首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The Rio Grande basin shares problems faced by many arid regions of the world: growing and competing demands for water and river flows and uses that are vulnerable to drought and climate change. In recent years legislation, administrative action, and other measures have emerged to encourage private investment in efficient agricultural water use. Nevertheless, several institutional barriers discourage irrigators from investing in water conservation measures. This article examines barriers to agricultural water conservation in the Rio Grande basin and identifies challenges and opportunities for promoting it. Several barriers to water conservation are identified: clouded titles, water transfer restrictions, illusory water savings, insecure rights to conserved water, shared carry‐over storage, interstate compacts, conservation attitudes, land tenure arrangements, and an uncertain duty of water. Based on data on water use and crop production costs, price is found to be a major factor influencing water conservation. A low water price discourages water conservation even if other institutions promote it. A high price of water encourages conservation even in the presence of other discouraging factors. In conclusion, water‐conserving policies can be more effectively implemented where water institutions and programs are designed to be compatible with water’s underlying economic scarcity.  相似文献   

2.
This article describes the collaborative modeling process and the resulting water resources planning model developed to evaluate water management scenarios in the transboundary Rio Grande basin. The Rio Grande is a severely water stressed basin that faces numerous management challenges as it crosses numerous jurisdictional boundaries. A collaborative process was undertaken to identify and model water management scenarios to improve water supply for stakeholders, the environment, and international obligations of water delivery from Mexico to the United States. A transparent and open process of data collection, model building, and scenario development was completed by a project steering committee composed of university, nongovernmental, and governmental experts from both countries. The outcome of the process was a planning model described in this article, with data and operations that were agreed on by water planning officials in each country. Water management scenarios were created from stakeholder input and were modeled and evaluated for effectiveness with the planning model.  相似文献   

3.
Assessing Public Perceptions of Computer-Based Models   总被引:1,自引:1,他引:0  
Although there is a solid body of research on both collaborative decision-making and on processes using models, there is little research on general public attitudes about models and their use in making policy decisions. This project assessed opinions about computer models in general and attitudes about a specific model being used in water planning in the Middle Rio Grande Region of New Mexico, United States. More than 1000 individuals were surveyed about their perceptions of computer-based models in general. Additionally, more than 150 attendees at public meetings related to the Middle Rio Grande planning effort were surveyed about their perceptions of the specific Rio Grande-based model. The results reveal that the majority of respondents are confident in their ability to understand models and most believe that models are appropriate tools for education and for making policy decisions. Responses also reveal that trust in who develops a model is a key issue related to public support. Regarding the specific model highlighted in this project, the public revealed tremendous support for its usefulness as a public engagement tool as well as a tool to assist decision-makers in regional water planning. Although indicating broad support for models, the results do raise questions about the role of trust in using models in contentious decisions.  相似文献   

4.
Observed streamflow and climate data are used to test the hypothesis that climate change is already affecting Rio Grande streamflow volume derived from snowmelt runoff in ways consistent with model‐based projections of 21st‐Century streamflow. Annual and monthly changes in streamflow volume and surface climate variables on the Upper Rio Grande, near its headwaters in southern Colorado, are assessed for water years 1958–2015. Results indicate winter and spring season temperatures in the basin have increased significantly, April 1 snow water equivalent (SWE) has decreased by approximately 25%, and streamflow has declined slightly in the April–July snowmelt runoff season. Small increases in precipitation have reduced the impact of declining snowpack on trends in streamflow. Changes in the snowpack–runoff relationship are noticeable in hydrographs of mean monthly streamflow, but are most apparent in the changing ratios of precipitation (rain + snow, and SWE) to streamflow and in the declining fraction of runoff attributable to snowpack or winter precipitation. The observed changes provide observational confirmation for model projections of decreasing runoff attributable to snowpack, and demonstrate the decreasing utility of snowpack for predicting subsequent streamflow on a seasonal basis in the Upper Rio Grande Basin.  相似文献   

