首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A field investigation conducted on Boulder Creek in Boulder, Colorado evaluated impacts of flood control maintenance activities on flood conveyance, water quality, and fish habitat. Thirty-nine transects were monitored at one control site and two maintenance sites over a period of eight months. Each site was visited on more than 50 occasions in order to characterize pre- and post-maintenance conditions, and to monitor maintenance activities. Measurements along the transects included substrate composition, flow depth, velocity, and elevation. Reach-average values were assigned to variables such as in-stream vegetation, streambank stability, and woody vegetation before and after maintenance. Water temperature, dissolved oxygen, pH, specific conductance, and turbidity were sampled, and habitat suitability indices were developed pre- and post-maintenance for seven indicator fish species. Water quality impacts during maintenance consisted of high turbidity levels (> 400 NTU), which returned to background levels (0.1–15 NTU) overnight, as well as changes in mean temperature and pH. Alteration of physical channel characteristics as a result of maintenance had limited effects on habitat quality for four of seven fish species, but caused improvements in habitat quality for three fish species. The main implications of this study for floodplain management are that: (1) Flood control maintenance practices can be in direct conflict with water quality and fish habitat objectives, and should be carefully designed and implemented by an interdisciplinary team. (2) Physical habitat for some fish species can be improved as well as reduced by maintenance activities. Habitat suitability curves may be useful tools for evaluating limiting factors of the habitat and for identifying opportunities for habitat improvements as part of maintenance.  相似文献   

2.
We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005–2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.  相似文献   

3.
Deflector Designs for Fish Habitat Restoration   总被引:1,自引:0,他引:1  
Paired current deflectors are structures that are installed on each bank of a river to locally reduce the width of the channel, thereby creating flow acceleration and promoting scouring. These instream habitat structures have been used extensively in restoration projects to create pool habitat for fish, but there are many discrepancies in deflector design recommendations in terms of orientation, height, and length. Our objectives were to (1) examine how the angle, height, and length of paired deflectors affect scour hole dimensions and potential for bank erosion; and (2) test the applicability to paired deflectors of existing equations for scour hole depth and volume. Three deflector angles (45°, 90°, and 135°), two deflector heights (with flow under and over the deflector height), and two lengths (reducing the width by 25% and 50%) were investigated using uniform sand in a laboratory flume. Results showed a 26–30% smaller scour depth resulting from 45° deflectors than from 90° deflectors and a 5–10% smaller scour depth for 135° deflectors compared to 90° deflectors. The volume of scour and the potential for bank erosion were greater when flow was under the height of the deflectors rather than overtopping and when the length of deflector was increased. When flow was under the deflector height, 135° deflectors had the highest amount of bank erosion; whereas during overtopping flow conditions, 90° deflectors had the greatest bank erosion potential. Values predicted by the model of Kuhnle and others were closest to observed scour depth and volume measurements. The assumption that upstream-oriented deflectors always generate the largest scour should be revised.  相似文献   

4.
Water extraction from dryland rivers is often associated with declines in the health of river and floodplain ecosystems due to reduced flooding frequency and extent of floodplain inundation. Following moderate flooding in early 2008 in the Narran River, Murray-Darling Basin, Australia, 10,423 ML of water was purchased from agricultural water users and delivered to the river to prolong inundation of its terminal lake system to improve the recruitment success of colonial waterbirds that had started breeding in response to the initial flooding. This study examined the spatial and temporal patterns of fish assemblages in river and floodplain habitats over eight months following flooding to assess the possible ecological benefits of flood extension. Although the abundances of most fish species were greater in river channel habitats, the fish assemblage used floodplain habitats when inundated. Young-of-the-year (4–12 months age) golden perch (Macquaria ambigua) and bony bream (Nematalosa erebi) were consistently sampled in floodplain sites when inundated, suggesting that the floodplain provides rearing habitat for these species. Significant differences in the abundances of fish populations between reaches upstream and downstream of a weir in the main river channel indicates that the effectiveness of the environmental water release was limited by restricted connectivity within the broader catchment. Although the seasonal timing of flood extension may have coincided with sub-optimal primary production, the use of the environmental water purchase is likely to have promoted recruitment of fish populations by providing greater access to floodplain nursery habitats, thereby improving the ability to persist during years of little or no flow.  相似文献   

