首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: West Bitter Creek floodwater retarding structure site 3 in South Central Oklahoma was instrumented and records obtained and analyzed to obtain information concerning an impoundment water budget that is useful to landowners and designers of these impoundments. On-site loss of water from the impoundment was only 17 percent of the inflow during three years when the annual precipitation averaged 26 inches and the annual inflow averaged 1.4 inches. Runoff from an eroded area with no farm ponds was about 70 percent greater per unit area than from a portion of the watershed where 71 percent of the drainage area was controlled by farm ponds. A previous study indicated, however, that the ponds were reducing runoff only 13 percent. Loss of top soil increases runoff considerably. Only 24 percent of the total runoff into the impoundment was base flow. The flow rate into the impoundment was less than 0.05 cfs 70 percent of the time, and the inflow rate exceeded 10 cfs only 1 percent of the time. SCS runoff curve numbers varied between 57 and 96 for the impoundment watershed with an inverse relation between precipitation amount and curve number apprently caused by partial area runoff from impervious and semi-impervious areas. A comparison of measured event runoff versus event runoff computed by the SCS curve numbers gave an r2 of only 0.44. However, the total computed surface runoff for eight years of record was less than 1 percent below the measured runoff which indicated the curve number method was a good tool for predicting long term runoff for the watershed.  相似文献   

2.
ABSTRACT: The Thornthwaite water balance and combinations of temperature and precipitation changes representing climate change were used to estimate changes in seasonal soil-moisture and runoff in the Delaware River basin. Winter warming may cause a greater proportion of precipitation in the northern part of the basin to fall as rain, which may increase winter runoff and decrease spring and summer runoff. Estimates of total annual runoff indicate that a 5 percent increase in precipitation would be needed to counteract runoff decreases resulting from a warming of 2°C; a 15 percent increase for a warming of 4°C. A warming of 2° to 4°C, without precipitation increases, may cause a 9 to 25 percent decrease in runoff. The general circulation model derived changes in annual runoff ranged from ?39 to +9 percent. Results generally agree with those obtained in studies elsewhere. The changes in runoff agree in direction but differ in magnitude. In this humid temperate climate, where precipitation is evenly distributed over the year, decreases in snow accumulation in the northern part of the basin and increases in evapotranspiration throughout the basin could change the timing of runoff and significantly reduce total annual water availability unless precipitation were to increase concurrently.  相似文献   

3.
ABSTRACT: The Pica Shan, a mountainous region located on the northern periphery of central Asia, has a wide range of climatic and hydrological conditions. On the basis of long term data from 348 meteorological and glaciological stations, the annual distribution of precipitation in different regions and elevational zones of the Tien Shan was calculated. Major climatic features are the entrance of moisture during spring-summer, small winter precipitation, decrease of precipitation towards the east and the center of the mountains or with distance up valleys, and increase of precipitation with altitude up to crest-lines of ranges. Annual total evaporation from snow can be 50–60 mm per year, reaching 30 percent of snow accumulation. Four main groups of rivers were identified: rivers with mainly snow nourishment, rivers with mainly glacial nourishment, rivers with mainly rain nourishment, and rivers with mainly ground water nourishment. Coefficient of runoff variation in Tien Shan's rivers is about 0.20, and coefficient of glacial runoff variation is about 0.15. Glacial runoff is 15–20 percent of the total volume of river runoff.  相似文献   

4.
ABSTRACT: There is mounting evidence that increasing amounts of atmospheric carbon dioxide may lead to significant changes in global climate during the next century. The possible effects of such climatic changes on surface runoff in the Great Basin Region of the western United States has been investigated by applying water balance models to four watersheds in Nevada and Utah. The most probable change, a 2°C increase in average annual temperature coupled with a 10 percent decrease in precipitation, would reduce runoff from 17 to 28 percent of the present mean, with drier basins showing the greatest change. Decreasing precipitation by 25 percent causes runoff reductions of 33 to 51 percent. Equivalent changes to a cooler and wetter climate show corresponding increases in runoff of approximately the same magnitude, but such a shift is not considered likely. Based on projected water requirements for the year 2000, a change to a warmer and drier climate would cause severe water shortages in many parts of the Great Basin.  相似文献   