5.
To aid in planning and design of additional flood protection on the Lower Rio Grande, the Hydroraeteorological Branch prepared a probable maximum precipitation study for the International Boundary and Water Commission (United States and Mexico) and the Republic of Mexico. Five drainages from 2,000 to over 17,000 square miles in area between Falcon and Anzalduas Dams including Rio San Juan and Rio Alamo in Mexico are the areas of concern. The great rains of hurricane Beulah, September 19–24, 1967 verified that additional protection is needed. Procedures for estimating probable maximum precipitation (PMP) are described. A particular problem was to estimate rainfall potential for the Sierra Madre Oriental in Rio San Juan and Alamo drainages. These mountains form a north-south windward-facing slope and barrier of over 7000 feet in elevation. A detailed study was made of rains from hurricane Beulah. The storm produced the greatest known rain depths in North America for 50,000 square miles or greater, and durations longer than 48 hours.  相似文献   

6.
Abstract: Managing drought in agriculture has taken on growing importance as population growth and environmental concerns place increasing pressures on agricultural water use. One alternative for agricultural water resource management in areas of recurrent drought is allocation through market mechanisms. While past research has aimed to explain why farmers are reluctant to participate in already established water markets, this research seeks to identify the appropriate market mechanism given farmers’ preexisting attitudes toward water markets. Statistical analysis of survey data from 166 farmer interviews in the Rio Grande Basin indicate that farmers are significantly more likely to participate in short‐term water mechanisms, such as spot water markets and water banks than in permanent transfer mechanisms, particularly those that fully separate water rights from land. In sharp contrast to expectations, the choice of market mechanism did not differ significantly between farmers based on their a priori intention to buy, sell or both buy and sell in these markets. Choice of market mechanism also did not differ among farmer types although small, lifestyle or hobby farmers clearly preferred spot water markets to other types of short‐term mechanisms. Evaluating these attitudes a priori may help to design more suitable water market mechanisms for the basin.  相似文献   

7.
Leidner, Andrew J., M. Edward Rister, Ronald D. Lacewell, and Allen W. Sturdivant, 2011. The Water Market for the Middle and Lower Portions of the Texas Rio Grande Basin. Journal of the American Water Resources Association (JAWRA) 47(3):597‐610. DOI: 10.1111/j.1752‐1688.2011.00527.x Abstract: Regional water management on the United States’ side of the middle and lower portions of the Rio Grande basin of Texas has been aided by a functioning water market since the early 1970s. The water market operates over a region that stretches from the Amistad Reservoir to the Rio Grande’s terminus into the Gulf of Mexico. This article provides an overview of the organizations, institutions, policies, and geographic particulars of the region’s water‐management system and its water market. In recent years, this region has experienced high population growth, periodic droughts, and a reallocation of water resources from the area’s agricultural sector to the municipal sector. Demand growth for potable water and a relatively fixed supply of raw water are reflected in increasing prices for domestic, municipal, and industrial water rights. Rising prices in the presence of scarcity and the transfer of water from lower‐value to higher‐value uses indicate that the market is operating as suggested by economic theory. Reasons for the market’s functionality are presented and discussed. Finally, suggestions are presented which might mitigate potential complications to market operations from aquifer depletion and aid the management of instream river flows.  相似文献   

