首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Using a large data set, a preliminary investigation has been made to evaluate the usefulness of stable isotope ratios for improving our understanding of methane and carbon dioxide generation in landfills. Included are approximately 130 landfill gas samples from across the U.S.A., and 18 recent samples from: (1) an Argonne Laboratory study area in the Brea-Olinda Landfill, Orange County, California (U.S.A); and (2) several Los Angeles County landfills, California (U.S.A). The following isotope ratios were examined: δ13C for methane, δ13C for carbon dioxide and δD for methane. Using simple ratio plots supplemented by mass-balance calculations, these data show promise for indicating the relative contributions of the four major carbon cycle processes in landfills, namely: (1) direct oxidation of organic material to carbon dioxide; (2) methane generation from fermentation (acetate cleavage); (3) methane generation from carbon dioxide reduction; and (4) methane oxidation to carbon dioxide by methanotrophic bacteria. Both the methane generation and oxidation reactions are central to an explanation of the trends discussed herein. The data also suggest that direct oxidation of organic matter in the refuse may be contributing to the observed isotopic ratios in some cases. The trends observed at the Brea-Olinda site were similar to trends using the large U.S. database, suggesting that isotopic techniques may be useful to better constrain carbon cycle processes common to all landfill settings.  相似文献   

2.
Extensive investigations of leachates and solid waste samples for organic sum parameters and environmentally relevant organic compounds were carried out at the hazardous waste landfill of Raindorf, which is operated in accordance with German Technical Instructions on Waste (TI Waste). The measurements showed that the majority of the waste samples contained only minor amounts of phenols, highly volatile chlorinated organic compounds (VCHC), benzene, toluene, ethylbenzene and xylene (BTEX), polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAH). The concentrations ranged from less than 100μg/kg−1up to 1000μg/kg−1of dry substance. Only hydrocarbons were detected in higher concentrations (mg to g kg−1of dry substance). In most leachate and gas samples taken at the landfill, the concentrations of the abovementioned parameters were close to or even below the detection limit. The measurement of organic single compounds underlined the usefulness of the sum parameters, adsorbable organic halogen compounds and phenol index, for the estimation of the total amount of these substances. A comparison of organic sum parameter concentrations measured in leachates from landfills of differing ages indicates that the application of TI Waste leads to a reduction of the organic load in the leachate.  相似文献   

3.
A mathematical model for the generation and transport of gas and heat in a sanitary landfill was developed based on earlier work on the Mountain View Controlled Landfill Project (MVCLP) in California, U.S.A. The present model incorporates biokinetic model equations describing the dynamics of the microbial landfill ecosystem into multi-layer, time-dependent transport and generation of gas and heat models. It is based on the fundamental principles governing the physical, chemical and microbiological processes in a porous media context such as a sanitary landfill. The model includes biochemical and temperature feedback loops to simulate the effects of their corresponding parameters on microbiological processes. The resulting integrated biokinetic, gas and heat generation and transport model was used to simulate field data from the MVCLP and to assess the sensitivity of model results to biological parameters. The model can be used to predict the rate and total production of methane in a landfill. The present work is presented in a series of three papers: (I) model formulation; (II) model application; and (III) sensitivity analysis.  相似文献   

4.
The objective of this study was to characterize the anaerobic biodegradation of food waste, including its methane potential and the anaerobic toxicity of leachate associated with food waste decomposition. Biodegradation experiments were conducted in 2.2-litre reactors and were seeded with well-decomposed refuse. Despite pH neutralization, reactors seeded with 30% old refuse failed to undergo methanogenesis. Food waste in a second set of reactors, containing 70% seed, produced 300.7 ml CH4dry g−1. Leachate toxicity was evaluated by a modified anaerobic toxicity assay (ATA). The results of ATAs were typically consistent with the methane production behavior of the reactors. However, the toxicity observed in the ATA test could not be simulated with synthetic leachate containing high concentrations of carboxylic acids and sodium. Tests with 20, 5, 15 and 12 g l−1of acetate, propionate, butyrate and sodium, respectively, suggested that high concentrations of butyric acid and sodium inhibited the onset of methane production but that refuse micro-organisms could acclimatize to these concentrations within 5–10 days. The refuse ecosystem was shown to tolerate higher concentrations of undissociated carboxylic acids than previously reported for anaerobic digesters.  相似文献   

5.
The world swine population produces about 1.7 billion tonnes of liquid manure annually. At an application rate of 20 tonnes per hectare, this could fertilize about 85 million hectares of land annually. Storage and disposal of this material presents a challenge to producers because of the potential for environmental pollution. However, because swine manure contains essential plant nutrients, use of swine manure as a soil amendment for crop production is a practical method to solve the disposal problem. The composition and effectiveness of swine manure as a source of plant nutrients depends on several factors including type of ration fed, housing system, method of manure collection, storage and handling. Research has shown that manure application increased soil N, P, K, Ca, Mg and Na. However, heavy or excessive application of manure increased leaching of NO3-N, P and Mg. Swine manure is reported to be effective in increasing the yields of cereals, legumes, oilseeds, vegetables and pastures, and in increasing plant nutrient concentration, especially N, P and K. The efficient use of swine manure can be an agronomically and economically viable management practice for sustainable crop production in temperate regions such as the Canadian prairies where the swine industry is expanding rapidly.  相似文献   

6.
7.
Experience with appropriate collection systems for urban and peri-urban areas of developing countries is accumulating. Nonetheless, the primary lesson learned from studying such systems is that collection systems must be designed to accommodate the particular conditions of the community. This paper reflects on international experience with such collection systems and examines their relevance to South Africa. A case study is presented of designing a solid waste collection system for the Winterveld, Bophuthatswana, including a community survey, a waste composition study, and exploration of resource recovery options. Detailed data from the case study show that, even within one country, solid waste collection systems are not automatically transferable from one community to another. Particular recommendations for the South African situation are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号