首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Hydraulic geometry relationships, or regional curves, relate bankfull stream channel dimensions to watershed drainage area. Hydraulic geometry relationships for streams throughout North Carolina vary with hydrology, soils, and extent of development within a watershed. An urban curve that is the focus of this study shows the bankfull features of streams in urban and suburban watersheds throughout the North Carolina Piedmont. Seventeen streams were surveyed in watersheds that had greater than 10 percent impervious cover. The watersheds had been developed long enough for the streams to redevelop bankfull features, and they had no major impoundments. The drainage areas for the streams ranged from 0.4 to 110.3 square kilometers. Cross‐sectional and longitudinal surveys were conducted to determine the channel dimension, pattern, and profile of each stream and power functions were fitted to the data. Comparisons were made with regional curves developed previously for the rural Piedmont, and enlargement ratios were produced. These enlargement ratios indicated a substantial increase in the hydraulic geometry for the urban streams in comparison to the rural streams. A comparison of flood frequency indicates a slight decrease in the bankfull discharge return interval for the gaged urban streams as compared to the gaged rural streams. The study data were collected by North Carolina State University (NCSU), the University of North Carolina at Charlotte (UNC), and Charlotte Storm Water Services. Urban regional curves are useful tools for applying natural channel design in developed watersheds. They do not, however, replace the need for field calibration and verification of bankfull stream channel dimensions.  相似文献   

2.
This paper reviews suspended sediment sources and transport in small forest streams in the Pacific Northwest region of North America, particularly in relation to riparian management. Mass movements, reading and yarding practices, and burning can increase the supply of suspended sediment. Sediment yields recovered to pre‐harvest levels within one to six years in several paired catchment studies. However, delayed mass movements related to roads and harvesting may produce elevated suspended sediment yield one or more decades after logging. There is mixed evidence for the role of streamside tree throw in riparian buffers in supplying sediment to streams. Harvesting within the riparian zone may not increase suspended sediment yield if near stream soils are not disturbed. Key knowledge gaps relate to the relative roles of increased transport capacity versus sediment supply, the dynamics of fine sediment penetration into bed sediments, and the effects of forest harvesting on suspended sediment at different scales. Future research should involve nested catchments to examine suspended sediment response to forest practices at multiple spatial scales, in combination with process‐based field studies.  相似文献   

3.
ABSTRACT: This study evaluated the use of a modified pebble count procedure (Bevenger and King, 1995) to detect cumulative watershed effects on headwater streams in the Routt National Forest in northcentral Colorado. The 42 sample reaches were stratified by disturbance (reference or disturbed) and geologic terrene (granitic or mixed sedimentary-volcanic). Water surface slope was a significant control on the number of fine particles in the reference reaches in both terranes, and the data from the disturbed reaches were adjusted accordingly. The disturbed reaches in the granitic terrene generally had a higher percentage of fine particles, and the adjusted number of fine particles was significantly correlated with the number of road crossings. Disturbed reaches in the sedimentary-volcanic (s-v) terrane generally did not have significantly more fine particles, nor were the adjusted numbers of fine particles significantly correlated with any management index. The lack of significant trends in the s-v streams is probably due to differences in weathering between the two rock types, and the location of the sample reach relative to sedimentary outcrops. Two other procedures were also used to assess cumulative watershed effects, with the Pfankuch channel stability rating yielding stronger and more consistent differences between the reference and the disturbed streams than the Tarzwell substrate ratio. We conclude that it may be difficult to define a standard reference condition, and that the number of road crossings is more strongly correlated with the number of fine particles than equivalent clearcut area.  相似文献   