8.
ABSTRACT: The U.S. Endangered Species Act (ESA) restricts federal agencies from carrying out actions that jeopardize the continued existence of any endangered species. The U.S. Supreme Court has emphasized that the language of the ESA and its amendments permits few exceptions to the requirement to give endangered species the highest priority. This paper estimates economic costs associated with one measure for increasing instream flows to meet critical habitat requirements of the endangered Rio Grande silvery minnow. Impacts are derived from an integrated regional model of the hydrology, economics, and institutions of the upper Rio Grande Basin in Colorado, New Mexico, Texas, and Mexico. One proposal for providing minimum streamflows to protect the silvery minnow from extinction would provide guaranteed year round streamflows of at least 50 cubic feet per second in the San Acacia reach of the upper Rio Grande. These added flows can be accomplished through reduced surface diversions by New Mexico water users in dry years when flows would otherwise be reduced below the critical level required by the minnow. Based on a 44‐year simulation of future inflows to the basin, we find that some agricultural users suffer damages, but New Mexico water users as a whole do not incur damages from a policy that reduces stream depletions sufficiently to provide habitat for the minnow. The same policy actually benefits downstream users, producing average annual benefits of over $200,000 per year for west Texas agriculture, and over $1 million for El Paso municipal and industrial water users, respectively. Economic impacts of instream flow deliveries for the minnow are highest in drought years.  相似文献   

9.
ABSTRACT: The Rio Grande Valley National Water-Quality Assessment study unit encompasses about 45,700 square miles in Colorado, New Mexico, and Texas upstream from the gaging station Rio Grande at El Paso, Texas, and includes surface-water closed basins east of the Continental Divide in New Mexico, and the San Luis Closed Basin in Colorado. The mean annual precipitation ranges from less than 6 to more than 50 inches; potential evapo-transpiration ranges from less than 35 to more than 80 inches per year. Land use is mainly rangeland, forest land, and cropland. Total irrigated acreage in 1990 was about 914,000 acres and water use was about 3,410,000 acre-feet. Two structural settings are found in the study unit: alluvial basins and bedrock basins. The alluvial basins can have through-flowing surface water or be closed basins. The discussion of streamflow and water quality for the surface-water system is based on four river reaches for the 750 miles of the main stem. The quality of the ground water is affected by both natural process and human activities and by nonpoint and point sources. Nonpoint sources for surface water include agriculture, hydromodification, and mining operations; point sources are mainly discharge from wastewater treatment plants. Nonpoint sources for ground water include agriculture and septic tanks and cesspools; point sources include leaking underground storage tanks, unlined or manure-lined holding ponds used for disposal of dairy wastes, landfills, and mining operations.  相似文献   

10.
The objectives were to (1) delineate the complex set of rules governing the fate and transfer of water rights as agricultural land is urbanized in Texas and New Mexico in the United States and Chihuahua in Mexico and (2) estimate the change in water use as a result of such urbanization. Important additional determinants of water use in the region include intensification of agriculture and the hydroschizophrenic policy framework. We conducted interviews with key informants to identify the possible outcomes for changes in water rights as land is urbanized. We constructed decision trees for each of the three jurisdictions, Chihuahua, Texas, and New Mexico, that identified the possible outcomes from urbanization. For each of the possible outcomes in the decision tree, we estimated a range of potential water use outcomes and the most likely water use outcome on a per unit of land area basis. Results show that urbanization of agricultural land has almost no impact on the aggregate demand for or use of surface water. However, the impacts of urbanization on groundwater use vary considerably over the region from Texas to New Mexico to Chihuahua. In New Mexico and Chihuahua where groundwater rights can be leased or sold to other users, the likely impact is a net increase in groundwater use as land is urbanized, ranging from 0 to 3,000 m3/ha in New Mexico and averaging 3,000 m3/ha or more in Chihuahua. In Texas, there is a net benefit in groundwater savings, but those savings are subject to being offset by increased groundwater pumping to meet the needs of expanding pecan production. The net result is continued groundwater depletion, threatening the life of the transboundary aquifers, the Hueco Bolson and the Mesilla Bolson, in the Middle Rio Grande basin (defined as the part of the basin between Elephant Butte Reservoir in New Mexico to the confluence of the river with the Rio Conchos from Mexico).  相似文献   

