eastern part of Kish Island in the northern Persian Gulf, and Larak Island in the Strait of Hormuz. Partial 28S nuclear ribosomal (nr) DNA of Symbiodinium (D1/D2 domains) were amplified by polymerase chain reaction (PCR). PCR products were analyzed using single stranded conformational polymorphism and phylogenetic analyses of the LSU DNA sequences from a subset of the samples. The results showed that Symbiodinium populations were generally uniform among and within the populations of eight coral species studied, and there are at least two clades of Symbiodinium from Kish and Larak islands. Clade D was detected from eight of the coral species while clade C was found in two of species only (one species hosted two clades simultaneously). The dominance of clade D might be explained by high temperatures or the extreme temperature variation, typical of the Persian Gulf. Publication of this article was held up owing to technical problems. The publisher apologizes sincerely for this lengthy delay.  相似文献   

12.
The upper temperature tolerances of three European species of Cardium [C. (Cerastoderma) glaucum Bruguière, C. tuberculatum L., C. (Cerastoderma) edule L.] are compared by means of median lethal temperature (LT50) and median burial temperature (BT50) determinations for periods of exposure up to 96 h. The influence of previous acclimation temperatures on these determinations is also considered. C. glaucum from shallow water (0.5 to 1 m), lagoonal, habitats in the Mediterranean Sea shows a greater thermal tolerance than C. tuberculatum from deeper water (4 to 5 m) in the Mediterranean. The thermal tolerance of C. edule from the intertidal zone, but at higher latitudes, is intermediate. Young C. glaucum show a greater resistance to short exposures to high temperatures than adults, but for longer exposures their tolerance is the same. All 3 species exhibit a significant effect of previous acclimation temperature on the burrowing response, and C. glaucum and C. tuberculatum a significant but lesser effect on LT50. LT50 determinations with C. edule showed secondary mortality effects which may have obscured any effect of acclimation temperature.  相似文献   

13.
The membrane fluidity of the Baltic Sea crustaceans Gammarus spp. and Monoporeia affinis was studied in different seasons. Gammarus spp. were collected at a location with stable salinity and with temperature fluctuations from about 0 to 20 °C, and M. affinis at a deep location with stable salinity and a constant low temperature of about 1.5 to 4.5 °C. The membrane fluidity was measured from preparations enriched with plasma and mitochondrial membranes employing a fluorescence polarization technique using 1,6-diphenyl-1,3,5-hexatriene (DPH) as a probe. The measurements were carried out without any preceding acclimation of the animals. In Gammarus spp., the membrane fluidity increased in the order: summer animals < autumn animals < spring animals. The differences between seasons were significant, with pronounced homeoviscous adaptation, and correlated well with the water temperature. It is suggested that in Gammarus spp., temperature is the determining factor for membrane fluidity. In M. affinis, the membranes of summer animals were the most fluid, and there was a significant difference only between summer and spring animals. In M. affinis the difference was not connected to the water temperature and no homeoviscous adaptation was noticed. The deep-water M. affinis experience a long period of fresh food deficiency, which probably affects the membrane fluidity. Although there are seasonal differences in fluidities between Gammarus spp. and M. affinis, it is interesting to note that all data obtained from M. affinis settled between the polarization lines of spring and summer Gammarus spp., regardless of the prevailing temperatures. Received: 30 June 1999 / Accepted: 7 June 2000  相似文献   

14.
O. Tully  V. O'Donovan  D. Fletcher 《Marine Biology》2000,137(5-6):1031-1040
 The accumulation of lipofuscin, which is an indictor of physiological age, in the brain of juvenile European lobster (Homarus gammarus L.) was monitored for 22 mo in three experimental temperature regimes that simulated seasonal variation in temperature in the geographic range of this species. Metabolic rate responses to changes in temperature were estimated by measuring the activity of the electron transport system (ETS) in muscle tissue and in vivo rates of oxygen consumption. Lipofuscin accumulation oscillated with simulated seasonal changes in temperature and was described by seasonalised von Bertalanffy growth functions. The incremental accumulation in lipofuscin between sampling dates was linearly related to the number of degree days that accumulated between dates, irrespective of the amplitude of temperature fluctuation that had occurred. ETS activity increased with acclimation temperature and was modelled using a polynomial function. This indicated a lower temperature sensitivity in the temperature mid-range (12 to 16 °C), although the Q10 for this mid-range was 2.1. ETS activity in lobsters acclimated to 8 and 18 °C and assayed at 13 °C was similar, indicating no compensation for changes in environmental temperature. Oxygen consumption rate was significantly higher at 14 °C than at 10.5 °C and had a Q10 of 3.6, again suggesting no compensation to temperature change. The absence of metabolic compensation in response to temperature change in H. gammarus is consistent with the predictability of changes in temperature and food availability in the sub-littoral environment of this species. As lipofuscin accumulates according to metabolic rate, and metabolic rate in H. gammarus is directly correlated with temperature, geographic differences and long-term temporal trends in temperature will need to be considered when converting physiological age indices, obtained from lipofuscin estimates, to a chronological scale. Received: 27 April 2000 / Accepted: 21 July 2000  相似文献   

15.
Phototaxis and cannibalism in gammaridean amphipods   总被引:2,自引:0,他引:2  
Development changes in phototaxis were investigated in three species of estuarine amphipods: Gammarus lawrencianus. G. tigrinus, and G. mucronatus. In water of salinity 16 S, juveniles of G. tigrinus and G. mucronatus were initially photoneutral and became photonegative within two days after hatching. Juveniles of G. lawrencianus were photopositive on hatching and became photoneutral approximately 11 d later. In all three species, the change in phototactic behaviour coincided with the age at which juveniles became less vulnerable to cannibalism by adults. Evidence is presented showing genetic variation for phototactic behaviour in G. lawrencianus. Our data are consistent with the hypothesis that juvenile phototaxis is an evolutionary adaptation to minimise cannibalism by adults.  相似文献   

