共查询到20条相似文献,搜索用时 15 毫秒
1.
Variability of Lotic Macroinvertebrate Assemblages and Stream Habitat Characteristics Across Hierarchical Landscape Classifications 总被引:1,自引:0,他引:1
Streams are naturally hierarchical systems, and their biota are affected by factors effective at regional to local scales. However, there have been only a few attempts to quantify variation in ecological attributes across multiple spatial scales. We examined the variation in several macroinvertebrate metrics and environmental variables at three hierarchical scales (ecoregions, drainage systems, streams) in boreal headwater streams. In nested analyses of variance, significant spatial variability was observed for most of the macroinvertebrate metrics and environmental variables examined. For most metrics, ecoregions explained more variation than did drainage systems. There was, however, much variation attributable to residuals, suggesting high among-stream variation in macroinvertebrate assemblage characteristics. Nonmetric multidimensional scaling (NMDS) and multiresponse permutation procedure (MRPP) showed that assemblage composition differed significantly among both drainage systems and ecoregions. The associated R-statistics were, however, very low, indicating wide variation among sites within the defined landscape classifications. Regional delineations explained most of the variation in stream water chemistry, ecoregions being clearly more influential than drainage systems. For physical habitat characteristics, by contrast, the among-stream component was the major source of variation. Distinct differences attributable to stream size were observed for several metrics, especially total number of taxa and abundance of algae-scraping invertebrates. Although ecoregions clearly account for a considerable amount of variation in macroinvertebrate assemblage characteristics, we suggest that a three-tiered classification system (stratification through ecoregion and habitat type, followed by assemblage prediction within these ecologically meaningful units) will be needed for effective bioassessment of boreal running waters. 相似文献
2.
Biological assessment of aquatic ecosystems is widely employed as an alternative or complement to chemical and toxicity testing due to numerous advantages of using biota to determine ecosystem condition. These advantages, especially to developing countries, include the relatively low cost and technical requirements. This study was conducted to determine the biological impacts of aquaculture operations on effluent-receiving streams in the Ashanti Region of Ghana. We collected water, fish and benthic macroinvertebrate samples from 12 aquaculture effluent-receiving streams upstream and downstream of fish farms and 12 reference streams between May and August of 2009, and then calculated structural and functional metrics for biotic assemblages. Fish species with non-guarding mode of reproduction were more abundant in reference streams than downstream (P?=?0.0214) and upstream (P?=?0.0251), and sand-detritus spawning fish were less predominant in reference stream than upstream (P?=?0.0222) and marginally less in downstream locations (P?=?0.0539). A possible subsidy-stress response of macroinvertebrate family richness and abundance was also observed, with nutrient (nitrogen) augmentation from aquaculture and other farming activities likely. Generally, there were no, or only marginal differences among locations downstream and upstream of fish farms and in reference streams in terms of several other biotic metrics considered. Therefore, the scale of impact in the future will depend not only on the management of nutrient augmentation from pond effluents, but also on the consideration of nutrient discharges from other industries like fruit and vegetable farming within the study area. 相似文献
3.
Smith JG 《Environmental management》2003,32(1):77-92
Recovery of the benthic macroinvertebrate community in a small east Tennessee stream impacted by fly ash discharges from a power plant was investigated over a period of 6.5 years. The rate of recovery was greatest in the first 2 years after an initial 75% reduction in coal use led to a similar reduction in ash discharges and associated contaminants; further recovery followed after all fly ash discharges ceased. Recovery of the stream progressed through two phases. In the first phase, which lasted for approximately the first 2 years, most density and richness metrics increased considerably. In the second phase of recovery, the increases in metric values were followed by declines before fluctuating in and out of the lower reference ranges for the metrics. Detrended correspondence analyses and indicator species analyses showed that changes in species composition and community structure were ongoing throughout the second phase. Thus, the first phase was characterized by species additions, while the second phase involved species replacements and shifts in community dominants. Further recovery of the macroinvertebrate community will probably depend on additional flushing of fly ash deposits from the streambed and flood plain, because their continued presence reduces habitat quality in the stream and serves as a potential source of contaminants. Further recovery also may be limited by the availability of vagile species in nearby watersheds. 相似文献
4.
5.
