首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
ABSTRACT: The effects of an artificial lake system upon the runoff hydrology of a small watershed have been determined by comparing the quantity and quality of runoff with that of an adjacent and similar watershed containing no lakes. Lake storage reduced peak discharge and slowed flood recession rate downstream. Water stored within the lakes is generally of different quality than downstream surface runoff. Salt stored in the lakes from winter deicing is released during periods of surface runoff throughout the rest of the year. During summer or fall runoff events, lake outflow dominates the salt load of the outlet stream, generating double-peaked load hydrographs in which the second, or lake-induced, crest is many times larger than the peak which corresponds to maximum flow. On the other hand, the lakes cause a reduction of salt loads and concentration in winter runoff. The concentration and loads of ions which are not related to road salt are generally less affected by the lakes, although they are increased substantially in the fall.  相似文献   

2.
Lakes are landscape features that influence connectivity of mass and energy by being foci for the reception, mixing, and provision of water and material. Where lake fractions are high, they influence hydrological connectivity. This behavior was exemplified in the Baker Creek watershed in Canada's Northwest Territories during a two‐year drought in which many lake levels declined below outlet elevations. This study evaluated how lakes controlled surface runoff connectivity reestablishment following the drought using a new assessment method, T‐TEL (time scales — thresholds, excesses, losses). Analysis of daily data showed that during a summer period following the drought, connectivity occurred between 0% and 41% of the time. The size of run‐of‐the‐river lakes relative to their upstream watershed area, and the upstream lake fraction, are two factors for connectivity. These terms represent a lake's ability to control the size of storage deficits relative to rainfall, and evaporation and storage losses along pathways. The connectivity magnitude–duration curve only aligned with the watershed flow duration curve during high‐water conditions, implying lakes functioned as individuals rather than as part of a perennial watercourse during much of the study. The T‐TEL method can be used to quantify consistent metrics of hydrologic connectivity that can be used for regionalization exercises and understanding hydrologic controls on material transport.  相似文献   

3.
ABSTRACT: Northridge Lakes, in Milwaukee, Wisconsin, receive runoff from a 3.8 square kilometer drainage area. Almost 30% of the watershed is covered by shopping centers, apartment buildings, and roadways. Deicing agents used on the paved areas, primarily NaCl with some CaCl2, dissolved in surface runoff and entered the lakes during the winter season. This highly saline inflow was denser than the receiving lake water and formed a saline-water stratum at the lakes' bottom. The salinity stratification remained stable until the spring thaw when a rapid decay began. After the stratification had disappeared, the lakes continued to act as a storage site for dissolved salts. Chloride concentrations in the lakes remained well above the levels found in natural lakes until the advent of the next salting season. Furthermore, outflow from the lakes also showed abnormally high salt concentrations year-round.  相似文献   

4.
ABSTRACT: Man-made lakes have significant impacts on the hydrologic conditions in the watershed in which they are built. This paper examines the nature of the impact upon baseflow by comparing baseflow conditions at the outlet of the lakes with those elsewhere in the watershed. Situated in the upper reaches of a small watershed, the lakes studied have only a minor effect upon the magnitude of baseflow discharge, increasing it slightly from October to January, and decreasing it from May to September. Baseflow quality is substantially affected. Natural dissolved ions, as represented by magnesium, are generally decreased in concentration and total load by the lakes. Road salt related inons are substantially increased in both concentration and total load in the baseflow. Surface runoff stored in the lakes is extremely enriched in salt in the winter, and the storage capacity of the lakes is sufficient to maintain winter salt concentrations in the baseflow near the lakes until summer. The storage effect also tends to damp out seasonal fluctuations in baseflow chloride content which are extreme in suburban watersheds. The difference in quality between the lake and non-lake baseflows and the linear distance needed for complete mixing are used as measures of the magnitude and distal extent of the lake effect on baseflow quality.  相似文献   

