首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
随着近年来城市污染的严重,雾霾天气在城市中越来越常见。雾霾带给我们的不仅仅是大气的可见度大幅度降低,而且也会对我们的呼吸道健康造成很严重的损伤。实际上雾霾天气的起因除了空气污染还有部分气象因素,雾霾天气发生时,大气中的颗粒物特别是细颗粒物的浓度大幅度增加,这就是我们见不到太阳的原因。本文从PM2.5的雾霾天气中的元素特征入手,简单分析一下可能造成城区的雾霾天气的原因,为未来能够有效解决城市雾霾问题铺路。  相似文献   

2.
为了对包头市环境空气中PM2.5来源进行解析,在包百大楼设立采样点,于2011年9月—2012年6月利用TH-150C智能中流量(TSP)采样器与PM10-5-2.5大气可吸入颗粒物切割器,采集细颗粒物的重量,利用测量前后滤膜的重量差和通入气体流量体积的比值得出PM2.5的质量浓度。利用电感耦合等离子体质谱仪测定PM2.5中无机元素的含量;2001A型有机碳/元素碳(OC/EC)分析仪,测定PM2.5中碳组分的含量;采用DionexIC-2500型离子色谱仪测定无机离子的含量,最后利用富集因子法对PM2.5进行源解析。研究结果表明:包头市环境空气中PM2.5的质量浓度随时间变化,特征为秋冬季明显高于春夏季,主要原因是进入10月份包头市开始采暖,燃煤的大量增加导致PM2.5的质量浓度的升高,同时源解析结果表明其主要来源为燃煤、汽车尾气的排放、金属冶炼、生物质的燃烧(垃圾焚烧)和土壤尘(包括建筑和道路扬尘等)。  相似文献   

3.
采集了徐州市具有代表性的9个点位的春季环境空气样品,对不同功能区的监测点PM10及PM2.5污染水平及其来源进行了分析。结果表明,徐州市区代表不同功能的监测点污染特征明显,PM10与PM2.5污染主要来源于燃煤(包括电厂、其他工业)等固定源、机动车移动源,并受到工业废气、建筑施工扬尘等的影响。其水溶性离子、金属成分污染水平与其他城市相当,但由于受燃煤电厂的影响,Pb,Mn,As,Cr含量明显高于其它城市。  相似文献   

4.
对原子荧光法测定大气PM2.5中汞、砷、硒等重金属元素的条件进行了研究。研究得出最佳采样滤膜材质为石英纤维滤膜;样品在前处理完成后还原剂硫脲的加入使测定方法更准确;对电热板消解法、沸水浴法和微波消解法3种前处理方法进行比较试验,得出沸水浴法同时测定汞、砷、硒等5种重金属元素加标回收率最好,为94.5%~105.0%。该方法精密度较高,相对标准偏差在1.43%~4.70%,同时具有设备成本低的优点。  相似文献   

5.
乌鲁木齐市PM_(2.5)和PM_(2.5~10)中碳组分季节性变化特征   总被引:2,自引:0,他引:2  
2011年1月至12月在乌鲁木齐市区用膜采样法采集了大气PM_(2.5)和PM_(2.5~10)样品,并利用热光/碳分析仪测定了其中有机碳(OC)和元素碳(EC)的质量浓度.通过OC与EC的粒径分布特征、比值和相关性的分析,初步分析了乌鲁木齐市大气可吸入颗粒物中碳质气溶胶污染特征,并用OC/EC比值法估算了二次有机碳(SOC)的浓度.结果表明,PM_(2.5)和PM_(2.5~10)的年平均质量浓度分别为92.8μg/m~3和64.7μg/m~3.PM_(2.5)中OC和EC的年平均浓度分别为13.85μg/m~3和2.38μg/m~3,PM_(2.5~10)中OC和EC的年平均浓度分别为2.63μg/m~3和0.57μg/m~3.OC和EC四季变化趋势基本一致,季浓度最高.碳组分主要集中于PM_(2.5)中,OC/EC比值范围为3.62~11.21.夏季和秋季的PM_(2.5)和PM_(2.5~10)中OC和EC的相关性较好(R20.65).估算得出的PM_(2.5)和PM_(2.5~10)中SOC的估算浓度为2.31~11.98μg/m~3和0.38~1.49μg/m~3.  相似文献   