5.
/ Fishes and their habitats were sampled in Harland Creek, Mississippi, for 3 years to compare the relative value of three types of bank treatment in an incised, warmwater stream. Semiannual samples were collected from 10 reaches: 3 reaches protected by each of the three types of protection (longitudinal stone toe, stone spurs, and dormant willow posts) and an unprotected, slowly eroding bend. Protection of concave banks of bends had no measurable effect on the habitat quality of downstream riffles. Although bends and adjacent downstream riffles were faunistically similar at the species level, catostomids and centrarchids were more dominant in pools and smaller cyprinids more dominant in riffles. Reaches with willow posts were slightly deeper than the others, most likely because of geomorphic factors rather than bank treatment. Mean water surface widths in reaches stabilized with stone spurs were 40% to 90% greater than for other treatments, and current velocities were greatest in reaches with stone toe. Patterns of fish abundance and species diversity did not differ significantly among treatments. However, principal components analysis indicated that the fish species distribution associated with the untreated reference site was distinct. Reaches stabilized with stone spurs supported significantly higher densities of large fish and higher levels of fish biomass per unit channel length than reaches with other bank treatments, generally confirming previous research in the region. Initial costs for spurs were comparable to those for stone toe and about three times greater than for willow posts.  相似文献   

6.
Instream and floodplain wood can provide many benefits to river ecosystems, but can also create hazards for inhabitants, infrastructure, property, and recreational users in the river corridor. We propose a decision process for managing large wood, and particularly for assessing the relative benefits and hazards associated with individual wood pieces and with accumulations of wood. This process can be applied at varying levels of effort, from a relatively cursory visual assessment to more detailed numerical modeling. Decisions to retain, remove, or modify wood in a channel or on a floodplain are highly dependent on the specific context: the same piece of wood that might require removal in a highly urbanized setting may provide sufficient benefits to justify retention in a natural area or lower‐risk urban setting. The proposed decision process outlined here can be used by individuals with diverse technical backgrounds and in a range of urban to natural river reaches so that opportunities for wood retention or enhancement are increased.  相似文献   

7.
Instream barriers, such as dams, culverts, and diversions, alter hydrologic processes and aquatic habitat. Removing uneconomical and aging instream barriers is increasingly used for river restoration. Historically, selection of barrier removal projects used score‐and‐rank techniques, ignoring cumulative change and the spatial structure of stream networks. Likewise, most water supply models prioritize either human water uses or aquatic habitat, failing to incorporate both human and environmental water use benefits. Here, a dual‐objective optimization model identifies barriers to remove that maximize connected aquatic habitat and minimize water scarcity. Aquatic habitat is measured using monthly average streamflow, temperature, channel gradient, and geomorphic condition as indicators of aquatic habitat suitability. Water scarcity costs are minimized using economic penalty functions while a budget constraint specifies the money available to remove barriers. We demonstrate the approach using a case study in Utah's Weber Basin to prioritize removal of instream barriers for Bonneville cutthroat trout, while maintaining human water uses. Removing 54 instream barriers reconnects about 160 km of quality‐weighted habitat and costs approximately US$10 M. After this point, the cost‐effectiveness of removing barriers to connect river habitat decreases. The modeling approach expands barrier removal optimization methods by explicitly including both economic and environmental water uses.  相似文献   