5.
Soil phosphorus (P) concentrations typically are greater in surface soils compared with subsurface soils. Surface soils have a greater chance to interact with runoff leading to P transport to streams. The thin surface layer where P concentrates is referred to as the mixing layer denoting where water and chemicals mix during transport. The objective of this study was to evaluate the effect of hydrologic flow paths on soluble reactive phosphorus (SRP) loss at two temperatures. Laboratory flumes were built to simulate infiltration, return flow, saturation excess, and interflow, and subsequent interaction with the mixing layer. The sandy loam soil in the flumes was kept at saturation throughout all experiments, so that biochemical effects were normalized. Flow through the flumes was maintained at 3.6 mm/h for 24 to 99 h (at 6 and 25 degrees C) with water entering and exiting the flumes at different ports (to simulate different flow paths) or as low intensity rainfall. Experiments were performed with and without an artificially created P-enriched surface layer (5 mm thick, total P increased from 1010 mg/kg in the original soil to 2310 mg/kg by addition of dissolved phosphate). Results indicated that (i) SRP release was greater in soil with a mixing layer than in soil without a mixing layer; (ii) SRP release was greater during experiments at 25 degrees C than at 6 degrees C; (iii) at 25 degrees C, SRP release was greatest when water traversed the mixing layer in the upward direction (i.e., in return flow), and by flow parallel to the mixing layer (i.e., surface runoff); and (iv) at 6 degrees C, SRP release in subsurface flow following rainfall was slightly greater than in return flow and infiltration. Our results confirmed the presence of a variable, temperature-dependent desorption process when runoff water interacted with the mixing layer. Our findings have important implications for how different water flow paths in and over the soil interact with P in the soil, and what the ultimate concentration will be in runoff and interflow.  相似文献   

6.
ABSTRACT: The Salt and Verde Rivers of central Arizona provide the water supply for metropolitan Phoenix and a considerable acreage of irrigated agriculture. Rapid urbanization has caused concern over future water supply and aggravated flooding in the already flood-prone Salt River Valley. Tree-ring data were used as a proxy source to extend the annual and seasonal runoff records back to A.D. 1580 and thus to determine whether the period of record for annual discharge adequately represents the long term flow characteristics of the two rivers. Results show that several periods of extended low flow have occurred during the past 400 years, many of which were more severe then any comparable period since 1890. The low flow periods appear to have a recurrence interval of about 22 years. Also the gaged records contain an above average number of high seasonal and annual flows when compared to the entire 400 years. The reconstructions contain important implications for future water supply and flood potentials in the Salt River Valley.  相似文献   

7.
Salt loading in irrigation return flows contributes to the salinization of the receiving water bodies, particularly when originated in salt-affected areas as frequently found in the middle Ebro River basin (Spain). We determined the salt loading in La Violada Gully from the total dissolved solids (TDS) and flows (Q) during the 1995 to 1998 hydrological years. Since this gully collects flows from various sources, an end-member mixing analysis (EMMA) was performed to quantify the drainage flow from La Violada Irrigation District (VID). Three flow components were identified in La Violada Gully: drainage waters from VID (Qd); tail-waters from irrigation ditches, spill-over, and seepage from the Monegros Canal (Qo); and ground water inflows (Qg) originating in the dryland watershed. Gypsum in the soils of VID was the main source for salts in La Violada Gully (flow-weighted mean TDS=1720 mg L-1, dominated by sulfate and calcium). The contribution of Qg to the total gully flow during the 1996 irrigation season was low (6.5% of the total flow). The 1995 to 1998 annual salt load average in La Violada Gully was 78 628 Mg, 71% of which was exported during the irrigation season. The 1995 to 1998 irrigation season salt load average in Qd was 43 015 Mg (77% of the total load). Thus, irrigated agriculture in VID was the main source of salt loading in this gully, with a yield of 11.1 Mg of salts per hectare of irrigated land for the irrigation season. Efficient irrigation systems and irrigation management practices that reduce Qd are key factors for controlling off-site salt pollution of these gypsum-rich irrigated areas.  相似文献   

8.
ABSTRACT: Water surface temperatures can be obtained from satellite thermal remote sensing. Landsat and other satellites sense emitted thermal infrared radiation on a regular basis over much of the earth's surface. Evaporation is accomplished by the net transport of mass from the water surface to the atmosphere. The evaporative transfer predominantly determines the water surface temperature. Hence, there should be good correlations between evaporation and surface temperatures. Previous investigations on Utah Lake with satellite-derived temperatures and pan- and model-derived evaporation values have produced good correlations. However, more study was required with additional satellite data and evaporation measurements for saltwater conditions. The applicability of this method for estimating evaporation on Utah's Great Salt Lake was of particular interest at this time because of the unprecedented rise of this terminal lake. Satellite thermal data and evaporation data from four different years were obtained for the Great Salt Lake and the surrounding region. More than 350 correlation and linear regression analyses were performed on the temperature and evaporation data. The lake salt concentrations were also factored into the analyses in several different ways. The correlation results were generally very good and a methodology for using satellite-derived water surface temperatures along with salt concentrations was developed to estimate evaporation.  相似文献   

