首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of the warm water discharged by a nuclear power plant (NPP) into a small reservoir are studied. A case study is presented (José Cabrera NPP-Zorita Hidráulica Reservoir) with experimental data of the reservoir stratification and predicted data of the dispersion of radioactive pollutants from operative or accidental releases. The vertical and longitudinal temperature profiles, electrical conductivity and transparency of the reservoir water were measured for an annual cycle. The results indicate that the continuous warm water discharge from the NPP causes permanent and artificial reservoir stratification. The stratification is significant within 1500 m upstream and 1000 m downstream from the warm water outfall. The pollutant dispersion has been predicted by using a flow model based on N(T) perfect-mixing compartments in series with feedback. The model parameter, N(T), is calculated from the longitudinal diffusion coefficient. The prediction of pollutant dispersion by means of this model shows that the stratification slows down the vertical mixing in the whole water body, and reduces the reservoir volume that is effective for the dilution and dispersion of pollutants. This means that, in the case of a radioactive pollutant release, the reservoir radioactivity level could increase significantly.  相似文献   

2.
ABSTRACT: A model is developed for real-time operation of an irrigation reservoir with the objective of maximizing the value of multiple crop yields during a growing season. The model employs monthly additive and product forms of crop yield functions for dry matter and grain crops, respectively. The resulting nonlinear optimization model uses a log transform to reduce nonlinearities in the model. An application of the proposed model is compared to a common operating rule used in simulation models. The proposed model results were better in terms of net benefits from crop yields. The model uses GAMS (General Algebraic Modeling System) language. It requires an IBM-compatible microcomputer and is suitable for use by a reservoir manager.  相似文献   

3.
ABSTRACT: Reservoir water levels, observation well data, and meteorological parameters were collected at a recharge dam site in Central Saudi Arabia. This data, along with other information on the reservoir and the underlying aquifer, were used to estimate the amounts of recharge through the reservoir bed by applying two water budget models. The first is a water budget model for the reservoir only, while the second is for an aquifer reach extending upstream and downstream from the reservoir. The results of the two approaches were discussed and compared.  相似文献   

4.
This study seeks to improve understanding of temperature patterns in reservoir outflows. We examined water temperatures in an irrigation storage reservoir, Island Park Reservoir, and its outflow, Henry’s Fork of the Snake River in eastern Idaho. Our objectives were to (1) quantify the extent to which daily temperature ranges in the reservoir outflow deviated from other reaches of the Henry’s Fork, and (2) test whether the reservoir’s net volume change during the summer — expressed as the volume of water remaining in the reservoir on September 1 — predicted mean summer temperature in the outflow. Two years of temperature data showed dampened diel temperature cycles in the reservoir outflow. Model selection with 17 years of climatic, hydrologic, and reservoir management variables found mean summer temperature in the outflow was best predicted by September 1 reservoir volume and average summer air temperature. Two years of weekly reservoir thermal profiles indicated large changes in reservoir volume eliminated cool hypolimnetic water and encouraged mixing, allowing warm epilimnetic water to be discharged into the outflow. Increases in future drought frequency and severity and increases in summer air temperatures could increase the frequency of occurrence of high mean summertime water temperatures in the outflow. Our study provides important information for local managers by quantifying influences on outflow temperatures and the downstream river ecosystem.  相似文献   

5.
ABSTRACT: The determination of optimum reservoir operating rules for reservoirs with multiple conflicting objectives is still a difficult task - despite many publications in this field. In this paper a three-step Multi Objective Decision Making (MODM) method is presented, the emphasis of which is placed on the necessity to make the work easy for the decision maker, which many MODM techniques fail to achieve. The method is applied to the development of a compromise optimum operating rule for a multi-purpose reservoir. In the first step of the method stochastic DP is chosen which is combined with the “weighting method” allowing combination of various objectives into one objective function. By systematically varying the weights for the objectives a large number of pareto optimum reservoir operating rules is generated. In the second step of the method the performance of all these operating rules is tested with the aid of a model simulating reservoir operation. The results are statistically analyzed and the reliabilities for attaining the various objectives are computed. The third step of the model applies another MODM technique which allows the decision maker - in a computer dialog - to select his optimum reservoir operating rule from the large number of pareto optimum solutions generated in step 1. Here he can specify his preferences for the various objectives. For this purpose two alternative MODM techniques are offered: Compromise Programming and the SEMOPS method. Their performance is shown along with the generation and selection of operating rules for the multi-objective Wupper reservoir system in Germany.  相似文献   