11.
Abstract: Previous investigations observed significant seepage losses from the Rio Grande to the shallow aquifer between Socorro and San Antonio, New Mexico. High‐resolution telescopic modeling was used along a 10‐km reach of the Rio Grande and associated drains and canals to evaluate several management alternatives aimed at improving river conveyance efficiency. Observed data consisted of ground‐water and surface‐water elevations, seepage rates along the Rio Grande and associated canals and drains, and borehole geology. Model calibration was achieved by adjusting hydraulic conductivity and specific storage until the output matched observed data. Sensitivity analyses indicated that the system was responsive to changes in hydrogeologic properties, especially when such alterations increased vertical connectivity between layers. The calibrated model predicted that removal of the low flow conveyance channel, a major channel draining the valley, would not only decrease river seepage by 67%, but also decrease total flow through the reach by 75%. The decreased flow through the reach would result in increased water logging and an average increase in ground‐water elevations of 1.21 meter. Simulations of the system with reduced riparian evapotranspiration rates or a relocated river channel also predicted decreased river seepage, but to a much lesser degree.  相似文献   

12.
This study examines sources of fecal coliform in Segment 2302 of the Rio Grande, located south of the International Falcon Reservoir in southern Texas. The watershed is unique because the contributing drainage areas lie in Texas and Mexico. Additionally, the watershed is mostly rural, with populated communities known as “colonias.” The colonias lack sewered systems and discharge sanitary water directly to the ground surface, thus posing an increased health hazard from coliform bacteria. Monitoring data confirm that Segment 2302 is not safe for contact recreation due to elevated fecal coliform levels. The goal of the study was to simulate the observed exceedences in Segment 2302 and evaluate potential strategies for their elimination. Fecal coliform contributions from ranching and colonia discharges were modeled using the Hydrologic Simulation Program‐Fortran (HSPF). Model results indicated that the regulatory 30‐day geometric mean fecal coliform concentration of 200 colony forming units (cfu) per 100 milliliters is exceeded approximately three times per year for a total of 30 days. Ongoing initiatives to improve wastewater facilities will reduce this to approximately once per year for 14 days. Best management practices will be necessary to reduce cattle access to streams and eliminate all exceedences. The developed model was limited by the relatively sparse flow and fecal coliform data.  相似文献   

13.
Abstract: Interactions between surface irrigation water, shallow ground water, and river water may have effects on water quality that are important for both drinking water supplies and the ecological function of rivers and floodplains. We investigated water quality in surface water and ground water, and how water quality is influenced by surface water inputs from an unlined irrigation system in the Alcalde Valley of the Rio Grande in northern New Mexico. From August 2005 to July 2006, we sampled ground water and surface water monthly and analyzed for concentrations of major cations and anions, specific conductance, pH, dissolved oxygen, and water levels. Results indicate that irrigation ditch seepage caused an increase in ground water levels and that the Rio Grande is a gaining stream in this region. Temporal and spatial differences were found in ion concentrations in shallow ground water as it flowed from under the ditch toward the river. Ground‐water ion concentrations were higher when the ditch was not flowing compared with periods during peak irrigation season when the ditch was flowing. Ditch inputs diluted ion concentrations in shallow ground water at well positions near the ditch. Specifically, lower ion concentrations were detected in ground water at well positions located near the ditch and river compared with well positions located in the middle of an agricultural field. Results from this project showed that ditch inputs influenced ion concentrations and were associated with ground‐water recharge. In arid region river valleys, careful consideration should be given to management scenarios that change seepage from irrigation systems, because in some situations reduced seepage could negatively affect ground‐water recharge and water quality.  相似文献   