9.
Research increasingly highlights cause and effect relationships between urbanization and stream conditions are complex and highly variable across physical and biological regions. Research also demonstrates stormwater runoff is a key causal agent in altering stream conditions in urban settings. More specifically, thermal pollution and high salt levels are two consequences of urbanization and subsequent runoff. This study describes a demonstration model populated with data from a high gradient headwaters stream. The model was designed to explain surface water‐groundwater dynamics related to salinity and thermal pollution. Modeled scenarios show long‐term additive impacts from salt application and suggest reducing flow rates, as stormwater management practices are typically designed to do, have the potential to greatly reduce salt concentrations and simultaneously reduce thermal pollution. This demonstration model offers planners and managers reason to be confident that stormwater management efforts can have positive impacts.  相似文献   

10.
ABSTRACT: On June 15, 1977, an unusual brightness anomaly was detected in the north arm of Great Salt Lake, Utah, on NOAA-5 Very High Resolution Radiometer (VHRR) visible band imagery and on Landsat-2 multispectral visual band imagery. Retrospective inspection of NOAA-3, 4, and 5 satellite imagery from 1974–77 revealed 12 previous cases of the anomaly, whereas post monitoring documented nine other cases through May 1978. Comparison of lake levels in the north arm with meteorological parameters leads to the conclusion that the anomalous brightness is associated with wind induced seiches in the north arm. Apparently the wind induces a lower water depth, turbulence, and mixing throughout the water column in the western third of the north arm, thus increasing the brightness of the surface waters chiefly from sediment resuspension.  相似文献   

11.
ABSTRACT: Most herbicides applied to crops are adsorbed by plants or transformed (degraded) in the soil, but small fractions are lost from fields and either move to streams in overland runoff, near surface flow, or subsurface drains, or they infiltrate slowly to ground water. Herbicide transformation products (TPs) can be more or less mobile and more or less toxic in the environment than their source herbicides. To obtain information on the concentrations of selected herbicides and TPs in surface waters of the Midwestern United States, 151 water samples were collected from 71 streams and five reservoir outflows in 1998. These samples were analyzed for 13 herbicides and 10 herbicide TPs. Herbicide TPs were found to occur as frequently or more frequently than source herbicides and at concentrations that were often larger than their source herbicides. Most samples contained a mixture of more than 10 different herbicides or TPs. The ratios of TPs to herbicide concentrations can be used to determine the source of herbicides in streams. Results of a two‐component mixing model suggest that on average 90 percent or more of the herbicide mass in Midwestern streams during early summer runoff events originates from the runoff and 10 percent or less comes from increased ground water discharge.  相似文献   

12.
Abstract: A combination of long‐term fixed‐frequency and robotic monitoring information for a polluted urban lake, Onondaga Lake, New York, and two of its tributaries is used to resolve the propensity for, and occurrences of, tributary plunging. Cooler temperatures (T) and higher salinity (S) are primarily responsible for the elevated density and plunging of one of these polluted streams for the summer through early fall interval. In‐lake transport of this plunging tributary, which receives inputs from combined sewer overflows (CSOs), is tracked by its high S during dry weather, its high turbidity (Tn) with associated lower S (dilution with rainwater) following runoff events, and by its characteristic ionic composition. These signatures are documented extending from the creek mouth, through a connecting navigation channel, through the inflow zone of the lake, and into metalimnetic depths of pelagic portions of the lake. The entry of this polluted tributary below the depth interval(s) of primary production and contact recreation has important implications for the ongoing major rehabilitation program for this lake. The plunging phenomenon diminishes the benefits previously expected for related features of the lake’s water quality from ongoing management efforts to abate CSO inputs and reduce nonpoint nutrient loading from the tributary. Previously this tributary tended to instead enter the upper layers of the lake during the operation of an adjoining soda ash manufacturing facility (closure in 1986), as a result of high lake S caused by the industry’s ionic waste discharge.  相似文献   

13.
Abstract: It is common practice in the United States and elsewhere to maintain vegetated filter strips adjacent to streams to retain contaminants in surface runoff. Most research has evaluated contaminant retention in managed agricultural field strips, while relatively few studies have quantified retention in forested filter strips, particularly for dissolved contaminants. Plot‐scale overland flow experiments were conducted to evaluate the efficiency of natural forested filter strips established as streamside management zones (SMZs) for retaining phosphorus (P), atrazine, and picloram transported in runoff. Retention was evaluated for five different slope classes: 1‐2, 5‐7, 10‐12, 15‐17, and 20‐22%; two cover conditions: undisturbed forest floor (O horizon intact) and forest floor removed by raking; and two periods with contrasting soil moisture conditions: summer‐dry and winter‐wet season. Surface flow was collected at 0, 2, 4, 6, and 10 m within the filter strip to evaluate changes in solution concentration as it moved through the O horizon and the surface soil horizon mixing zone. On average, a 10 m length of forested SMZ with an undisturbed forest floor reduced initial solution concentration of total dissolved P by 51%, orthophosphate P by 49%, atrazine by 28%, and picloram by 5%. Percentages of mass retention through infiltration of water plus concentration reductions in runoff were 64% for total dissolved P, 62% for orthophosphate P, 47% for atrazine, and 28% for picloram for undisturbed forest floor conditions. Lower retention occurred following forest floor removal, particularly for P. Average dissolved P retention was 16% lower following forest floor removal. For undisturbed sites, differences in retention were more closely related to forest floor depth than to slope or antecedent soil moisture. These results indicate that forested SMZ filter strips provide a significant measure of surface water protection from dissolved P and herbicide delivery to surface water.  相似文献   