6.
ABSTRACT. Preliminary results from a digital simulation model designed to test time-varying water pricing policies are presented. Stochastic inflows feeding a water supply reservoir are assumed for a hypothetical community with defined demand functions. Prices are allowed to vary as a function of reservoir level, generally rising as reservoir levels fall. Increasing, decreasing and constant rates are tested. It is concluded that varying the price to reflect the increased value of scarce supplies can greatly reduce the risk of water supply shortages. It is also concluded that varying incremental (conservational) pricing policies not only reduces the risk of shortages, but also lowers the average price to the community while rewarding the low consumption user with lower average rates.  相似文献   

7.
Regarding emerging large‐scale reservoir operation models, reports of reservoir operation feedback for hydrologic modeling are rare, and little attention has been paid to flood control. An operation scheme considering multilevel flood control (MLFC) was first proposed in this study, but more reservoir information was needed. Thus, an alternative scheme was proposed that consisted of a modified version of the reservoir operation scheme in the Soil and Water Assessment Tool Model (MSWAT scheme). These schemes were coupled to a land surface and hydrologic model system with feedback, i.e., a system in which reservoir operation can affect the subsequent simulation, and were investigated in the Huai River Basin. The results show reservoir storage and peak flow were generally overestimated by the original SWAT reservoir scheme (SWAT scheme). Compared with the SWAT scheme, the MSWAT scheme successfully reduced the simulated storage and peak flow at the reservoir stations. For the downstream stations, the streamflow simulations were improved at a significance level of 5%. The performances of the MSWAT and MLFC schemes at the reservoir stations were nearly equivalent. Importantly, reservoir operation feedback to hydrologic modeling was necessary because the reservoir operation effects could not be transferred downstream without it. The streamflow simulation of a reservoir station located on a flat plain was less sensitive to feedback than that of a mountain reservoir station.  相似文献   

8.
ABSTRACT: A numerical model study of thermal stratification in a high discharge-to-volume reservoir is described. Predicted temperature profiles are compared with field data for two different years. The model accurately predicts the date of fall turnover, and predicts degree of stratification and depth of the thermocline within about 20% for both years simulated. A parametric study of stratification mechanics for a high flow reservoir indicated that diffusion was the predominant heat transport mechanism in the hypolimnion, while surface effects dominated the epilimnion. Flow effects for the particular case studied, in which all inflows and outflows occur in the epilimnion, did not significantly affect stratification behavior.  相似文献   

9.
ABSTRACT: Two dynamic programming models — one deterministic and one stochastic — that may be used to generate reservoir operating rules are compared. The deterministic model (DPR) consists of an algorithm that cycles through three components: a dynamic program, a regression analysis, and a simulation. In this model, the correlation between the general operating rules, defined by the regression analysis and evaluated in the simulation, and the optimal deterministic operation defined by the dynamic program is increased through an iterative process. The stochastic dynamic program (SDP) describes streamflows with a discrete lag-one Markov process. To test the usefulness of both models in generating reservoir operating rules, real-time reservoir operation simulation models are constructed for three hydrologically different sites. The rules generated by DPR and SDP are then applied in the operation simulation model and their performance is evaluated. For the test cases, the DPR generated rules are more effective in the operation of medium to very large reservoirs and the SDP generated rules are more effective for the operation of small reservoirs.  相似文献   

10.
In this paper, a procedure for analyzing a water resource system with special emphasis on evaluation of acceptable economic risk due to occasional failures to deliver water is proposed. The basic methodology includes the development of a simple mathematical model which describes the physical hydrologic and economic characteristics of a single reservoir irrigation and city water supply system and an evaluation of economic benefits of the system with full and partial deliveries of water. The system is simulated for various combinations of decision variables (system magnitudes) and an optimum design is obtained by response surface technology. Emphasis is placed on the basic model and methodology although, in order to introduce some realism, the procedure is applied to data based on the existing reservoir system on the South Concho River in West Central Texas.  相似文献   