6.
为了初步调查柳州市空气中颗粒物PM10、PM2.5的污染水平,于2013年春、夏、秋、冬4季在柳州市的6个典型城市功能区进行数据采集。结果表明,柳州市PM10和PM2.5污染很严重,超标率分别为12.6%和35.1%,而且对人体健康危害更大的PM2.5占PM10的大部分,约为79.55%,应引起公众和相关职能部门的高度重视,且应在PM2.5问题上重点寻求突破。  相似文献   

7.
近年来,随着我国经济的快速发展,全国不少城市经常性出现灰霾天气,秋冬季节的北方地区尤为严重,不仅能见度低,而且易发呼吸道等疾病。根据国家环保部门的研究已证实灰霾天气与PM_(2.5)密切相关。本文作者工作经验对PM_(2.5)污染来源进行分析,并探讨了其污染控制措施。  相似文献   

8.
该文分别以香烟和大气尘为PM_(2.5))源,采用4种不同过滤级别的聚丙烯纤维滤料对这2种PM_(2.5))进行过滤性能考察,探讨香烟PM_(2.5))作为大气PM_(2.5))模拟物的可行性。对于选用的4种不同过滤级别的聚丙烯纤维滤料,香烟PM_(2.5)和大气PM_(2.5)的初始浓度对其过滤效率没有显著影响.在1~8 cm/s的工程滤速范围内,4种滤料对香烟PM_(2.5)和大气PM_(2.5)过滤效率都随滤速增加而线性降低。在特定滤速下,4种滤料对香烟PM_(2.5)与大气PM_(2.5)的过滤效率有很好的线性相关性。滤速分别为1、3、5、7 cm/s时,4种滤料对大气PM_(2.5)与香烟PM_(2.5)过滤效率的斜率比值分别为1.02、1.05、1.07、1.09,滤速越大、回归系数k值越大。研究结果表明:在该文实验条件下,香烟PM_(2.5)适宜作为大气PM_(2.5)模拟物,通过测试滤料对香烟PM_(2.5)过滤效率和回归系数k值可以预测该滤料对大气PM_(2.5)的过滤效率,为准确评价空气净化滤材过滤大气PM_(2.5)的性能提供科学理论依据。  相似文献   

9.
为了研究太原城区PM_(2.5)重金属污染变化特征和存在形态,于2012年不同季节采用大流量PM_(2.5)采样器,对太原市坞城区PM_(2.5)进行采样。运用火焰/石墨炉原子吸收、Fernández连续提取等方法,在对PM_(2.5)中5种重金属含量水平进行分析测试的基础上,对不同重金属的富集因子进行了计算和分析,并研究了其中Cd和Pb的不同化学形态分布特征。研究结果表明,采样期间PM_(2.5)日均浓度高达216.71μg/m3,为PM_(2.5)国家二级标准日均限值的2.89倍。4个季节PM_(2.5)中5种重金属元素的浓度大小,均呈现出相同的变化规律:ZnPbCuCrCd,Pb、Cr、Cu冬季高于其他季节,Zn夏季最高,Cd无明显季节变化,燃煤和超重型工业结构特征是导致PM_(2.5)中Cr和Cu明显高于其它城市的主要原因。重金属的富集因子计算结果表明,Cd和Pb是太原市PM_(2.5)中的典型污染元素。冬季PM_(2.5)中Cd和Pb形态分析结果表明,Cd和Pb 3种形态F1、F2和F3占比之和分别为81%和68%,Cd的活性和潜在活性均大于Pb,因此,太原城区PM_(2.5)中Cd和Pb对人体健康的影响应引起高度重视。  相似文献   

10.
通过对阜康市2015年1个区控点的PM_(2.5)和PM_(10)的连续自动监测数据分析得出:2015年阜康市大气颗粒物中PM_(2.5)、PM_(10)浓度日均值和小时值的最大值均出现在4月,日均值均超过了环境空气质量标准的二级标准限值;月均值最大值均出现在12月;PM_(2.5)的年均值超过了环境空气质量标准的二级标准限值;PM_(2.5)和PM_(10)冬季的日变化浓度高于其他三季,夏季最低。超标天数高值出现在1、2、11、12月,PM_(2.5)的污染程度比PM10严重;PM_(2.5)和PM_(10)的比值1、11、12月较大。  相似文献   