14.
ABSTRACT: Texans participate directly in water policy decision-making through a referendum process involving amendment of the state's constitution. Prior to 1985, Texans voted on eight amendments. Five of these were ratified (1957, 1962, 1966, 1971, 1976), and collectively resulted in the creation of the Water Development Fund, with an authorization level of $600 million, and the Texas Water Development Board, the organization charged with administering the fund. Three other amendments were defeated in 1969, 1976, and 1981 by ever-increasing margins. From 1985 to 1991, six additional amendments were proposed and subsequently ratified, resulting in a $1.8 billion increase in Water Development Fund authorization and the creation of an agricultural water conservation fund and bond insurance program. County-level electoral data for the 1985–1991 referenda were mapped to assess sectional and regional factors underlying public opinion regarding these water resource development and funding programs. Regional contrasts were most pronounced for the 1989 and 1991 referenda that targeted economically distressed areas across the state, particularly the colonias located along the Rio Grande, and the 1989 amendment that removed a time limit on the issuance of agricultural water conservation bonds. As a specific case study, the Texas experience could serve as a guide in California where similar constitutional restrictions require tax and spending programs to be approved by voters, and in other states that may be considering the development of similar state-level financial programs for water projects.  相似文献   

15.
Many studies have reported the presence of antibiotic-resistant Pseudomonas aeruginosa in environmental samples such as hospital wastewater and surface water. The present study evaluated the contribution of untreated hospital wastewater to the dissemination of resistant P. aeruginosa strains in aquatic environments, through the analysis of their antibiotic susceptibility profile and genetic similarity. Wastewater samples were collected from two hospitals located in Rio Grande do Sul, RS, Brazil. Superficial water samples were collected from water bodies that received this wastewater discharge. The antibiotic susceptibility profiles of the strains were determined using the disk-diffusion technique and their genotyping was done by amplification of the Enterobacterial Repetitive Intergenic Consensus sequences (ERIC-PCR). The antibiotic resistance was higher among the hospital wastewater strains and the multiresistant phenotype was also observed only among these strains. The ERIC-PCR profiles did not reveal any genetic similarity among the P. aeruginosa strains from the wastewater and superficial water samples. On the contrary, they showed that genetically distinct populations were established in these different environments and probably that some other contamination source could be contributing to the presence of resistant strains in these water bodies.  相似文献   

16.
Incentive pricing programs have potential to promote economically efficient water use patterns and provide a revenue source to compensate for environmental damages. However, incentive pricing may impose disproportionate costs and aggravate poverty where high prices are levied for basic human needs. This paper presents an analysis of a two-tiered water pricing system that sets a low price for subsistence needs, while charging a price equal to marginal cost, including environmental cost, for discretionary uses. This pricing arrangement can promote efficient and sustainable water use patterns, goals set by the European Water Framework Directive, while meeting subsistence needs of poor households. Using data from the Rio Grande Basin of North America, a dynamic nonlinear program, maximizes the basin's total net economic and environmental benefits subject to several hydrological and institutional constraints. Supply costs, environmental costs, and resource costs are integrated in a model of a river basin's hydrology, economics, and institutions. Three programs are compared: (1) Law of the River, in which water allocations and prices are determined by rules governing water transfers; (2) marginal cost pricing, in which households pay the full marginal cost of supplying treated water; (3) two-tiered pricing, in which households' subsistence water needs are priced cheaply, while discretionary uses are priced at efficient levels. Compared to the Law of the River and marginal cost pricing, two-tiered pricing performs well for efficiency and adequately for sustainability and equity. Findings provide a general framework for formulating water pricing programs that promote economically and environmentally efficient water use programs while also addressing other policy goals.  相似文献   

17.
ABSTRACT: The ground water in the Tucson basin is being drawn faster than it is replenished by nature. The water table is falling, giving rise to several conflicts between water users in the basin. At present, several lawsuits are in progress, including an action by the Papago Tribe against some of the major water users in the basin. Largely because of these difficulties, the State Legislature has established a commission to make proposals for the reform of Arizona's ground water law. The pattern of water use in the basin will undoubtedly be changed by the outcome of the present litigation and the coming reform of Arizona's ground water law. This paper describes how water use in the basin might be affected by changes in the availability of water and gives an account of the effects that these changes in water use could have on the region's economy. The paper concludes that the water problems of the Tucson basin will have little effect on the region at large and that these problems are simply a matter for the Indians and the other water users in the basin to sort out amongst themselves.  相似文献   