11.
ABSTRACT: This paper presents an integrated optimal control model that optimizes economic performance of reservoir management in watersheds in which there are significant economic and hydrologic interdependencies. The model is solved using the General Algebraic Modeling System (GAMS). Results show that application of this model to New Mexico's Rio Chama basin can increase total system benefits over historical benefits by exploiting complementarities between hydroelectricity production, instream recreation, and downstream lake recreation.  相似文献   

12.
Abstract: Declining reservoir storage has raised the specter of the first water shortage on the Lower Colorado River since the completion of Glen Canyon and Hoover Dams. This focusing event spurred modeling efforts to frame alternatives for managing the reservoir system during prolonged droughts. This paper addresses the management challenges that arise when using modeling tools to manage water scarcity under variable hydroclimatology, shifting use patterns, and institutional complexity. Assumptions specified in modeling simulations are an integral feature of public processes. The policymaking and management implications of assumptions are examined by analyzing four interacting sources of physical and institutional uncertainty: inflow (runoff), depletion (water use), operating rules, and initial reservoir conditions. A review of planning documents and model reports generated during two recent processes to plan for surplus and shortage in the Colorado River demonstrates that modeling tools become useful to stakeholders by clarifying the impacts of modeling assumptions at several temporal and spatial scales. A high reservoir storage‐to‐runoff ratio elevates the importance of assumptions regarding initial reservoir conditions over the three‐year outlook used to assess the likelihood of reaching surplus and shortage triggers. An ensemble of initial condition predictions can provide more robust initial conditions estimates. This paper concludes that water managers require model outputs that encompass a full range of future potential outcomes, including best and worst cases. Further research into methods of representing and communicating about hydrologic and institutional uncertainty in model outputs will help water managers and other stakeholders to assess tradeoffs when planning for water supply variability.  相似文献   

13.
ABSTRACT. The design of a municipal water supply system may involve utilizing singly or in combination a conventional water supply, a desalted water supply, and a supply from a recharged aquifer reservoir. Optimization of the design requires a model formulated in a way that modern methods of systems analysis can be used. This study concerns the formulation, solution, and evaluation of a mathematical model of a municipal water supply system that includes a supply from a variable quality output desalting plant. The combined system is operated in conjunction with an artificially recharged aquifer reservoir. Also considered are short periods of water shortages. The model is set up in an approximate linear programming format, and the optimum solution (minimum cost) is found. The model is tested by applying it to the design of a supply system to meet the 1985 estimated water demand of the city of Lincoln, Nebraska. Results of this test indicate that the artificial reservoir and the existing conventional supply system are capable of supplying that demand during all but the peak period. An electrodialysis desalting system is used in this analysis. It is competitive only when the length of transmission pipeline for a conventional supply system approaches 90 miles. The model is formulated in a general way so that it can be applied to almost all situations encountered in municipal water supply design, as well as to the specific system designated for this study.  相似文献   

14.
ABSTRACT: Operation of a storage‐based reservoir modifies the downstream flow usually to a value higher than that of natural flow in dry season. This could be important for irrigation, water supply, or power production as it is like an additional downstream benefit without any additional investment. This study addresses the operation of two proposed reservoirs and the downstream flow augmentation at an irrigation project located at the outlet of the Gandaki River basin in Nepal. The optimal operating policies of the reservoirs were determined using a Stochastic Dynamic Programming (SDP) model considering the maximization of power production. The modified flows downstream of the reservoirs were simulated by a simulation model using the optimal operating policy (for power maximization) and a synthetic long‐term inflow series. Comparing the existing flow (flow in river without reservoir operation) and the modified flow (flow after reservoir operation) at the irrigation project, the additional amount of flow was calculated. The reliability analysis indicated that the supply of irrigation could be increased by 25 to 100 percent of the existing supply over the dry season (January to April) with a reliability of more than 80 percent.  相似文献   

15.
This article provides a method for examining mesoscale water quality objectives downstream of dams with anticipated climate change using a multimodel approach. Coldwater habitat for species such as trout and salmon has been reduced by water regulation, dam building, and land use change that alter stream temperatures. Climate change is an additional threat. Changing hydroclimatic conditions will likely impact water temperatures below dams and affect downstream ecology. We model reservoir thermal dynamics and release operations (assuming that operations remain unchanged through time) of hypothetical reservoirs of different sizes, elevations, and latitudes with climate‐forced inflow hydrologies to examine the potential to manage water temperatures for coldwater habitat. All models are one dimensional and operate on a weekly timestep. Results are presented as water temperature change from the historical time period and indicate that reservoirs release water that is cooler than upstream conditions, although the absolute temperatures of reaches below dams warm with climate change. Stream temperatures are sensitive to changes in reservoir volume, elevation, and latitude. Our approach is presented as a proof of concept study to evaluate reservoir regulation effects on stream temperatures and coldwater habitat with climate change.  相似文献   