8.
We performed two‐dimensional (2D) hydrodynamic modeling to aid recovery of the endangered razorback sucker (Xyrauchen texanus) by reconnecting the Green River with its historic bottomland floodplain wetlands at Ouray National Wildlife Refuge, Utah. Reconnection allows spring flood flows to overtop the river levee every two to three years, and passively transport razorback sucker larvae to the wetlands to grow in critical habitat. This study includes (1) river hydrologic analysis, (2) simulation of a levee breach/weir, overtopping of river flood flows, and 2D flow through the wetlands using Hydrologic Engineering Center River Analysis System 2D, and (3) modeling flow and restoration scenarios. Indicators of hydrologic alteration were used to evaluate river flow metrics, in particular flood magnitudes, frequency, and duration. Results showed a target spring flow of 16,000 cfs (453 m3/s) and a levee breach elevation of 4,663 ft (1,421 m) amsl would result in a median flow >6,000 acre‐feet (7.4 million m3) over five days into the wetlands, which is adequate for razorback sucker larvae transport and rearing. Modeling of flow/restoration scenarios showed using gated water control structures and passive low‐water crossings between wetland units can provide adequate control of flow movement into and storage in multiple units. Levee breaching can be a relatively simple, cost‐effective method to reconnect rivers and historic floodplains, and hydrodynamic modeling is an important tool for analyzing and designing wetland reconnection.  相似文献   

9.
Fish and benthic macroinvertebrate assemblages often provide insight on ecological conditions for guiding management actions. Unfortunately, land use and management legacies can constrain the structure of biotic communities such that they fail to reflect habitat quality. The purpose of this study was to describe patterns in fish and benthic macroinvertebrate assemblage structure, and evaluate relationships between biota and habitat characteristics in the Chariton River system of south-central Iowa, a system likely influenced by various potential management legacies (e.g., dams, chemical removal of fishes). We sampled fishes, benthic macroinvertebrates, and physical habitat from a total of 38 stream reaches in the Chariton River watershed during 2002–2005. Fish and benthic macroinvertebrate assemblages were dominated by generalist species tolerant of poor habitat quality; assemblages failed to show any apparent patterns with regard to stream size or longitudinal location within the watershed. Metrics used to summarize fish assemblages and populations [e.g., presence–absence, relative abundance, Index of Biotic Integrity for fish (IBIF)] were not related to habitat characteristics, except that catch rates of piscivores were positively related to the depth and the amount of large wood. In contrast, family richness of benthic macroinvertebrates, richness of Ephemeroptera, Trichoptera, and Plecoptera taxa, and IBI values for benthic macroinvertebrates (IBIBM) were positively correlated with the amount of overhanging vegetation and inversely related to the percentage of fine substrate. A long history of habitat alteration by row-crop agriculture and management legacies associated with reservoir construction has likely resulted in a fish assemblage dominated by tolerant species. Intolerant and sensitive fish species have not recolonized streams due to downstream movement barriers (i.e., dams). In contrast, aquatic insect assemblages reflected aquatic habitat, particularly the amount of overhanging vegetation and fine sediment. This research illustrates the importance of using multiple taxa for biological assessments and the need to consider management legacies when investigating responses to management and conservation actions.  相似文献   

10.
At the Sulm River, an Austrian lowland river, an ecologically orientated flood protection project was carried out from 1998-2000. Habitat modeling over a subsequent 3-year monitoring program (2001-2003) helped assess the effects of river bed embankment and of initiating a new meander by constructing a side channel and allowing self-developing side erosion. Hydrodynamic and physical habitat models were combined with fish-ecological methods. The results show a strong influence of riverbed dynamics on the habitat quality and quantity for the juvenile age classes (0+, 1+, 2+) of nase (Chondrostoma nasus), a key fish species of the Sulm River. The morphological conditions modified by floods changed significantly and decreased the amount of weighted usable areas. The primary factor was river bed aggradation, especially along the inner bend of the meander. This was a consequence of the reduced sediment transport capacity due to channel widening in the modeling area. The higher flow velocities and shallower depths, combined with the steeper bank angle, reduced the Weighted Useable Areas (WUAs) of habitats for juvenile nase. The modeling results were evaluated by combining results of mesohabitat-fishing surveys and habitat quality assessments. Both, the modeling and the fishing results demonstrated a reduced suitability of the habitats after the morphological modifications, but the situation was still improved compared to the pre-restoration conditions at the Sulm River.  相似文献   