Brian S. Helms Jon E. Schoonover Jack W. Feminella 《Journal of the American Water Resources Association》2009,45(1):157-169
Abstract: We evaluated the impact of land cover on fish assemblages by examining relationships between stream hydrology, physicochemistry, and instream habitat and their association with fish responses in streams draining 18 watersheds of the Lower Piedmont of western Georgia. Several important relationships between land use and physicochemical, hydrological, and habitat parameters were observed, particularly higher frequency of spate flows, water temperatures, and lower dissolved oxygen (DO) with percentage impervious surface (IS) cover, higher habitat quality with percentage forest cover, and elevated suspended solid concentrations with percentage pasture cover. Fish assemblages were largely explained by physicochemical and hydrological rather than habitat variables. Specifically, fish species diversity, richness, and biotic integrity were lower in streams that received high frequency of spate flows. Also, overall fish assemblage structure as determined by nonmetric multidimensional scaling was best described by total dissolved solids (TDS) and DO, with high TDS and low DO streams containing sunfish‐based assemblages and low TDS and high DO streams containing minnow‐based assemblages. Our results suggest that altered hydrological and physicochemical conditions, induced largely by IS, may be a strong determinant of fish assemblage structure in these lowland streams and allow for a more mechanistic understanding of how land use ultimately affects these systems. 相似文献
6.
More of the Same: High Functional Redundancy in Stream Fish Assemblages from Tropical Agroecosystems 总被引:1,自引:0,他引:1
Lilian Casatti Fabrício Barreto Teresa Jaquelini de Oliveira Zeni Mariela Domiciano Ribeiro Gabriel Lourenço Brejão Mônica Ceneviva-Bastos 《Environmental management》2015,55(6):1300-1314
7.
Southern Portugal is experiencing a rapid change in land use due to the spread of intensive farming systems, namely olive production systems, which can cause strong negative environmental impacts and affect the ecological integrity of aquatic ecosystems. This study aimed to identify the main environmental disturbances related with olive grove intensification on Mediterranean-climate streams in southern Portugal, and to evaluate their effects on fish assemblage structure and integrity. Twenty-six stream sites within the direct influence of traditional, intensive, and hyper-intensive olive groves were sampled. Human-induced disturbances were analyzed along the olive grove intensity gradient. The integrity of fish assemblages was evaluated by comparison with an independent set of least disturbed reference sites, considering metrics and guilds, based on multivariate analyses. Along the gradient of olive grove intensification, the study observed overall increases in human disturbance variables and physicochemical parameters, especially organic/nutrient enrichment, sediment load, and riparian degradation. Animal load measured the impact of livestock production. This variable showed an opposite pattern, since traditional olive groves are often combined with high livestock production and are used as grazing pasture by the cattle, unlike more intensive olive groves. Stream sites influenced by olive groves were dominated by non-native and tolerant fish species, while reference sites presented higher fish richness, density and were mainly occupied by native and intolerant species. Fish assemblage structure in olive grove sites was significantly different from the reference set, although significant differences between olive grove types were not observed. Bray–Curtis similarities between olive grove sites and references showed a decreasing trend in fish assemblage integrity along the olive grove intensification gradient. Olive production, even in traditional groves, led to multiple in-stream disturbances, whose cumulative effects promoted the loss of biota integrity. The impacts of low intensity traditional olive groves on aquatic ecosystems can be much greater when they are coupled with livestock production. This paper recommends best practices to reduce negative impacts of olive production on streams, contributing to guide policy decision-makers in agricultural and water management. 相似文献
8.
We evaluated a simple bioassessment method based on a priori river typology to predict benthic macroinvertebrate fauna in
riffle sites of rivers in the absence of human influence. Our approach predicted taxon lists specific to four river types
differing in catchment area with a method analogous to the site-specific RIVPACS-type models. The reference sites grouped
in accordance with their type in NMS ordination, indicating that the typology efficiently accounted for natural variation
in macroinvertebrate assemblages. Compared with a null model, typology greatly increased the precision of prediction and sensitivity
to detect human impairment and strengthened the correlation of the ratio of observed-to-expected number of predicted taxa
(O/E) with the measured stressor variables. The performance of the typology-based approach was equal to that of a RIVPACS-type
predictive model that we developed. Exclusion of rarest taxa with low occurrence probabilities improved the performance of
both approaches by all criteria. With an increasing inclusion threshold of occurrence probability, especially the predictive
model sensitivity first increased but then decreased. Many common taxa with intermediate type-specific occurrence probabilities
were consistently missing from impacted sites, a result suggesting that these taxa may be especially important in detecting
human disturbances. We conclude that if a typology-based approach such as that suggested by the European Union’s Water Framework
Directive is required, the O/E ratio of type-specific taxa can be a useful metric for assessment of the status of riffle macroinvertebrate
communities. Successful application of the approach, however, requires biologically meaningful river types with a sufficient
pool of reference sites for each type. 相似文献
9.