4.
ABSTRACT: Ash trees (Fraxinus americana L. and F. Pennsylvanica Marsh.) collected from the flood plain of the Potomac River near Washington, D.C., were studied for evidence of associations between known periods of above-average summer flows and changes in wood-growth anatomy. Concentric bands of latewood fibers with atypically large lumens and thin walls commonly developed in trees growing near the low-water channel. Discharge records indicate that roots of most trees with these “white rings” were flooded temporarily during the latewood-growth interval. Trees apparently were not damaged and a concomitant reduction of internal water stresses seems to have accelerated the rate of radial growth. The intra-ring position of anomalous fibers generally corresponded to the time of increased discharge within the estimated interval of latewood growth. Anomalous fibers occasionally formed in unflooded trees, but their position also coincided with episodes of increased discharge. The results of these studies may have applications for streamflow-reconstruction techniques where hydrologic data are incomplete or lacking.  相似文献   

5.
ABSTRACT: Along a drainage network, there is a systematic variation of average flow parameters (width, depth, and velocity) at flows having the same flow duration. Hydraulic geometry equations mathematically express this interdependent relationship of stream-flow characteristics for a basin for annual flow durations varying from 10 to 90 percent. However, the equations proposed so far have had rather poor predictive performance for low flows. An independent investigation of the variation of discharge with drainage area and annual flow duration demonstrates a consistent relationship between these parameters. The relationship for the high to median-flow range differs, however, from that for the median— to low-flow range. The proposed equations provide a better predictive performance for low flows than previous formulations and a versatile means of estimating flow parameters for streams throughout a basin. The improved basin hydraulic geometry equations have a wide range of applications in areas such as stream habitat assessment, water quality modeling, channel design, and stream restoration projects.  相似文献   

6.
ABSTRACT: Three forest watersheds were isolated by roads in poorly drained flatwoods of Florida. After 12 months of baseline calibration the forest in one watershed was harvested and regenerated with minimum disturbance, in the second watershed with maximum disturbance from common practices, and in the third watershed left intact as a control. Water yields from the maximum treatments increased a significant 250 percent while that from the minimum treatments increased 117 percent as compared to the control. Weed vegetation remaining after the minimum treatment continued significant water use. The water yield increases lasted only for one year. Water quality was reduced by both treatments with the most effect immediately after the maximum disturbance. Absolute levels of suspended sediments, potassium, and calcium remained relatively low. The maximum treatment caused significant changes in net cation balances only for one year. The information shows relative little effect of silvicultural practices in flatwoods on water quality as compared to data from upland forests. Water yield increases may be manipulated by the degree of harvest and weed control practices.  相似文献   

7.
ABSTRACT. Salinization and water logging have been the nemesis of irrigated agriculture societies since Babylonian times. Low quality water substitutes for high quality water for irrigation at an increasing rate up to the limits of the soil's ability to transmit the additional water and remove excess salts from the root zone. Soil transmissibility can be increased by additional investment in drainage ditches and underground tile. Low valued-high salt tolerant crops can be substituted for higher valued-salt sensitive crops to maintain production in areas served by irrigation water sources of deteriorating quality. Thus physical factors specify the necessary conditions for survival of an irrigated agriculture. The sufficient conditions for survival must be in terms of a positive net income in each subplanning period discounted to its present value.  相似文献   

8.
ABSTRACT: Methods to estimate streamflow and channel hydraulic geometry were developed for unpaged streams in the Mid‐Atlantic Region. Observed mean annual streamflow and associated hydraulic geometry data from 75 gaging stations in the Appalachian Plateau, the Ridge and Valley, and the Piedmont Physiographic Provinces of the Mid‐Atlantic Region were used to develop a set of power functions that relate streamflow to drainage area and hydraulic geometry to streamflow. For all three physiographic provinces, drainage area explained 95 to 98 percent of the variance in mean annual streamflow. Relationships between mean annual streamflow and water surface width and mean flow depth had coefficients of determination that ranged from R2= 0.55 to R2= 0.91, but the coefficient of determination between mean flow velocity and mean annual streamflow was lower (R2= 0.44 to R2= 0.54). The advantages of using the regional regression models to estimate streamflow over a conceptual model or a water balance model are its ease of application and reduced input data needs. The prediction of the regression equations were tested with data collected as part of the U.S. Environmental Protection Agency (USEPA) Environmental Monitoring and Assessment Program (EMAP). In addition, equations to transfer streamflow from gaged to ungaged streams are presented.  相似文献   