14.
Arp, C.D., B.M. Jones, M. Whitman, A. Larsen, and F.E. Urban, 2010. Lake Temperature and Ice Cover Regimes in the Alaskan Subarctic and Arctic: Integrated Monitoring, Remote Sensing, and Modeling. Journal of the American Water Resources Association (JAWRA) 46(4): 777-791. DOI: 10.1111/j.1752-1688.2010.00451.x Abstract: Lake surface regimes are fundamental attributes of lake ecosystems and their interaction with the land and atmosphere. High latitudes may be particularly sensitive to climate change, however, adequate baselines for these lakes are often lacking. In this study, we couple monitoring, remote sensing, and modeling techniques to generate baseline datasets of lake surface temperature and ice cover in the Alaskan Subarctic and Arctic. No detectable trends were observed during this study period, but a number of interesting patterns were noted among lakes and between regions. The largest Arctic lake was relatively unresponsive to air temperature, while the largest Subarctic lake was very responsive likely because it is fed by glacial runoff. Mean late summer water temperatures were higher than air temperatures with differences ranging from 1.7 to 5.4°C in Subarctic lakes and from 2.4 to 3.2°C in Arctic lakes. The warmest mean summer water temperature in both regions was in 2004, with the exception of Subarctic glacially fed lake that was highest in 2005. Ice-out timing had high coherence within regions and years, typically occurring in late May in Subarctic and in early-July in Arctic lakes. Ice-on timing was more dependent on lake size and depth, often varying among lakes within a region. Such analyses provide an important baseline of lake surface regimes at a time when there is increasing interest in high-latitude water ecosystems and resources during an uncertain climate future.  相似文献   

15.
ABSTRACT: This paper examines the spatial, temporal and legal aspects of playa lake water utilization on the semi-arid Texas High Plains. These small basins of interior drainage collect and briefly hold an estimated two to three million acre-feet of runoff water annually, representing from one-fourth to one-third the quantity of groundwater pumped from the dwindling Ogallala aquifer. Once considered a detriment to farming operations, there is now increased interest in using playa water more effectively. At present direct pumping is the chief method of utilization, and modification of lake bottoms to concentrate runoff and reduce evaporation is the most widespread conservation practice. The use of playa water for groundwater reacharge is hampered by as yet unsolved technical problems. For many years the question of ownership of playa water remained unsettled. The Texas Water Rights Commission now classes it as diffused surface water, which under Texas law may be used by the landowner, though some legal problems remain. For play lakes to be effectively integrated into the regional water resource it becomes imperative that all present and prospective water utilization problems be identified and resolved.  相似文献   

16.
Abstract: The Soil and Water Assessment Tool (SWAT) has been applied successfully in temperate environments but little is known about its performance in the snow‐dominated, forested, mountainous watersheds that provide much of the water supply in western North America. To address this knowledge gap, we configured SWAT to simulate the streamflow of Tenderfoot Creek (TCSWAT). Located in central Montana, TCSWAT represents a high‐elevation watershed with ~85% coniferous forest cover where more than 70% of the annual precipitation falls as snow, and runoff comes primarily from spring snowmelt. Model calibration using four years of measured daily streamflow, temperature, and precipitation data resulted in a relative error (RE) of 2% for annual water yield estimates, and mean paired deviations (Dv) of 36 and 31% and Nash‐Sutcliffe (NS) efficiencies of 0.90 and 0.86 for monthly and daily streamflow, respectively. Model validation was conducted using an additional four years of data and the performance was similar to the calibration period, with RE of 4% for annual water yields, Dv of 43% and 32%, and NS efficiencies of 0.90 and 0.76 for monthly and daily streamflow, respectively. An objective, regression‐based model invalidation procedure also indicated that the model was validated for the overall simulation period. Seasonally, SWAT performed well during the spring and early summer snowmelt runoff period, but was a poor predictor of late summer and winter base flow. The calibrated model was most sensitive to snowmelt parameters, followed in decreasing order of influence by the surface runoff lag, ground water, soil, and SCS Curve Number parameter sets. Model sensitivity to the surface runoff lag parameter reflected the influence of frozen soils on runoff processes. Results indicated that SWAT can provide reasonable predictions of annual, monthly, and daily streamflow from forested montane watersheds, but further model refinements could improve representation of snowmelt runoff processes and performance during the base flow period in this environment.  相似文献   