11.
PM_(10)和PM_(2.5)是近年来乌鲁木齐市空气质量的首要污染物,其成分复杂,来源不清。采用扫描电镜和离子色谱研究了乌鲁木齐市2015年采暖期和非采暖期大气颗粒物PM_(10)和PM_(2.5)的显微形貌,元素组成及其水溶性离子特征,并采用主成分分析法(PCA)对其来源进行解析。结果表明:PM_(10)和PM_(2.5)的颗粒形态各异,以球状、团絮状形状居多。主要物质有硅铝酸盐颗粒、铁氧化物颗粒,硫酸/碳酸盐晶体,碳质气溶胶以及不明物质等。采暖期和非采暖期主要的无机水溶性离子分别是SO_4~(2-)、NH_4~+、NO_3~-、Cl~-和SO_4~(2-)、NH_4~+、NO_3~-、Ca~(2+)。推测乌鲁木齐市颗粒物污染主要来源于固定污染源。  相似文献   

12.
通过室内模拟试验,研究了石灰对不同处理(轻度、中度、重度)水平下土壤典型重金属Cu、Cd、Pb、Zn化学形态的影响。结果表明:添加石灰60 d后土壤pH值、有机质含量均明显升高,4种重金属化学形态总体呈现由水溶态、交换态等活性态向有机态、残渣态等非活性态转化的趋势,其生物活性、迁移能力及淋溶能力均有不同程度下降,表明石灰是土壤重金属复合污染的有效修复剂。同时,不同处理水平下土壤4种重金属对石灰添加量的响应有差异,其中土壤Cu、Cd生物活性受石灰添加量影响较小,但中度、重度处理下土壤Pb、Zn生物活性和Cd、Zn迁移能力以及轻度处理下土壤Pb迁移能力均随着石灰添加量增加而显著降低,轻度处理下重金属淋溶能力在0.2 g石灰时最低,在中度、重度处理下随着石灰添加量增加而降低。  相似文献   

13.
通过对不同园林绿地类型内空气PM_(2.5)的检测,结果发现:PM_(2.5)浓度日变化规律均呈现早晚高午间低的双峰单谷型趋势。各绿地类型内空气PM_(2.5)浓度10月最低,8月最高。全年空气PM_(2.5)浓度均值从大至小依次为夏季>冬季>春季>秋季。不同天气状况下空气PM_(2.5)浓度的大小排序依次为阴天>晴天>雨天>雨后天晴。复混的植被结构对空气颗粒物的滞尘能力大于单一的植被结构,按滞尘能力大小排序依次为阔叶乔灌草、针叶乔灌草、阔叶乔草、灌木草坪、草坪。  相似文献   

14.
以乌鲁木齐市河东污水处理厂5月污泥作为研究,采用A.Tessier的重金属多级连续提取法分析污泥中镉和铅的含量和不同形态,研究污泥中重金属的生物有效性。结果表明:污泥中铅和镉都以残渣存在的比例最高,但是生物有效态和潜在有效态之和所占的比例相对也比较高,且都在50%以上。因此对生物具有较强可利用性,且农用时具有一定的风险。  相似文献   

15.
黄军  郭胜利  王希 《环境工程》2015,33(12):69-74
南京2013年冬季至2014年春季多次出现灰霾污染天气过程,防治颗粒物污染刻不容缓,其中细颗粒物(PM_(10))和超细颗粒物(PM_(2.5))所占比例较大。利用南京市环保局空气质量发布平台污染物监测数据和中国天气网站气象要素数据,对冬春季PM_(2.5)和PM_(10)质量浓度的变化特征以及它们与气象条件的关系进行分析。结果表明:南京冬季PM_(2.5)、PM10平均浓度分别为0.0982,0.1536 mg/m3,春季平均浓度分别为0.0673,0.1207 mg/m3。市区和郊区污染程度由高到低依次为:市区>江宁>六合>溧水。南京空气中颗粒物小时平均浓度日变化呈"双峰双谷型"特征。颗粒物与相对湿度、降雨量和风力呈一定的负相关性,与温度呈一定的正相关性,它们共同影响颗粒物质量浓度水平和大气污染状况。  相似文献   