9.
ABSTRACT Two lakes having similar soil types were studied to determine the effects of age and water fluctuations on plankton, benthos and fish populations. Bluff Lake is an older man-made lake which is drawn down in the mid-summer. Oktibbeha County Lake is a young lake and the water levels are maintained. Chemistry data from the two lakes indicate that their chemical properties are very similar. Neither lake would be considered very fertile. Net plankton populations in Bluff Lake and Oktibbeha County Lake were comparable when analyzed on a number of organisms per liter basis. Fluctuations of water levels did not seem to have an effect on the net plankton populations. The benthic population in Bluff Lake is slightly higher than that found in Oktibbeha County Lake. This is true for both numbers and weight per square meter. The species composition of benthic organisms in the two lakes were similar. Based on one-acre samples from each lake, Bluff Lake has a more balanced fish population than does Oktibbeha County Lake. Neither, however, seems to support populations of game fish in which a high percentage of these are in the available or harvestable range. Both lakes contain high populations of gizzard shad.  相似文献   

10.
ABSTRACT: Using data from 80 Oregon watersheds that ranged in size from 0.54 km2 to 27.45 km2, equations were developed to predict peak flows for use in culvert design on forest roads. Oregon was divided into six physiographic regions based on previous studies of flood frequency. In each region, data on annual peak flow from gaging stations with more than 20 years of record were analyzed using four flood frequency distributions: type 1 extremal, two parameter-log normal, three parameter-log normal, and log-Pearson type III. The log-Pearson type III distribution was found to be suitable for use in all regions of the State, based on the chi-square goodness-of-fit-test. Flood magnitudes having recurrence intervals of 10, 25, 50, and 100 years were related to physical and climatic characteristics of drainage basins by multiple regression. Drainage basin size was the most important variable in explaining the variation of flood peaks in all regions. Mean basin elevation and mean annual precipitation were also significantly related to flood peaks in two regions of western Oregon. The standard error of the estimate for the regression relationships ranged from 26 to 84 percent.  相似文献   

11.
ABSTRACT: The impact of floodplain regulations on mean appreciation rates of residential land values was tested at six study areas in five counties in western Oregon. The study hypothesis that such regulations significantly depress appreciation rates of regulated lands relative to those of similar unregulated lands was in most cases rejected. When the hypothesis was accepted circumstances would render conclusions tenuous. The problems and issues facing this type of research are presented in case studies of two of the research study areas. The following factors challenge investigators seeking to resolve questions about the relationship between land use regulations and land values: varying degrees of stringency with which regulations are enforced; unequal assessment procedures between counties; influences external to floodplain regulations that may affect appreciation rates, including denial of permits for septic tanks, flood damages, and amenity values associated with waterfront locations; and the uncertain effect that the availability of flood insurance, which accompanies floodplain regulations, has on land values.  相似文献   

12.
ABSTRACT: Seventy to eighty percent of the water flowing in rivers in the United States originates as precipitation in forests. This project developed a synoptic picture of the patterns in water chemistry for over 300 streams in small, forested watersheds across the United States. Nitrate (NO3?) concentrations averaged 0.31 mg N/L, with some streams averaging ten times this level. Nitrate concentrations tended to be higher in the northeastern United States in watersheds dominated by hardwood forests (especially hardwoods other than oaks) and in recently harvested watersheds. Concentrations of dissolved organic N (mean 0.32 mg N/L) were similar to those of NO3~, whereas ammonium (NH4+) concentrations were much lower (mean 0.05 mg N/L). Nitrate dominated the N loads of streams draining hardwood forests, whereas dissolved organic N dominated the streams in coniferous forests. Concentrations of inorganic phosphate were typically much lower (mean 12 mg P/L) than dissolved organic phosphate (mean 84 mg P/L). The frequencies of chemical concentrations in streams in small, forested watersheds showed more streams with higher NO3? concentrations than the streams used in national monitoring programs of larger, mostly forested watersheds. At a local scale, no trend in nitrate concentration with stream order or basin size was consistent across studies.  相似文献   

