首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work we investigate experimentally and numerically the flow structure around foliaged plants deployed in a channel with gravels on the bed under submerged and barely submerged conditions. Velocity and Reynolds stress were measured by using a NORTEK Vectrino profiler. Visual observation shows that the initial motion of gravels is easier to be triggered under the condition of flow with barely submerged vegetation. This is confirmed by the measured velocity, Reynolds stress and total kinetic energy (TKE) profiles. The velocity exhibits a speed up in the near-bed region, and the associated Reynolds stress and TKE increase there. A 3D numerical model is then verified against the experiments and used to investigate systematically the effect of degree of submergence of foliaged plants on the channel bed shear stress. The results show that the maximum bed shear stress occurs when the foliage is situated slightly below the water surface, which can enhance channel bed instability.  相似文献   

2.
A hydraulic jump is a turbulent shear flow with a free-surface roller. The turbulent flow pattern is characterised by the development of instantaneous three-dimensional turbulent structures throughout the air–water column up to the free surface. The length and time scales of the turbulent structures are key information to describe the turbulent processes, which is of significant importance for the improvement of numerical models and physical measurement techniques. However, few physical data are available so far due to the complexity of the measurement. This paper presents an investigation of a series of characteristic turbulent scales for hydraulic jumps, covering the length and time scales of turbulent flow structures in bubbly flow, on free surface and at the impingement point. The bubbly-flow turbulent scales are obtained for Fr = 7.5 with 3.4 × 104 < Re < 1.4 × 105 in both longitudinal and transverse directions, and are compared with the free-surface scales. The results highlight three-dimensional flow patterns with anisotropic turbulence field. The turbulent structures are observed with different length and time scales respectively in the shear flow region and free-surface recirculation region. The bubbly structures next to the roller surface and the free-surface fluctuation structures show comparable length and time scales, both larger than the scales of vortical structures in the shear flow and smaller than the scales of impingement perimeter at the jump toe. A decomposition of physical signals indicates that the large turbulent scales are related to the unsteady motion of the flow in the upper part of the roller, while the high-frequency velocity turbulence dominates in the lower part of the roller. Scale effects cannot be ignored for Reynolds number smaller than 4 × 104, mainly linked to the formation of large eddies in the shear layer. The present study provides a comprehensive assessment of turbulent scales in hydraulic jump, including the analyses of first data set of longitudinal bubbly-flow integral scales and transverse jump toe perimeter integral scales.  相似文献   

3.
In an estuary, mixing and dispersion resulting from turbulence and small scale fluctuation has strong spatio-temporal variability which cannot be resolved in conventional hydrodynamic models while some models employs parameterizations large water bodies. This paper presents small scale diffusivity estimates from high resolution drifters sampled at 10 Hz for periods of about 4 h to resolve turbulence and shear diffusivity within a tidal shallow estuary (depth <3 m). Taylor’s diffusion theorem forms the basis of a first order estimate for the diffusivity scale. Diffusivity varied between 0.001 and 0.02 m2/s during the flood tide experiment. The diffusivity showed strong dependence (R2 > 0.9) on the horizontal mean velocity within the channel. Enhanced diffusivity caused by shear dispersion resulting from the interaction of large scale flow with the boundary geometries was observed. Turbulence within the shallow channel showed some similarities with the boundary layer flow which include consistency with slope of 5/3 predicted by Kolmogorov’s similarity hypothesis within the inertial subrange. The diffusivities scale locally by 4/3 power law following Okubo’s scaling and the length scale scales as 3/2 power law of the time scale. The diffusivity scaling herein suggests that the modelling of small scale mixing within tidal shallow estuaries can be approached from classical turbulence scaling upon identifying pertinent parameters.  相似文献   

4.
Emission factors are largely used to quantify particle emissions from industrial open storage piles. These factors are based on the knowledge of velocity distribution and flow patterns over the stockpile surface which still requires further research. The aim of the present work is to investigate the airflow characteristics over a single typical oblong pile and in its near-ground surroundings for various wind flow directions. Wind tunnel experiments using an oil-film surface coating technique were carried out for near-wall flow visualization. Numerical simulation results, favorably compared to PIV measurements, were used to allow comparison analysis of flow features. For the stockpile oriented 90° to the wind main direction, typical topology of flow around wall-mounted obstacles were observed, notably a wake zone downstream the pile including two main counter-rotating vortices. Further analysis of numerical wall shear stress distribution and streamlines indicates that two complex three-dimensional vortical flow structures develop downstream the pile. For other incoming wind flow directions (30 and 60°), the flow characteristics over the storage pile greatly differ as a single helical main vortex develops from the pile’s crest. Corresponding high values of wall shear stress are noticed downstream the storage pile. For each configuration studied, downwash and upwash zones are induced by the vortical structures developed. This near-wall flow topology combined with areas of high friction levels may be linked to potential dust emission from the ground surface surrounding industrial stockpiles.  相似文献   

5.
For the abutment bed scour to reach its equilibrium state, a long flow time is needed. Hence, the employment of usual strategy of simulating such scouring event using the 3D numerical model is very time consuming and less practical. In order to develop an applicable model to consider temporally long abutment scouring process, this study modifies the common approach of 2D shallow water equations (SWEs) model to account for the sediment transport and turbulence, and provides a realistic approach to simulate the long scouring process to reach the full scour equilibrium. Due to the high demand of the 2D SWEs numerical scheme performance to simulate the abutment bed scouring, a recently proposed surface gradient upwind method (SGUM) was also used to improve the simulation of the numerical source terms. The abutment scour experiments of this study were conducted using the facility of Hydraulics Laboratory at Nanyang Technological University, Singapore to compare with the presented 2D SGUM–SWEs model. Fifteen experiments were conducted with their scouring flow durations vary from 46 to 546 h. The comparison shows that the 2D SGUM–SWEs model gives good representation to the experimental results with the practical advantage.  相似文献   