5.
ABSTRACT: Data from a network of 45 shielded precipitation gages on the Reynolds Creek Experimental Watershed in Southwestern Idaho were analyzed to determine the optimum gage density for estimating mean annual precipitation. Four subsets of the 45 gage network were used to derive a curve of mean annual precipitation versus number of gages with a confidence band at the 95 percent level. When less than 20 gages were used in the estimate, the confidence interval widens rapidly. Estimates were improved by stratifying gages on the basis of plant cover class or by elevation bands. Sixty-four percent of the variation in mean annual precipitation was accounted for by elevation and cover class. The aspect and hydrologic soil classification were not statistically significant.  相似文献   

6.
ABSTRACT: Methods to estimate streamflow and channel hydraulic geometry were developed for unpaged streams in the Mid‐Atlantic Region. Observed mean annual streamflow and associated hydraulic geometry data from 75 gaging stations in the Appalachian Plateau, the Ridge and Valley, and the Piedmont Physiographic Provinces of the Mid‐Atlantic Region were used to develop a set of power functions that relate streamflow to drainage area and hydraulic geometry to streamflow. For all three physiographic provinces, drainage area explained 95 to 98 percent of the variance in mean annual streamflow. Relationships between mean annual streamflow and water surface width and mean flow depth had coefficients of determination that ranged from R2= 0.55 to R2= 0.91, but the coefficient of determination between mean flow velocity and mean annual streamflow was lower (R2= 0.44 to R2= 0.54). The advantages of using the regional regression models to estimate streamflow over a conceptual model or a water balance model are its ease of application and reduced input data needs. The prediction of the regression equations were tested with data collected as part of the U.S. Environmental Protection Agency (USEPA) Environmental Monitoring and Assessment Program (EMAP). In addition, equations to transfer streamflow from gaged to ungaged streams are presented.  相似文献   

7.
ABSTRACT: This research examines what is hypothesized as a critical factor in reservoir sedimentation - precipitation variability. The coefficient of variation for annual precipitation, computed for the period relating to sedimentation, is regressed against sediment yields for several reservoirs over a wide range of environmental settings. A significant linear relationship results, and when precipitation variability is combined with several additional variables available from reservoir summary sheets, almost 83% of the total variation in sediment yield is accounted for. It is suggested that the coefficient of variation for annual precipitation fulfills a direct process role when modeling reservoir sedimentation much more effectively than annual precipitation or runoff.  相似文献   

8.
An understanding of temporal trends in total stream‐flow (TSF), base flow (BF), and storm runoff (RO) can help in the development of water management plans for watersheds and local communities. In this study, 47 streams across Pennsylvania that were unregulated and unaffected by karst environments or coal mining were studied for flow trends and their relationships to selected climate parameters for the period 1971 to 2001. LOWESS curves for annual flow showed that almost all of the selected streams in Pennsylvania had downward trends in total TSF, BF, and RO. Using a seasonal Mann‐Kendall analysis, downward trends were significant at an α= 0.05 level for 68, percent 70 percent, and 62 percent of the streams and at an α= 0.10 level for another 19, 17, and 13 percent of the streams for TSF, BF, and RO, respectively. The ratio of BF to TSF (RBS) had significant upward trends for 34 percent of the streams at an α= 0.05 level and for another 9 percent of the streams at an α= 0.10 level, indicating that TSF decreased relative to BF for more than 40 percent of the streams during the previous 30 years. Downward trends in TSF, BF, and RO were most common for the months of June, July, and December. Trend analyses using monthly and annual total precipitation and mean temperature showed some association between climate and the streamflow trends, but Spearman's correlation and partial Mann‐Kendall analyses revealed that the trends in TSF, BF, and RO could not be explained by trends in precipitation and temperature alone, and thus urbanization and development may have played a role.  相似文献   