13.
ABSTRACT: Sugarcane (Saccharum spp.) was planted in six lysimeters containing Pahokee muck (Lithic Mediaprist) where water tables were maintained at 30, 60, and 90 cm depths. The main objective was to study the impact of a 40 percent water cutback (108 mm) on sugarcane production during the period near the end of the dry season (i.e., May). The water cutback treatment was simulated through manipulation of water table depth. Due to the high available water capacity of the muck soil and selection of a sugarcane cultivar ‘CP63-588’ (which has a high tolerance of water table fluctuations), the sugarcane growth, and the yields of sugarcane biomass and sugar were not significantly different as a result of the treatments with and without 40 percent water cutback during a period of two months. This result is in good agreement with the 1981 cane yield in the Everglades Agricultural Area where a 35 percent water cutback was imposed during the 1981 drought.  相似文献   

14.
ABSTRACT: Adequate water supplies are critical to the maintenance of a community's health and economic well-being. Across the nation communities are struggling to meet an expanding demand for water from municipal, industrial, agricultural, recreation, water quality, and power generation users. As the demand grows and communities actively compete with one another for a limited water supply, states are being called upon to help solve the problem. One possible solution that is being used in many areas is the development and implementation of a water conservation program to stretch the limited supply as far as possible. using a mailed survey, state water conservation programs and some of the characteristics of the different programs were documented. Responses to the nationwide survey were obtained from all 50 states. The specific water conservation program elements on which information was received from the survey included laws and restricted use, community assistance, education, research, and other services. Recommendations for states developing or considering the development of a water conservation program are outlined.  相似文献   

15.
ABSTRACT: The effects of a moving rainstorm on flood runoff characteristics were investigated. A flood hydrograph simulation model called “FH-Model” and a natural watershed were used. A hypothetical rainstorm of 50 years recurrence interval, 75 mm depth, and 4 hours duration was used to show the effects of velocity and direction of the moving rainstorm on the runoff characteristics. Compared with an equivalent stationary rainstorm (ESRS), the peak flow caused by a rainstorm moving in a downstream direction with a speed equal to channel velocity, V, was 27.5 percent higher and the peak flow caused by the same rainstorm moving in an upstream direction was 21.7 percent smaller. These percentages reduced to 10.5 percent and 8.6 percent for storms moving downstream and upstream, respectively, at three times the channel velocity, 3V. There were negligible differences in the time of peak, Tp between runoff caused by storms moving downstream and runoff produced by ESRS. However, Tp for a storm moving upstream at V velocity was 82 percent higher than that produced by ESRS, but was reduced to 27 percent higher when the storm velocity was 3V.  相似文献   

16.
Headwater streams comprise 60 to 80 percent of the cumulative length of river networks. In hilly to mountainous terrain, they reflect a mix of hillslope and channel processes because of their close proximity to sediment source areas. Their morphology is an assemblage of residual soils, landslide deposits, wood, boulders, thin patches of poorly sorted alluvium, and stretches of bedrock. Longitudinal profiles of these channels are strongly influenced by steps created by sediment deposits, large wood, and boulders. Due to the combination of small drainage area, stepped shallow gradient, large roughness elements, and cohesive sediments, headwater streams typically transport little sediment or coarse wood debris by fluvial processes. Consequently, headwaters act as sediment reservoirs for periods spanning decades to centuries. The accumulated sediment and wood may be episodically evacuated by debris flows, debris floods, or gully erosion and transported to larger channels. In mountain environments, these processes deliver significant amounts of materials that form riverine habitats in larger channels. In managed steepland forests, accelerated rates of landslides and debris flows resulting from the harvest of headwater forests have the potential to seriously impact the morphology of headwater streams and downstream resources.  相似文献   