17.
ABSTRACT: Crystal Lake, a small urban lake in Robbinsdale, MN, had been artificially circulated for 12 years before a detailed water quality evaluation was undertaken. In 1986, the circulation system was shut off for a two-year assessment. Although the lake remained hypereutrophic, the use of the lake, which included shoreline fishing and feeding ducks and geese, did not appear to be seriously impaired by the absence of artificial circulation. The circulation system was returned to service in October 1987 (there are 16 diffusers in this 0.31 km?2 lake). Continuous limnological data from October 1987 through October 1988, plus several sampling dates in 1989, compares to the two non-circulation years (1986 and 1987) as follows: there was a two- to three-fold increase in the lake's concentration of total phosphorus, total Kjeldahl nitrogen, and chlorophyll and a similar decrease in Secchi disk transparency. The surface oxygen concentration was reduced and the deep waters were nearly anoxic. In fact, following a wind storm in 1988, the entire lake became anoxic due to the mixing of high BOD throughout the water column, and a summertime fish-kill resulted. All of these occurrences are related to the artificial circulation of the lake.  相似文献   

18.
Concentrations of phosphorus (P) in runoff from agricultural catchments in southern Australia are high and well above national and international limits. Phosphorus was found to exit two subcatchments of 3.6 and 4.2 ha in the Adelaide hills via both overland flow and interflow. The subcatchments had texture-contrast soils with high inputs of superphosphate and were openly grazed by cattle all year. Interflow at the boundary of the B and C soil horizons accounted for as much as half the total water flow that was measured (overland flow, A-B interflow, and B-C interflow). The average flow-weighted concentration of total P within overland flow was as high as 0.25 mg L(-1), and 0.05 mg L(-1) in B-C interflow. In most years P loss was in the dissolved (<0.45 microm) form. In some years, interflow was the major pathway for P loss off these catchments. The B-C interflow cannot be discounted when searching for management options to reduce P loss from texture-contrast soils to waterways. Preliminary laboratory experiments showed promise that gypsum could modify agricultural soils and reduce the concentrations of P (and dissolved organic C) in runoff before it enters public water supply reservoirs. In this study, gypsum, applied at a rate of 15 Mg ha(-1) to the 4.2-ha subcatchment, substantially modified the soil chemistry, and thereby soil structure. The size and stability of structural aggregates increased markedly and this change affected not only the A but also the upper B horizons, to a profile depth of approximately 50 cm. However, the impact of these physicochemical changes on P concentrations in runoff was not marked. Average profile P concentrations were only slightly lower in the runoff from the subcatchment following treatment. The high subsoil macroporosity of the gypsum-treated subcatchment caused an increase in the proportion of runoff by interflow.  相似文献   

19.
ABSTRACT: Detailed studies of the surface hydrology of reclaimed surface-mined watersheds for both rainfall and snowmelt events are non-existent for central Alberta yet this information is crucial for design of runoff conveyance and storage structures. A study was initiated in 1992 with principal objectives of quantifying surface runoff for both summer rainfall and spring snowmelt events and identifying the dominant flow processes occurring in two reclaimed watersheds. Snowmelt accounted for 86 and 100% of annual watershed runoff in 1993 and 1994, respectively. The highest instantaneous peak flow was recorded during a summer rainfall event with a return period of greater than 50 years. Infiltration-excess overland flow was identified as the dominant flow process occurring within the Sandy Subsoil Watershed, whereas saturation overland flow was the principal runoff process occurring within the West Watershed.  相似文献   

20.
ABSTRACT: Evidence is presented that snowmelt runoff from an urban watershed can produce density current intrusions (underflows) in a lake. Several episodes of density current intrusions are documented. Water temperatures and salinities measured near the bottom of a 10 m deep Minneapolis lake during the late winter warming periods in 1989, 1990, 1991, and 1995 show significant rapid changes which are correlated with observed higher air temperatures and snowmelt runoff. The snowmelt runoff entering this particular lake (Ryan Lake) has increased electrical conductivity, salinity, and density. The source of the salinity is the salt spread on urban streets in the winter. Heating of littoral waters in spring may also contribute to the occurrence of the sinking flows, but is clearly not the only cause.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号