Agricultural Land Use Effects on Sediment Loading and Fish Assemblages in Two Minnesota (USA) Watersheds 总被引:1,自引:1,他引:0
We examined the relationship between water quality and fish communities within two agricultural areas using a computer simulation model. Our analyses focused on a coolwater stream, Wells Creek in southeastern Minnesota, and a warmwater stream, the Chippewa River in western Minnesota. We used the Agricultural Drainage and Pesticide Transport (ADAPT) model in relation to land use to calculate instream suspended sediment concentrations using estimates of sediment delivery, runoff, baseflow and streambank erosion, and quantified the effects of suspended sediment exposure on fish communities. We predicted the effects of agricultural practices on stream fish communities under several possible land use scenarios, with reference to current conditions. Land use changes led to reductions in sediment loading of up to 84% in Wells Creek and 49% in the Chippewa River. The reduction in sediment loading across scenarios may be directly related to a reduction in runoff by about 35% in both study areas. We found a 98% decrease in lethal concentrations of suspended sediment on fish in Wells Creek with an increase in conservation tillage, riparian buffers, and permanent vegetative cover. However, the effects of suspended sediment did not significantly decrease in the Chippewa River. This difference between study areas was likely due to differences in tolerance to suspended sediment between coolwater and warmwater fish communities and differences in topography, runoff and bank erosion between the two streams.
The Minnesota Cooperative Fish and Wildlife Research Unit is jointly sponsored by the US Geological Survey, the University of Minnesota, the Minnesota Department of Natural Resources, and the Wildlife Management Institute. 相似文献
10.
Macroinvertebrate Community Structure Along the Longitudinal Gradient of an Agriculturally Impacted Stream 总被引:7,自引:0,他引:7
/ Lapwai Creek, an agriculturally impacted stream in northern Idaho, was sampled seasonally over a two-year period to determine if macroinvertebrate community composition changed along the longitudinal gradient and if changes followed predictions of the river continuum concept. Possible relationships between changes in food resource availability and community structure were also examined. Benthic invertebrates were collected at eight locations along the longitudinal gradient of Lapwai Creek using a Hess sampler. Random skewer analysis suggested there was no longitudinal gradient for either number of individuals or functional feeding group composition. Cluster analysis revealed that all locations, excluding a site receiving outflow from a small, eutrophic reservoir, had a similar community structure, further suggesting that invertebrate community composition remained consistent along the longitudinal gradient of the stream. The community was dominated at all sites, excluding the site below the reservoir, by functionalgrazers. Shredders were rare throughout Lapwai Creek, even in areas where healthy riparian vegetation still remained. Studies of other streams within the drainage basin show that many species found in the upper reaches of these streams, where agricultural impacts are low, were absent throughout the length of Lapwai Creek. Data collected concurrently with macroinvertebrates indicated that the input, storage, and transport of particulate organic matter was low throughout the stream, whereas periphyton abundance was high. The absence of longitudinal changes, despite flowing through three distinct geomorphological regions, and the grouping of all sites except one by cluster analysis for both dominant taxa and functional feeding groups suggest that agricultural alteration has influenced community structure of Lapwai Creek, resulting in a relatively homogeneous assemblage of macroinvertebrates capable of tolerating agricultural nonpoint source pollution. Additional support for this hypothesis is the high abundance of one food source, periphyton, and the small quantities of terrestrially derived organic matter. The abundance of the former and the rarity of the latter can be attributed to alteration of the drainage basin resulting from agricultural activities through inputs of fertilizers that generated high nutrient concentrations and the removal of riparian vegetation to clear more land for agriculture and provide increase access to the stream.KEY WORDS: Agriculture; Longitudinal patterns; Macroinvertebrates; Nonpoint source; River continuum 相似文献
11.
12.