18.
Abstract: Both ground rain gauge and remotely sensed precipitation (Next Generation Weather Radar – NEXRAD Stage III) data have been used to support spatially distributed hydrological modeling. This study is unique in that it utilizes and compares the performance of National Weather Service (NWS) rain gauge, NEXRAD Stage III, and Tropical Rainfall Measurement Mission (TRMM) 3B42 (Version 6) data for the hydrological modeling of the Middle Nueces River Watershed in South Texas and Middle Rio Grande Watershed in South Texas and northern Mexico. The hydrologic model chosen for this study is the Soil and Water Assessment Tool (SWAT), which is a comprehensive, physical‐based tool that models watershed hydrology and water quality within stream reaches. Minor adjustments to selected model parameters were applied to make parameter values more realistic based on results from previous studies. In both watersheds, NEXRAD Stage III data yields results with low mass balance error between simulated and actual streamflow (±13%) and high monthly Nash‐Sutcliffe efficiency coefficients (NS > 0.60) for both calibration (July 1, 2003 to December 31, 2006) and validation (2007) periods. In the Middle Rio Grande Watershed NEXRAD Stage III data also yield robust daily results (time averaged over a three‐day period) with NS values of (0.60‐0.88). TRMM 3B42 data generate simulations for the Middle Rio Grande Watershed of variable qualtiy (MBE = +13 to ?16%; NS = 0.38‐0.94; RMSE = 0.07‐0.65), but greatly overestimates streamflow during the calibration period in the Middle Nueces Watershed. During the calibration period use of NWS rain gauge data does not generate acceptable simulations in both watersheds. Significantly, our study is the first to successfully demonstrate the utility of satellite‐estimated precipitation (TRMM 3B42) in supporting hydrologic modeling with SWAT; thereby, potentially extending the realm (between 50°N and 50°S) where remotely sensed precipitation data can support hydrologic modeling outside of regions that have modern, ground‐based radar networks (i.e., much of the third world).  相似文献   

19.
Neither Canada nor the United States attach much importance to the International Joint Commission (IJC) judging by the size of staffs and annual budgets. The Commission has been restricted to a relatively minor number of functions in the Great Lakes-St. Lawrence. It has investigated: the degree and causes of water and air quality deterioration; the effects of hydroelectric and navigation projects on water levels; the impacts of water-level fluctuations; and the feasibility of a deep waterway from the St. Lawrence to the Hudson River. Projects approved by the Commission have produced less than might be expected through no fault of the Commission. The Great Lakes Fishery Commission has promoted little international management. Budgetary limitations restrict its lamprey control program; institutional limitations restrict its ability to deal effectively with fishery problems. Commission responsibilities are limited to coordination and advisory functions. Since Canada and the United States have not chosen to refer most aspects of river basin management to international bodies, an institutional void exists in the Great Lakes Basin to consider these questions on a continuous basis. There is a need for expanded international cooperation.  相似文献   

20.
A chance-constrained linear programming model, which utilizes multiple linear decision rules and is useful for river basin planning, is used to evaluate the effects of risk and reliability on optimal reservoir design. Streamflow forecasts or predictions can be explicitly included in the linear program. The risk associated with the predictions is included in the model through the use of cumulative distribution functions (CDF) of streamflows which are conditioned on the predictions. A multiple-purpose reservoir on the Gunpowder River in Maryland is used to illustrate the effectiveness of the model. In order to provide the decision makers with complete and useful information, trade-off curves relating minimum reservoir capacity (a surrogate for dam costs), water supply and flood control targets, and the reliability of achieving the targets are developed. The trade-off curves may enhance the decision maker's ability to select the best dam capacity, considering technological and financial constraints as well as the trade-offs between targets, risks, and costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号