17.
ABSTRACT: Magnetically tagged particles were used to investigate the effects of sockeye salmon (Oncorhynchus nerka) and floods on the dispersion of coarse bed material in the Stuart‐Takla region, British Columbia, Canada. The dominant annual sediment transporting event in the channels is the snowmelt flood events, with lesser activity usually accomplished during summer floods. Annually in August, the channel bed material is reworked by the Early Stuart sockeye salmon spawning, as the fish excavate the streambed to deposit and bury their eggs. These nesting cavities are called redds. Results from 67 tracer recovery experiments over five years were highly variable, subject to the magnitude of floods and the returning population of salmon. Overall, the depositional pattern from nival flood events usually demonstrated a high degree of clast mobilization, long travel distances (up to 150 m), and mean depths of burial up to 18 cm. Summer flood events showed somewhat lower rates of mobilization, distances of travel, and depths of burial. Although the fish did not move the tracers very far, their effect on the bed was generally quite pervasive ‐ up to 100 percent of the clasts were mobilized, and the depth of burial was considerable (mean burial depths up to 14 cm). The amount of vertical mixing of sediment by salmon was often on the same order of magnitude as flood events. The significant vertical mixing of sediments by the fish has important implications for the mobility of sediment in the stream. Since any armoring layer formed during high flows throughout the year is subject to the bioturbation of salmon, this suggests that the transport threshold in the creeks remains relatively low. Salmon likely play an integral role in the sediment transport dynamics and annual sediment budget of the lower reaches of these creeks.  相似文献   

18.
ABSTRACT: Heat pulse velocity techniques were developed for effective monitoring of water movement in aspen (Populus tremuloides), subalpine fir (Abies lasiocarpa), and Englemann spruce (Picea engelmannif). Water loss was monitored in replicated trees of each species for one year. These data were used to modify the plant activity index (a reflection of the ability of plants to transpire water at various times during a year) and the crop coefficient (a reflection of differences in consumptive use rates of water by different vegetation types when all other factors are held constant) for each species within the model ASPCON, a deterministic, lumped-parameter model describing the hydrology of aspen to conifer succession. Results of the modeling in dicate 18.6 cm net loss of moisture available for streamflow when spruce replaced aspen, and a loss of 7.2 cm when fir forests replaced aspen. The aspen to conifer successional trend appears, therefore, to be significantly reducing water yields in the western United States.  相似文献   

19.
ABSTRACT: The persistence of development and settlement in flood plains and continued damages from flooding, raises the question of how property owners respond to flood plain location and whether property values reflect this response. Existing studies disagree on the significance of flood hazard for property values. This study evaluates the effect of flood plain location on assessed valuation and home value in three towns in New Jersey. A t-test on mean assessed value and value of owner-occupied units at block levels showed no statistically significant variation for flood prone and nonflood prone lands. Possible explanations are that homeowners do not know or perceive the risk of living in flood plains, assessors do not incorporate flooding into assessment criteria, and the National Flood Insurance Program subsidies and broadened financial markets may equalize property values.  相似文献   

20.
ABSTRACT: Twenty-six aspen (Populus tremuloides Michx.), 20 subalpine fir (Abies lasiocarps (Hook.) Nutt.), and 20 Engelmann spruce (Pices engelmanil (Parry) Engelm.) of various sizes were cut under water and suspended in permanent reserviors at a northern Utah site. The reservoirs were asealed so that all water loss was due to consumption by the trees. Sap velocities, as computed from heat pulse velocities, were related to conducting areas of the tree trunks. Computed transpiration volumes were then correlated with actual water losses from the reservoirs. Coefficients of determination (R2) of 0.87, 0.86, and 0.82 were obtained for the fir, aspen, and sprucs, respectively. Reservoir water loss for each species for each season was then used to adjust a plant activity index for computing transpiration within ASPCON, a model describing the hydrology of aspen to conifer succession. The plant activity index reflects the variation in the capability of a plant community to transpire water over the year. Assumptions and limitations of the heat pulse velocity technique are also outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号