11.
We analyzed the relation of the amount and spatial pattern of land cover with stream fish communities, in-stream habitat, and baseflow in 47 small southeastern Wisconsin, USA, watersheds encompassing a gradient of predominantly agricultural to predominantly urban land uses. The amount of connected impervious surface in the watershed was the best measure of urbanization for predicting fish density, species richness, diversity, and index of biotic integrity (IBI) score; bank erosion; and base flow. However, connected imperviousness was not significantly correlated with overall habitat quality for fish. Nonlinear models were developed using quantile regression to predict the maximum possible number of fish species, IBI score, and base flow for a given level of imperviousness. At watershed connected imperviousness levels less than about 8%, all three variables could have high values, whereas at connected imperviousness levels greater than 12% their values were inevitably low. Connected imperviousness levels between 8 and 12% represented a threshold region where minor changes in urbanization could result in major changes in stream condition. In a spatial analysis, connected imperviousness within a 50-m buffer along the stream or within a 1.6-km radius upstream of the sampling site had more influence on stream fish and base flow than did comparable amounts of imperviousness further away. Our results suggest that urban development that minimizes amount of connected impervious surface and establishes undeveloped buffer areas along streams should have less impact than conventional types of development.  相似文献   

12.
Biological elements, such as benthic macroinvertebrates and fish, have been used in assessing the ecological quality of rivers according to the requirements of the Water Framework Directive. However, the concurrent use of multiple organism groups provides a broader perspective for such evaluations, since each biological element may respond differently to certain environmental variables. In the present study, we assessed the ecological quality of a Greek river (RM4 type), during autumn 2003 and spring 2004 at 10 sites, with benthic macroinvertebrates and fish. Hydromorphological and physicochemical parameters, habitat structure, and riparian vegetation were also considered. Pollution sensitive macroinvertebrate taxa were more abundant at headwaters, which had good/excellent water quality according to the Hellenic Evaluation System (HES). The main river reaches possessed moderate water quality, while downstream sites were mainly characterised as having bad or poor water quality, dominated by pollution-tolerant macroinvertebrate taxa. Macroinvertebrates related strongly to local stressors as chemical degradation (ordination analysis CCA) and riparian quality impairment (bivariate analysis) while fish did not. Fish were absent from the severely impacted lower river reaches. Furthermore, external pathological signs were observed in fish caught at certain sites. A combined use of both macroinvertebrates and fish in biomonitoring programs is proposed for providing a safer assessment of local and regional habitat impairment.  相似文献   

13.
/ In general, diadromous (and particularly amphidromous and catadromous) freshwater fishes decline in frequency of occurrence, change age/size structure, and probably also decline in abundance with increasing elevation and distance upstream from the sea. In freshwater fish faunas with a high proportion of migratory species, as in New Zealand, these changes in occurrence and abundance result in a breakdown of the relationship between fish abundance and habitat quality, making application of the index of biotic integrity (IBI) as a measure of habitat quality problematical since the index depends on the relationship between population metrics and habitat quality. An alternative approach applicable to assessing temporal changes in habitat quality and that uses a large database on fish distributions, involves analysis of the distribution of species across their natural distributions. In this paper we generate curves of occurrence of species across ranges of altitude and distance inland and show, through comparisons of data subsets, that the curves are consistent estimators of species' occurrence and therefore useful as indicators of habitat quality.  相似文献   