9.
Pollution of water resources by phosphorus (P) is a critical issue in regions with agricultural and urban development. In this study, we estimated P inputs from agricultural and urban sources in 24 catchments draining to the Central Valley in California and compared them with measured river P export to investigate hydrologic and anthropogenic factors affecting regional P retention and export. Using spatially explicit information on fertilizer use, livestock population, agricultural production, and human population, we calculated that net surface balances for anthropogenic P ranged from -12 to 648 kg P km yr in the early 2000s. Inorganic P fertilizer and manure P comprised the largest fraction of total input for all but two catchments. From 2000 to 2003, a median of 7% (range, -287 to 88%) of net annual anthropogenic P input was exported as total P (TP). Yields (kg P km yr) of dissolved inorganic P (DIP), dissolved organic P, particulate P, and TP were not significantly related to catchment-level, per area anthropogenic P input. However, there were significant relationships between mean annual P concentrations and P input from inorganic fertilizers and manure due to the concentration of agricultural land near catchment mouths and regional variation in runoff. Catchment-level P fertilizer and manure inputs explained 4 to 23% more variance in mean annual DIP and TP concentrations than percent of catchment area in agriculture. This study suggests that spatially explicit estimates of anthropogenic P input can help identify sources of multiple forms of P exported in rivers at management-relevant spatial scales.  相似文献   

10.
Effects of precipitation, runoff, and management on total phosphorus (TP) loss from three adjacent, row-cropped watersheds in the claypan region of northeastern Missouri were examined from 1991 to 1997 to understand factors affecting P loss in watersheds dominated by claypan soils. Runoff samples from each individual runoff event were analyzed for TP and sediment concentration. The annual TP loss ranged from 0.29 to 3.59 kg ha(-1) with a mean of 1.36 kg ha(-1) across all the watersheds during the study period. Significantly higher loss of TP from the watersheds was observed during the fallow period. Multiple small runoff events or several large runoff events contributed to loss of TP from the watersheds. Total P loss in 1993, a year with above-normal precipitation, accounted for 30% of the total TP loss observed over seven years. The five largest runoff events out of a total of 66 events observed over seven years accounted for 27% of the TP loss. The five largest sediment losses were responsible for 24% of the TP loss over seven years. Runoff volume and sediment loss explained 64 to 73% and 47 to 58% of the variation in TP loss on watersheds during the study. Flow duration and maximum flow accounted for 49 and 66% of TP loss, respectively. The results of this study suggest that management practices that reduce runoff volume, flow duration, maximum flow, and sediment loss, and that maintain a suitable vegetative cover throughout the year could lower P loss in claypan soils.  相似文献   

11.
ABSTRACT: The effects of potential climate change on mean annual runoff in the conterminous United States (U.S.) are examined using a simple water-balance model and output from two atmospheric general circulation models (GCMs). The two GCMs are from the Canadian Centre for Climate Prediction and Analysis (CCC) and the Hadley Centre for Climate Prediction and Research (HAD). In general, the CCC GCM climate results in decreases in runoff for the conterminous U.S., and the HAD GCM climate produces increases in runoff. These estimated changes in runoff primarily are the result of estimated changes in precipitation. The changes in mean annual runoff, however, mostly are smaller than the decade-to-decade variability in GCM-based mean annual runoff and errors in GCM-based runoff. The differences in simulated runoff between the two GCMs, together with decade-to-decade variability and errors in GCM-based runoff, cause the estimates of changes in runoff to be uncertain and unreliable.  相似文献   

12.
ABSTRACT: Loading functions are proposed as a general model for estimating monthly nitrogen and phosphorus fluxes in stream flow. The functions have a simple mathematical structure, describe a wide range of rural and urban nonpoint sources, and couple surface runoff and ground water discharge. Rural runoff loads are computed from daily runoff and erosion and monthly sediment yield calculations. Urban runoff loads are based on daily nutrient accumulation rates and exponential wash off functions. Ground water discharge is determined by lumped parameter unsaturated and saturated zone soil moisture balances. Default values for model chemical parameters were estimated from literature values. Validation studies over a three-year period for an 850 km2 watershed showed that the loading functions explained at least 90 percent of the observed monthly variation in dissolved and total nitrogen and phosphorus fluxes in stream flow. Errors in model predictions of mean monthly fluxes were: dissolved phosphorus - 4 percent; total phosphorus - 2 percent; dissolved nitrogen - 18 percent; and total nitrogen - 28 percent. These results were obtained without model calibration.  相似文献   