16.
武汉市与西安市颗粒物PM_(10)、PM_(2.5)的污染水平分析   总被引:1,自引:0,他引:1  
利用武汉、西安两市2013年PM10与PM2.5的监测数据,统计分析了武汉市和西安市PM10与PM2.5的污染水平,并比较了两城市的污染水平。根据GB 3095—2012《中华人民共和国环境空气质量标准》规定的二级浓度限值,可知武汉市和西安市PM2.5的污染都非常严重,PM10的污染相对较轻。从整体上说,西安市的污染水平要比武汉市严重,其中西安市PM10中PM2.5约占79%。武汉市和西安市的相关部门都应重视PM10和PM2.5的污染问题。  相似文献   

17.
对2014年12月—2015年2月邯郸市大气中PM_(1.0)、PM_(2.5)以及PM_(2.5)中的硝酸根(NO-3)、水溶性有机碳(WSOC)和硫酸根(SO2-4)进行在线监测。结果表明,PM_(1.0)中干性成分(PM_(1.0)_DRY)和包含水分的PM_(1.0)(PM_(1.0)_WET)分别占PM_(2.5)的74.0%和81.4%,PM_(1.0)为PM_(2.5)中的主要组成。利用锯齿型方法估算本地源和区域源对PM_(1.0)、PM_(1.0)~2.5、PM_(2.5)的贡献,得出区域源对PM_(1.0)的贡献为40.6%,明显高于对PM_(1.0)~2.5与PM_(2.5)贡献的32.3%和37.7%,因为PM_(1.0)直径小,在大气中存在时间较长、传输距离远。根据NO-3、WSOC、SO2-4与PM_(1.0)、PM_(1.0)~2.5的相关系数,推断NO-3、WSOC可能在PM_(1.0)生成,而SO2-4可能在PM_(1.0)~2.5中生成。  相似文献   

18.
为了解下沙空气PM2.5的污染状况、分布规律及其影响因素,对2011年9月~2013年2月期间下沙站点的PM2.5进行了连续监测与分析.结果表明:2011年9月~2013年2月下沙站点PM2.5的小时浓度范围为1~453μg/m3,2012年平均浓度值为61μg/m3.下沙PM2.5浓度呈现明显的季度变化,且夜间高于昼间,这主要与本地及周边特殊的工业结构和能源消耗、气象条件、地理位置等因素有关.  相似文献   

19.
珠三角是广东省传统的空气污染区,但随着全省实施空气质量新标准,发现粤东北地区空气污染也比较严重。通过对梅州PM_(2.5)浓度及组分的模拟与分析,发现秋季粤东北部PM_(2.5)中硫酸盐占比达17%,而铵盐与硝酸盐分别占7%和4%。元素碳(EC)占PM_(2.5)质量浓度的4%,一次有机气溶胶(POA)占13%,二次有机气溶胶(SOA)占比仅为2%,而其他物种则占了53%。梅州的二次污染并不严重,各组分占PM_(2.5)质量分数日际波动不明显。秋季粤东北PM_(2.5)主要由本地排放贡献,大部分时候本地排放贡献大于80%,广东省其他城市的贡献接近0,而外省的贡献一般低于20%,个别时候可接近30%,要减轻粤东北部的污染应主要以控制本地一次细颗粒物的排放为主。  相似文献   

20.
对2015年3月—2016年2月邯郸市大气中的PM_(10)、PM_(2.5)和PM_(1.0)进行了在线监测,探讨了其质量浓度的变化特征,并分析了其质量浓度与风速、风向的关系。结果表明:邯郸市颗粒物质量浓度水平较高,β射线吸收法所监测的PM_(10_WET)、PM_(2.5_WET)和PM_(1.0_WET)年均浓度值分别为202.5,114.8,81.1μg/m~3,PM_(2.5_DRY)/PM_(10_WET)和PM_(2.5_WET)/PM_(10_WET)分别为0.58、0.70,PM_(1_DRY)/PM_(2.5_WET)和PM_(1_WET)/PM_(2.5_WET)分别为0.58、0.71,PM_(2.5)为PM_(10)中的主要组成,PM_(1.0)为PM_(2.5)中的主要组成。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)质量浓度冬季最高;PM_(10)、PM_(2.5)和PM_(1.0)日变化峰值为上午09:00左右,谷值为下午16:00左右,扬沙、降雨,霾和春节不同条件下PM_(10)、PM_(2.5)和PM_(1.0)差异明显。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)的浓度高值主要分布在风向0°~100°和175°~225°、风速小于1 m/s的情况下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号