Baumgartner Matheus T. Piana Pitgoras A. Baumgartner Gilmar Gomes Luiz C. 《Environmental management》2020,65(2):220-231
Environmental Management - Water level variation has an important role in the biology of fish species, driving behavior, feeding, and reproduction both in natural and modified environments. In... 相似文献
13.
Integrating Seasonal Information on Nutrients and Benthic Algal Biomass into Stream Water Quality Monitoring 下载免费PDF全文
Christopher P. Konrad Mark D. Munn 《Journal of the American Water Resources Association》2016,52(5):1223-1237
Benthic chlorophyll a (BChl a) and environmental factors that influence algal biomass were measured monthly from February through October in 22 streams from three agricultural regions of the United States. At‐site maximum BChl a ranged from 14 to 406 mg/m2 and generally varied with dissolved inorganic nitrogen (DIN): 8 out of 9 sites with at‐site median DIN >0.5 mg/L had maximum BChl a >100 mg/m2. BChl a accrued and persisted at levels within 50% of at‐site maximum for only one to three months. No dominant seasonal pattern for algal biomass accrual was observed in any region. A linear model with DIN, water surface gradient, and velocity accounted for most of the cross‐site variation in maximum chlorophyll a (adjusted R2 = 0.7), but was no better than a single value of DIN = 0.5 mg/L for distinguishing between low and high‐biomass sites. Studies of nutrient enrichment require multiple samples to estimate algal biomass with sufficient precision given the magnitude of temporal variability of algal biomass. An effective strategy for regional stream assessment of nutrient enrichment could be based on a relation between maximum BChl a and DIN based on repeat sampling at sites selected to represent a gradient in nutrients and application of the relation to a larger number of sites with synoptic nutrient information. 相似文献
14.
We analyzed the relation of the amount and spatial pattern of land cover with stream fish communities, in-stream habitat,
and baseflow in 47 small southeastern Wisconsin, USA, watersheds encompassing a gradient of predominantly agricultural to
predominantly urban land uses. The amount of connected impervious surface in the watershed was the best measure of urbanization
for predicting fish density, species richness, diversity, and index of biotic integrity (IBI) score; bank erosion; and base
flow. However, connected imperviousness was not significantly correlated with overall habitat quality for fish. Nonlinear
models were developed using quantile regression to predict the maximum possible number of fish species, IBI score, and base
flow for a given level of imperviousness. At watershed connected imperviousness levels less than about 8%, all three variables
could have high values, whereas at connected imperviousness levels greater than 12% their values were inevitably low. Connected
imperviousness levels between 8 and 12% represented a threshold region where minor changes in urbanization could result in
major changes in stream condition. In a spatial analysis, connected imperviousness within a 50-m buffer along the stream or
within a 1.6-km radius upstream of the sampling site had more influence on stream fish and base flow than did comparable amounts
of imperviousness further away. Our results suggest that urban development that minimizes amount of connected impervious surface
and establishes undeveloped buffer areas along streams should have less impact than conventional types of development. 相似文献
15.
Kevin B. Lunde Matthew R. Cover Raphael D. Mazor Christopher A. Sommers Vincent H. Resh 《Environmental management》2013,51(6):1262-1273
Identification of minimally disturbed reference sites is a critical step in developing precise and informative ecological indicators. We tested procedures to select reference sites, and quantified natural variation (inter-site and -annual variability) among reference conditions using a macroinvertebrate data set collected from 429 mediterranean-climate stream reaches in the San Francisco Bay Area, California (USA). We determined that a landscape GIS-based stressor screen followed by a local field-based stressor screen effectively identified least-disturbed reference sites that, based on NMS ordination results, supported different biological communities than sites identified with only landscape (GIS) or local (field) stressors. An examination of least-disturbed reference sites indicated that inter-site variability was strongly associated with stream hydrology (i.e., perennial vs. non-perennial flow) and annual precipitation, which highlights the need to control for such variation when developing biological indicators through natural gradient modeling or using unique biological indicators for both non-perennial and perennial streams. Metrics were more variable among non-perennial streams, indicating that additional modeling may be needed to develop precise biological indicators for non-perennial streams. Among 192 sites sampled two to six times over the 8-year study period, the biological community showed moderate inter-annual variability, with the 100 point index of biotic integrity scores varying from 0 to 51 points (mean = 11.5). Variance components analysis indicated that inter-annual variability explained only a fraction (5–18 %) of the total variation when compared against site-level variation; thus efforts to understand causes of natural variation between sites will produce more precise and accurate biological indicators. 相似文献
16.