13.
ABSTRACT: A monthly water‐balance (WB) model was tested in 44 river basins from diverse physiographic and climatic regions across the conterminous United States (U.S.). The WB model includes the concepts of climatic water supply and climatic water demand, seasonality in climatic water supply and demand, and soil‐moisture storage. Exhaustive search techniques were employed to determine the optimal set of precipitation and temperature stations, and the optimal set of WB model parameters to use for each basin. It was found that the WB model worked best for basins with: (1) a mean elevation less than 450 meters or greater than 2000 meters, and/or (2) monthly runoff that is greater than 5 millimeters (mm) more than 80 percent of the time. In a separate analysis, a multiple linear regression (MLR) was computed using the adjusted R‐square values obtained by comparing measured and estimated monthly runoff of the original 44 river basins as the dependent variable, and combinations of various independent variables [streamflow gauge latitude, longitude, and elevation; basin area, the long‐term mean and standard deviation of annual precipitation; temperature and runoff; and low‐flow statistics (i.e., the percentage of months with monthly runoff that is less than 5 mm)]. Results from the MLR study showed that the reliability of a WB model for application in a specific region can be estimated from mean basin elevation and the percentage of months with gauged runoff less than 5 mm. The MLR equations were subsequently used to estimate adjusted R‐square values for 1,646 gauging stations across the conterminous U.S. Results of this study indicate that WB models can be used reliably to estimate monthly runoff in the eastern U.S., mountainous areas of the western U.S., and the Pacific Northwest. Applications of monthly WB models in the central U.S. can lead to uncertain estimates of runoff.  相似文献   

14.
ABSTRACT: The Nebraska Sand Hills have a unique hydrologic system with very little runoff and thick aquifers that constantly supply water to rivers, lakes, and wetlands. A ground water flow model was developed to determine the interactions between ground water and streamflow and to simulate the changes in ground water systems by reduced precipitation. The numerical modeling method includes a water balance model for the vadose zone and MOD‐FLOW for the saturated zone. The modeling results indicated that, between 1979 and 1990, 13 percent of the annual precipitation recharged to the aquifer and annual ground water loss by evapotranspiration (ET) was only about one‐fourth of this recharge. Ground water discharge to rivers accounts for about 96 percent of the streamflow in the Dismal and Middle Loup rivers. When precipitation decreased by half the average amount of the 1979 to 1990 period, the average decline of water table over the study area was 0.89 m, and the streamflow was about 87 percent of the present rate. This decline of the water table results in significant reductions in ET directly from ground water and so a significant portion of the streamflow is maintained by capture of the salvaged ET.  相似文献   

15.
Using nonparametric Mann‐Kendall tests, we assessed long‐term (1953‐2012) trends in streamflow and precipitation in Northern California and Southern Oregon at 26 sites regulated by dams and 41 “unregulated” sites. Few (9%) sites had significant decreasing trends in annual precipitation, but September precipitation declined at 70% of sites. Site characteristics such as runoff type (groundwater, snow, or rain) and dam regulation influenced streamflow trends. Decreasing streamflow trends outnumbered increasing trends for most months except at regulated sites for May‐September. Summer (July‐September) streamflow declined at many sites, including 73% of unregulated sites in September. Applying a LOESS regression model of antecedent precipitation vs. average monthly streamflow, we evaluated the underlying streamflow trend caused by factors other than precipitation. Decreasing trends in precipitation‐adjusted streamflow substantially outnumbered increasing trends for most months. As with streamflow, groundwater‐dominated sites had a greater percent of declining trends in precipitation‐adjusted streamflow than other runoff types. The most pristine surface‐runoff‐dominated watersheds within the study area showed no decreases in precipitation‐adjusted streamflow during the summer months. These results suggest that streamflow decreases at other sites were likely due to more increased human withdrawals and vegetation changes than to climate factors other than precipitation quantity.  相似文献   