16.
ABSTRACT: Recent regulations require impact statements for major water development projects, including reservoirs that will be used for water supply, recreation, and pollution control. A water quantity/quality model was developed and used for making water quality projections of a proposed reservoir in Montgomery County, Maryland. The study area is uncommon in that there is an extensive water quality data base. The results indicate that land use changes will have a significant effect on water quality and that the proposed reservoir will improve the quality of the surface waters downstream from the reservoir. A major effect of land use changes is the increase in the variability of water quality.  相似文献   

17.
ABSTRACT: A vertical dissolved oxygen model was calibrated and verified using independent field data sets from 1972 and 1973 in Lake Lyndon B. Johnson (LBJ), a short detention time reservoir with anaerobic hypolimnion. Ammonia, carbonaceous BOD, conductivity, and temperature were also simulated as state variables. The conductivity results provided a check on the mass balance and the method of entering the inflows to the reservoir model. Emphasis was placed on calculating the sinks of dissolved oxygen in the hypolimnion which could be useful in management decisions.  相似文献   

18.
ABSTRACT: Many approaches are available for operation of a multipurpose reservoir during flood season; one of them is allocation of storage space for flood control. A methodology to determine a reservoir operation policy based on explicit risk consideration is presented. The objective of the formulation is to maximize the reservoir storage at the end of a flood season while ensuring that the risk of an overflow is within acceptable limits. The Dynamic Programming technique has been used to solve the problem. This approach has been applied to develop operation policies for an existing reservoir. The performance of the policy was evaluated through simulation and was found to be satisfactory.  相似文献   

19.
The paper describes an approach towards optimal allocation of surface and ground water resources to three agricultural areas in the Jordan Valley under conditions of scarce water supply. The optimizing model allocates water from three main rivers, each with reservoir storage, and from two ground water sources to three irrigation regions. Productivity of irrigation water, expressed as the net present value of the regional agricultural output, but allowing for crop water deficits, is first maximized using nonlinear programming. The allocation process then adopts techniques of linear programming to determine the least cost alternative based on the unit cost of water from each resource at each destination, as it varies with time.  相似文献   

20.
We estimated the effects of a temperature control device (TCD) on a suite of thermodynamic and limnological attributes for a large storage reservoir, Shasta Lake, in northern California. Shasta Dam was constructed in 1945 with a fixed-elevation penstock. The TCD was installed in 1997 to improve downstream temperatures for endangered salmonids by releasing epilimnetic waters in the winter/spring and hypolimnetic waters in the summer/fall. We calibrated a two-dimensional hydrodynamic reservoir water quality model, CE-QUAL-W2, and applied a structured design-of-experiment simulation procedure to predict the principal limnological effects of the TCD under a variety of environmental scenarios. Calibration goodness-of-fit ranged from good to poor depending on the constituent simulated, with an R 2 of 0.9 for water temperature but 0.3 for phytoplankton. Although the chemical and thermal characteristics of the discharge changed markedly, the reservoir's characteristics remained relatively unchanged. Simulations showed the TCD causing an earlier onset and shorter duration of summer stratification, but no dramatic affect on Shasta's nutrient composition. Peak in-reservoir phytoplankton production may begin earlier and be stronger in the fall with the TCD, while outfall phytoplankton concentrations may be much greater in the spring. Many model predictions differed from our a priori expectations that had been shaped by an intensive, but limited-duration, data collection effort. Hydrologic and meteorological variables, most notably reservoir carryover storage at the beginning of the calendar year, influenced model predictions much more strongly than the TCD. Model results indicate that greater control over reservoir limnology and release quality may be gained by carefully managing reservoir volume through the year than with the TCD alone. RID=" ID=" Author to whom correspondence should be addressed. e-mail: John_Bartholow@USGS.gov  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号