Response of Fish and Macroinvertebrate Bioassessment Indices to Water Chemistry in a Mined Appalachian Watershed 总被引:1,自引:0,他引:1
Multimetric indices based on fish and benthic macroinvertebrate assemblages are commonly used to assess the biological integrity
of aquatic ecosystems. However, their response to specific stressors is rarely known. We quantified the response of a fish-based
index (Mid-Atlantic Highlands Index of Biotic Integrity, MAH-IBI) and a benthic invertebrate-based index (West Virginia Stream
Condition Index, WV-SCI) to acid mine drainage (AMD)-related stressors in 46 stream sites within the Cheat River watershed,
West Virginia. We also identified specific stressor concentrations at which biological impairment was always or never observed.
Water chemistry was extremely variable among tributaries of the Cheat River, and the WV-SCI was highly responsive across a
range of AMD stressor levels. Furthermore, impairment to macroinvertebrate communities was observed at relatively low stressor
concentrations, especially when compared to state water quality standards. In contrast to the WV-SCI, we found that the MAH-IBI
was significantly less responsive to local water quality conditions. Low fish diversity was observed in several streams that
possessed relatively good water quality. This pattern was especially pronounced in highly degraded subwatersheds, suggesting
that regional conditions may have a strong influence on fish assemblages in this system. Our results indicate that biomonitoring
programs in mined watersheds should include both benthic invertebrates, which are consistent indicators of local conditions,
and fishes, which may be indicators of regional conditions. In addition, remediation programs must address the full suite
of chemical constituents in AMD and focus on improving linkages among streams within drainage networks to ensure recovery
of invertebrate and fish assemblages. Future research should identify the precise chemical conditions necessary to maintain
biological integrity in mined Appalachian watersheds. 相似文献
17.
Hydrogeomorphic Reference Condition and Its Relationship with Macroinvertebrate Assemblages in Southeastern U.S. Sand Hills Streams 下载免费PDF全文
Stephen A. Sefick Ely Kosnicki Michael H. Paller Jack W. Feminella 《Journal of the American Water Resources Association》2018,54(4):914-933
Defining stream reference conditions is integral to providing benchmarks to ecological perturbation. We quantified channel geometry, hydrologic and environmental variables, and macroinvertebrates in 62 low‐gradient, SE United States (U.S.) Sand Hills (Level IV ecoregion) sand‐bed streams. To identify hydrogeomorphic reference condition (HGM), we clustered channel geometry deviation from expectations given watershed area (Aws), resulting in two HGM groups discriminated by area at the top of bank (Atob) residuals <0.6 m2 and >0.6 m2 predicted to be HGM reference/nonreference streams, respectively. Two independent partial least squares discriminate analyses used (1) hydrologic/environmental variables and (2) macroinvertebrate mean trait values (mT) on 10 reference/nonreference stream pairs of similar Aws for classification validation. Nonreference streams had flashier hydrographs and altered flow magnitudes, lower organic matter, coarser substrate, higher pH/specific conductivity compared with reference streams. Macroinvertebrate assemblages corresponded to HGM groupings, with mT indicative of multivoltinism, collector‐gatherer functional feeding groups, fast current‐preference taxa, and lower Ephemeroptera, Plecoptera, and Trichoptera richness and biotic integrity in nonreference streams. HGM classifications in Sand Hills, sand‐bed streams were determined from channel geometry. This easily implemented classification is indicative of contemporary hydrologic disturbance resulting in contrasting macroinvertebrate assemblages. 相似文献
18.