16.
Latitudinally separate populations of the sea anemone Metridium senile (L.) are very similar genetically by electrophoretic criteria, yet respond differently to temperature. Anemones from southern and northern California (USA) have different oxygen consumption patterns in response to acclimatory and acute changes in temperature. Northern anemones show a pronounced increase in Q10 at temperatures just above the normal environmental range, but southern anemones do not. The two populations also differed in the extent of metabolic compensation to temperature following several weeks of acclimation. This acclimation regime resulted in changes in the activities of several enzymes of intermediary metabolism, yet the extent and direction of these changes did not display a consistent trend with regard to acclimation temperature or population. The biochemical concomitants of acclimatory and acute temperature effects were studied further by measuring the concentrations of adenylates (ATP, ADP, and AMP) in anemones from the two populations exposed to different temperature regimes. During cold acclimation for several weeks, total adenylate concentrations (AT) increased in both the southern and northern populations, possibly due to metabolic rate compensation, since AT is positively correlated with tissue metabolic rate in many species. Moreover, the extremely low weight-specific oxygen consumption rates of M. senile are probably related to its very low AT values. Acute temperature decreases had no effect on adenylate concentrations and adenylate energy charge (AEC); in contrast, acute temperature increases led to large changes in adenylate concentrations. The effects of starvation on adenylate concentrations are pronounced, and the effect is temperature-dependent. In starved individuals held at 20°C, AEC values fell to 50% of normal values after 8 d, while those held at 10°C maintained normal AEC values.  相似文献   

17.
Animals can respond to temperature change by the following means: using physiological flexibility (including acclimation); or adapting; or migrating, with acclimation proposed as the major mechanism dictating prospects for survival in marine groups. In this study, 6 species of Antarctic invertebrate covering 4 phyla, Echinodermata, Mollusca, Brachiopoda and Crustacea were subjected to acclimation trials at 3°C for 60 days. Using acute upper lethal temperatures as a metric of ability to acclimate, only one species (Marseniopsis mollis) increased its acute upper limit. Furthermore, analysis of oxygen consumption on the urchin Sterechinus neumayeri and the amphipod Paraceradocus gibber showed their metabolic rates were also not compensated over the 60-day exposure period. Thus, 5 out of 6 species failed to acclimate to temperatures only 3.5°C above the annual average and 1–2°C above current summer maximum values. We discuss the proposal that the abilities of Antarctic marine species to adjust to elevated environmental temperatures are as limited, if not more so, than tropical species.  相似文献   

18.
In an attempt to reduce the effort involved in measuring seasonal variations in oxygen consumption, a simulation experiment was conducted with the goby Pomatoschistus microps (Krøyer) and the shrimp Palaemon adspersus (Rathke). Comparison of the results obtained by monthly conventional measurements on individuals taken directly from the biotope with those obtained from individuals after long-term adaptation to temperature and light conditions representative of the different seasons showed that the standard metabolic rates yielded by the two methods for both species are astonishingly similar, although slight differences appeared particularly during the early summer and early autumn. In contrast, the routine metabolic rates shown by the seasonal and simulated seasonal measurements differed considerably, the differences being particularly striking when considering the scope of the individuals for routine work and their metabolic expansibilities. In view of this, routine data obtained by experimental simulation of conditions appear to be of doubtful value.  相似文献   

19.
Embryos of Pseudocalanus sp. captured near Halifax, Nova Scotia, Canada, in spring take longer to develop than do those from the warmer waters of summer and autumn. This is related to the larger size of females and their eggs in the colder seasons. An experiment revealed size-assortative mating and the influence of male size as well on embryonic duration. The seasonal change is contrary to the slight reduction of embryonic duration after short-term cold acclimation of females in the laboratory. There is no evidence that embryos in the cold season develop more rapidly than expected from the overall relationship between embryonic duration and female size. However, they do, like embryos after short-term cold acclimation, develop relatively more rapidly at low temperatures; i.e., there is clockwise rotation of the rate-temperature response, equivalent to the temperature adaptation that has been demonstrated among species of copepods. This seasonal rotation may also be related to seasonal variations in size, since larger females from a given season produce embryos that show such rotation. Thus, there is no evidence for seasonal compensation as a consequence of temperature acclimation underlying changes that are attributable to differences in size. Evidently there is also a strong genetical component in duration of development of embryos produced by individual females.  相似文献   

20.
Local adaptation is an important mechanism generating physiological diversity and can be especially pronounced in species with restricted dispersal and gene flow such as direct developing snails of the genus Littorina. We compared physiological responses to salinity and desiccation stress in two co-occurring species of northeastern Pacific Littorina (L. subrotundata and L. sitkana) with salt marsh and open shore ecotypes. The animals from salt marsh populations were significantly more tolerant to low salinities and significantly less resistant to desiccation stress than their open shore counterparts. The lower resistance to desiccation in salt marsh animals was not associated with a higher rate of water loss during air exposure or with lower body water reserves, but instead reflected a lower tolerance to high salinities. These habitat-related physiological differences occurred in parallel in the two studied species of Littorina and persisted after prolonged laboratory acclimation, suggesting that they may reflect selection for markedly different local optima in the salt marsh habitats than in the open shore habitats. We used a neutral polymorphic nuclear DNA marker (intron of aminopeptidase N) to estimate the level of gene flow between the populations from different habitats and found isolation by distance regardless of the habitat from which the snails were collected. Our molecular data suggest that physiological cohesiveness of ecotypes can arise despite different genetic backgrounds, and could potentially be due to parallel evolution of convergent phenotypes in similar habitats.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号