14.
Water quality and stream habitat in agricultural watersheds are under greater scrutiny as hydrologic pathways are altered to increase crop production. Ditches have been traditionally constructed to remove water from agricultural lands. Little attention has been placed on alternative ditch designs that are more stable and provide greater habitat diversity for wildlife and aquatic species. In 2009, 1.89 km of a conventional drainage ditch in Mower County, Minnesota, was converted to a two‐stage ditch (TSD) with small, adjacent floodplains to mimic a natural system. Cross section surveys, conducted pre‐ and post‐construction, generally indicate a stable channel with minor adjustments over time. Vegetation surveys showed differences in species composition and biomass between the slopes and the benches, with changes ongoing. Longitudinal surveys demonstrated a 12‐fold increase in depth variability. Fish habitat quality improved with well‐sorted gravel riffles and deeper pool habitat. The biological response to improved habitat quality was investigated using a Fish Index of Biological Integrity (FIBI). Our results show higher FIBI scores post‐construction with scores more similar to natural streams. In summary, the TSD demonstrated improvements in riparian and instream habitat quality and fish communities, which showed greater fish species richness, higher percentages of gravel spawning fish, and better FIBI scores. This type of management tool could benefit ditches in other regions where gradient and geology allow.  相似文献   

15.
Ecological conditions following removal of exotic plants are a key part of comprehensive environmental management strategies to combat exotic plant invasions. We examined ecological conditions following removal of the management-priority buffelgrass (Pennisetum ciliare) in Saguaro National Park of the North American Sonoran Desert. We assessed soil, vegetation, and soil seed banks on seven buffelgrass site types: five different frequencies of buffelgrass herbicide plus hand removal treatments (ranging from 5 years of annual treatment to a single year of treatment), untreated sites, and non-invaded sites, with three replicates for each of the seven site types. The 22 measured soil properties (e.g., pH) differed little among sites. Regarding vegetation, buffelgrass cover was low (≤1 % median cover), or absent, across all treated sites but was high (10–70 %) in untreated sites. Native vegetation cover, diversity, and composition were indistinguishable across site types. Species composition was dominated by native species (>93 % relative cover) across all sites except untreated buffelgrass sites. Most (38 species, 93 %) of the 41 species detected in soil seed banks were native, and native seed density did not differ significantly across sites. Results suggest that: (1) buffelgrass cover was minimal across treated sites; (2) aside from high buffelgrass cover in untreated sites, ecological conditions were largely indistinguishable across sites; (3) soil seed banks harbored ≥12 species that were frequent in the aboveground vegetation; and (4) native species dominated post-treatment vegetation composition, and removing buffelgrass did not result in replacement by other exotic species.  相似文献   

16.
17.
The achievement of No Net Loss (NNL) through habitat compensation has rarely been assessed in Canada. Files relating to 124 Fisheries Act Section 35(2) authorizations issued by Fisheries and Oceans Canada for the harmful alteration, disruption, and destruction of fish habitat (HADD) were collected and reviewed. Data extracted from these files were pooled and analyzed to provide an indication of the types of HADDs that have been authorized in Canada, what habitats have been affected, and what habitat management approaches have been used when compensating for HADDs and monitoring and ensuring the success of the compensation. Determinations regarding the effectiveness of habitat compensation in achieving NNL were made. Impacts to 419,562 m2 of fish habitat from the 124 authorized HADDs were offset by 1,020,388 m2 of compensatory habitat. Eighty percent of the authorizations had compensation ratios (compensation area:HADD area) of 2:1 or less, and 25% of the authorizations had a compensation ratio that was less than 1:1. In-channel and riparian habitat were the most frequently impacted habitats. Urban development and roads and highways resulted in the greatest areal loss of habitat. The compensation option that was most often selected was the creation of in-kind habitat. The mean duration of post-construction monitoring programs was 3.7 years. Determinations of NNL could only be made for 17 authorizations as a result of poor proponent compliance with monitoring requirements and the qualitative assessment procedures used by the monitoring programs. Adequate resources, proper training, and standardized approaches to data management and monitoring programs are required to ensure that the conservation goal of NNL can be achieved in Canada.  相似文献   