Daren M. Carlisle Michael R. Meador 《Journal of the American Water Resources Association》2007,43(5):1194-1207
Abstract: A predictive model (RIVPACS‐type) for benthic macroinvertebrates was constructed to assess the biological condition of 1,087 streams sampled throughout the eastern United States from 1993‐2003 as part of the U.S. Geological Survey’s National Water‐Quality Assessment Program. A subset of 338 sites was designated as reference quality, 28 of which were withheld from model calibration and used to independently evaluate model precision and accuracy. The ratio of observed (O) to expected (E) taxa richness was used as a continuous measure of biological condition, and sites with O/E values <0.8 were classified as biologically degraded. Spatiotemporal variability of O/E values was evaluated with repeated annual and within‐site samples at reference sites. Values of O/E were regressed on a measure of urbanization in three regions and compared among streams in different land‐use settings. The model accurately predicted the expected taxa at validation sites with high precision (SD = 0.11). Within‐site spatial variability in O/E values was much larger than annual and among‐site variation at reference sites and was likely caused by environmental differences among sampled reaches. Values of O/E were significantly correlated with basin road density in the Boston, Massachusetts (p < 0.001), Birmingham, Alabama (p = 0.002), and Green Bay, Wisconsin (p = 0.034) metropolitan areas, but the strength of the relations varied among regions. Urban streams were more depleted of taxa than streams in other land‐use settings, but larger networks of riparian forest appeared to mediate biological degradation. Taxa that occurred less frequently than predicted by the model were those known to be generally intolerant of a variety of anthropogenic stressors. 相似文献
19.
Effects of Local Land Use on Physical Habitat, Benthic Macroinvertebrates, and Fish in the Whitewater River, Minnesota, USA 总被引:7,自引:0,他引:7
Best management practices (BMPs) have been developed to address soil loss and the resulting sedimentation of streams, but information is lacking regarding their benefits to stream biota. We compared instream physical habitat and invertebrate and fish assemblages from farms with BMP to those from farms with conventional agricultural practices within the Whitewater River watershed of southeastern Minnesota, USA, in 1996 and 1997. Invertebrate assemblages were assessed using the US EPA's rapid bioassessment protocol (RBP), and fish assemblages were assessed with two indices of biotic integrity (IBIs). Sites were classified by upland land use (BMP or conventional practices) and riparian management (grass, grazed, or wooded buffer). Physical habitat characteristics differed across buffer types, but not upland land use, using an analysis of covariance, with buffer width and stream as covariates. Percent fines and embeddedness were negatively correlated with buffer width. Stream sites along grass buffers generally had significantly lower percent fines, embeddedness, and exposed streambank soil, but higher percent cover and overhanging vegetation when compared with sites that had grazed or wooded buffers. RBP and IBI scores were not significantly different across upland land use or riparian buffer type but did show several correlations with instream physical habitat variables. RBP and IBI scores were both negatively correlated with percent fines and embeddedness and positively correlated with width-to-depth ratio. The lack of difference in RBP or IBI scores across buffer types suggests that biotic indicators may not respond to local changes, that other factors not measured may be important, or that greater improvements in watershed condition are necessary for changes in biota to be apparent. Grass buffers may be a viable alternative for riparian management, especially if sedimentation and streambank stability are primary concerns. 相似文献
20.
Troy G. Zorn Paul W. Seelbach Edward S. Rutherford 《Journal of the American Water Resources Association》2012,48(5):871-895
Zorn, Troy G., Paul W. Seelbach, and Edward S. Rutherford, 2012. A Regional‐Scale Habitat Suitability Model to Assess the Effects of Flow Reduction on Fish Assemblages in Michigan Streams. Journal of the American Water Resources Association (JAWRA) 48(5): 871‐895. DOI: 10.1111/j.1752‐1688.2012.00656.x Abstract: In response to concerns over increased use and potential diversion of Michigan’s freshwater resources, and the resulting state legislative mandate, an advisory council created an integrated assessment model to determine the potential for water withdrawals to cause an adverse resource impact to fish assemblages in Michigan’s streams. As part of this effort, we developed a model to predict how fish assemblages characteristic of different stream types would change in response to decreased stream base flows. We describe model development and use in this case study. The model uses habitat suitability information (i.e., catchment size, base‐flow yield, and July mean water temperature) for over 40 fish species to predict assemblage structure in an individual river segment under a range of base‐flow reductions. By synthesizing model runs for individual fish species at representative segments for each of Michigan’s 11 ecological stream types, we developed curves describing how typical fish assemblages in each type respond to flow reduction. Each stream type‐specific, fish response curve was used to identify streamflow reduction levels resulting in adverse resource impacts to characteristic fish populations, the regulatory standard. Used together with a statewide map of stream types, our model provided a spatially comprehensive framework for evaluating impacts of flow withdrawals on biotic communities across a diverse regional landscape. 相似文献