16.
ABSTRACT: Most water-resouree investigations in semiarid basins of the Great Basin in western North America conclude that ground-water recharge from direct precipitation on the valley floor is negligible. However, many of these basins contain large areas covered by unvegetated, active sand dunes that may act as conduits for ground-water recharge. The potential for this previously undocumented recharge was investigated in an area covered by sand dunes in Desert Valley, northwestern Nevada, using a deep percolation model. The model uses daily measurements of precipitation and temperature th determine energy and moisture balances, from which estimates of long-term mean annual recharge are made. For the study area, the model calculated a mean annual recharge rate of as much as 1.3 inches per year, or 17 percent of the long-term mean precipitation. Model simulations also indicate that recharge would be virtually zero if the study area were covered by vegetation rather than dunes.  相似文献   

17.
ABSTRACT: Along a drainage network, there is a systematic variation of average flow parameters (width, depth, and velocity) at flows having the same flow duration. Hydraulic geometry equations mathematically express this interdependent relationship of stream-flow characteristics for a basin for annual flow durations varying from 10 to 90 percent. However, the equations proposed so far have had rather poor predictive performance for low flows. An independent investigation of the variation of discharge with drainage area and annual flow duration demonstrates a consistent relationship between these parameters. The relationship for the high to median-flow range differs, however, from that for the median— to low-flow range. The proposed equations provide a better predictive performance for low flows than previous formulations and a versatile means of estimating flow parameters for streams throughout a basin. The improved basin hydraulic geometry equations have a wide range of applications in areas such as stream habitat assessment, water quality modeling, channel design, and stream restoration projects.  相似文献   

18.
High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976‐2012 compared to 1939‐1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (<5%) in annual or growing season precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (< 0.10) 27% decrease in the annual runoff response to precipitation (runoff ratio). Surface‐water withdrawals for various uses appear to account for <12% of the reduction in average annual flow volume, and we found no published or reported evidence of substantial flow reduction caused by groundwater pumping in this basin. Results of our analysis suggest that increases in monthly average maximum and minimum temperatures, including >1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.  相似文献   

19.
ABSTRACT: A two-parameter farm pond storage index, FPSI, was Used to adjust computed surface. runoff using the partial area runoff contribution resulting from runoff captured by farm ponds. The validity of the index method was tested by fitting a continuous accounting version of the Soil Conservation Service curve number procedure to surface runoff data from each of three watersheds, first with and then without the FPSI routine. Evapotranspiration computed with the Jensen-Haise method and rainfall were input to the model. A linear relationship was assumed between the storage index and the portion of the controlled drainage area that was contributing to runoff. Adjusting the computed runoff with the FPSI reduced the coefficient of variation of monthly measured versus computed surface runoff for each of the three watersheds. The correlation coefficients for the same comparisons were increased. The annual predicted surface runoff Was improved for 12 of the 17 station years of data tested. The farm pond storage index could be used with any surface runoff model to improve the prediction of runoff from watersheds with drainage areas greater than 1 square mile and with about 20 percent or more of the drainage area controlled by farm ponds.  相似文献   

20.
Precipitation and runoff samples were collected for 13 storms in a nonindustrial urban area in Central Pennsylvania between July 1980 and June 1981. Runoff was collected from tree surfaces, a residential roof and street, a shopping mall parking lot, a downtown business district alley, and a heavily traveled street. Analysis of the water samples showed 10 to 25 percent of the nitrogen, 25 percent of the sulfate, and less than 5 percent of the phosphorus, potassium, and calcium in water below a tree was deposited by the precipitation. The residential roof caused insignificant changes in water chemistry. The results for the four paved areas showed that all the nitrogen, and from 16 to 40 percent of the sulfate and 13, 4, and 2 percent of the phosphorus, potassium, and calcium, respectively, in runoff was deposited by the precipitation. Precipitation can also be an important source of sulfate and phosphorus in runoff. All of the surfaces raised the pH of the runoff, with the largest increases, from a pH of 4 to about 7, occurring in runoff from the paved areas. Precipitation and runoff chemistry was not related to antecedent conditions such as the length of the preceding dry period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号