18.
The health of freshwater biota is dependent on streamflow, yet identification of the flow regimes required to maintain ecological integrity remains challenging to states in the United States seeking to establish ecological flows. We tested the relationship between decreases in streamflow and Shannon‐Weaver diversity index of fish species for four flow‐based habitat guilds: riffle, riffle‐run, pool‐run, and pool in North Carolina. We found species that prefer shallow habitats, such as riffles and riffle‐runs were the most sensitive to decreases in streamflow; whereas no significant relationships were found for pool or pool‐run species. The sensitivity to decreases in streamflow was greatest during summer and fall, when streams are naturally lower. When all fish habitat guilds were included in the assessment of flow‐biology relationships, there were no significant relationships to decreases in streamflow. As the sensitivity of fish to reductions in streamflow is not constant across habitat guilds, combining all fish species together for flow‐biology analyses may greatly underestimate the response of fish species to decreases in flow and should be acknowledged when establishing ecological flows.  相似文献   

19.
Since returning an ecosystem to its pristine state may not be realistic in every situation, the concept of habitat diversity is proposed to help decision-makers in defining realistic restoration objectives. In order to maintain habitat diversity and enhance the long-term success of restoration, process-oriented projects should be preferred to species-oriented ones. Because the hydrogeomorphological processes that influence biodiversity operate at different spatiotemporal scales, three scales are considered: river sectors, floodplain waterbodies, and mesohabitats within each waterbody. Based on a bibliographical review, three major driving forces are proposed for incorporation into the design of restoration projects: (1) flow velocity and flood disturbances, (2) hydrological connectivity, and (3) water supply. On the sector scale, increased habitat diversity between waterbodies can be achieved by combining various intensities of these driving forces. On the waterbody scale, increased habitat diversity within the ecosystem can be achieved by varying water depth, velocity, and substrate. The concept is applied to a Rhône River sector (France) where three terrestrialized side arms will be restored. Two were designed to be flood scoured, one having an additional supply of groundwater, the other being connected to the river at both ends. The third cannot be scoured by floods because of upstream construction and would be supplied by river backflow through a downstream connection. Habitat diversity within the ecosystem is exemplified on one side arm through the design of a sinuous pathway combined with variation of water depth, wetted width, and substrate grain size. Self-colonization of the side arms is expected owing to the restoration of connectivity to upstream sources of potential colonizers.  相似文献   

20.
In the present communication habitat ecology, species diversity; distribution and different indices of fish biodiversity management were studied in a Central India river (River Betwa, a tributary of River Ganga basin approved under India’s first river linking plan). Correlation between fish species richness with the hydrological attributes showed good relationship and water depth, dissolved oxygen and pH were found the most important variables in shaping fish assemblage. Altogether, sixty-three fish species belonging to 20 families and 45 genera were collected from five sampling stations spread along the upstream, mid stream and lower streams. Cyprinids were the most dominated group represented by 26 species belonging to 15 genera, followed by Bagridae (6 species from 3 genera), and Schilbeidae (4 species from 4 genera). The distribution of fish showed interesting pattern and about 10% species were common to all the sites showing long migration range. Shannon-Weiner diversity index showed considerable variation and ranged from 1.89 to 3.51. Out of 63 species status of 10 species were not known due to data deficit, 29 categorized as lower risk, 14 as vulnerable, 8 as endangered, while the remaining two species were introduced. Our study shows that the River supports considerable diversity of the fishes and is important for conservation and about 34% fish fauna is threatened being either vulnerable or endangered. We assessed that the river supports considerable percentage of food fish (89.47), ornamental fish (49.12%) and sport fish (5.26%). Among the eight major types of fish habitats identified along the entire stretch of river, open river, shallow water and deep pools were habitats contributing maximum diversity. Fish species richness (FSR) were significantly different (P < 0.05) in all the habitats except channel confluence and scour pool. Trophic niche model may be useful for assessing altered as well as less altered fish habitat of the tropical rivers. Since this river will be interlinked in near future, this study would be useful for conservation planning and management and also for future assessment after interlinking. Issues related to various threats to aquatic environment and conservation management strategies have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号