6.
The results are presented from an experimental study to investigate three-dimensional turbulence structure profiles, including turbulence intensity and Reynolds stress, of different non-uniform open channel flows over smooth bed in subcritical flow regime. In the analysis, the uniform flow profiles have been used to compare with those of the non-uniform flows to investigate their time-averaged spatial flow turbulence structure characteristics. The measured non-uniform velocity profiles are used to verify the von Karman constant κ and to estimate sets of log-law integration constant Br and wake parameter П, where their findings are also compared with values from previous studies. From κ, Br and П findings, it has been found that the log-wake law can sufficiently represent the non-uniform flow in its non-modified form, and all κ, Br and П follow universal rules for different bed roughness conditions. The non-uniform flow experiments also show that both the turbulence intensity and Reynolds stress are governed well by exponential pressure gradient parameter β equations. Their exponential constants are described by quadratic functions in the investigated β range. Through this experimental study, it has been observed that the decelerating flow shows higher empirical constants, in both the turbulence intensity and Reynolds stress compared to the accelerating flow. The decelerating flow also has stronger dominance to determine the flow non-uniformity, because it presents higher Reynolds stress profile than uniform flow, whereas the accelerating flow does not.  相似文献   

7.
The flux of cohesive sediment in an estuary is determined by many factors, including tidal asymmetry, wave effect, fluvial influence, phase difference between tidal velocity and tidal level fluctuations, sediment properties, flocculation, bed erodibility, bathymetry effect and other nonlocal effects. Our capability in predicting sediment fluxes in tide-dominant environments is critical to the morphodynamics and water quality of estuaries. Due to the difficulties in carrying out detailed measurement of sediment flux with high spatial and temporal resolutions, an one-dimensional-vertical (1DV) numerical model for cohesive sediment transport, previously verified and calibrated with field measured cohesive sediment concentration data, is utilized here to study some of the aforementioned factors in affecting tidal-driven sediment fluxes in idealized condition. Tidal-averaged sediment flux is shown to be correlated with tidal velocity skewness with a linear relationship. This linear relationship is different from that of non-cohesive sediment and it is demonstrated here to be mainly due to variable critical shear stress implemented for the mud bed in order to parameterize consolidation. The reason that tidal velocity skewness causes tidal-averaged residual sediment transport is shown to be due to nonlinear intra-tidal interactions between flow velocity and sediment concentration. Moreover, the effects of nonlinear intra-tidal interaction between tidal velocity and tidal level fluctuations is shown to mainly cause seaward transport, which is the most significant under progressive wave system (phase difference 90°) and almost negligible for standing wave system (phase difference 0°).  相似文献   

8.
Hydraulic jumps have complex flow structures, characterised by strong turbulence and large air contents. It is difficult to numerically predict the flows. It is necessary to bolster the existing computer models to emphasise the gas phase in hydraulic jumps, and avoid the pitfall of treating the phenomenon as a single-phase water flow. This paper aims to improve predictions of hydraulic jumps as bubbly two-phase flow. We allow for airflow above the free surface and air mass entrained across it. We use the Reynolds-averaged Navier–Stokes equations to describe fluid motion, the volume of fluid method to track the interface, and the k–ε model for turbulence closure. A shear layer is shown to form between the bottom jet flow and the upper recirculation flow. The key to success in predicting the jet flow lies in formulating appropriate bottom boundary conditions. The majority of entrained air bubbles are advected downstream through the shear layer. Predictions of the recirculation region’s length and air volume fraction within the layer are validated by available measurements. The predictions show a linear growth of the shear layer. There is strong turbulence at the impingement, and the bulk of the turbulence kinetic energy is advected to the recirculation region via the shear layer. The predicted bottom-shear-stress distribution, with a peak value upstream of the toe of the jump and a decaying trend downstream, is realistic. This paper reveals a significant transient bottom shear stress associated with temporal fluctuations of mainly flow velocity in the jump. The prediction method discussed is useful for modelling hydraulic jumps and advancing the understanding of the complex flow phenomenon.  相似文献   

9.
The hydrodynamics of flows through a finite length semi-rigid vegetation patch (VP) were investigated experimentally and numerically. Detailed measurements have been carried out to determine the spatial variation of velocity and turbulence profiles within the VP. The measurement results show that an intrusion region exists in which the peak Reynolds stress remains near the bed. The velocity profile is invariant within the downstream part of the VP while the Reynolds stress profile requires a longer distance to attain the spatially invariant state. Higher vegetation density leads to a shorter adjustment length of the transition region, and a higher turbulence level within the VP. The vegetation density used in the present study permits the passing through of water and causes the peak Reynolds stress and turbulence kinetic energy each the maximum at the downstream end of the patch. A 3D Reynolds-averaged Navier–Stokes model incorporating the Spalart–Allmaras turbulence closure was employed subsequently to replicate the flow development within the VP. The model reproduced transitional flow characteristics well and the results are in good agreement with the experimental data. Additional numerical experiments show that the adjustment length can be scaled by the water depth, mean velocity and maximum shear stress. Empirical equations of the adjustment lengths for mean velocity and Reynolds stress were derived with coefficients quantified from the numerical simulation results.  相似文献   

10.
The presence of suction (flow of water from channel to ground water) affects the channel hydrodynamics and increases the bed shear stress. At high bed shear stress in alluvial channels made of the non-cohesive material, sediment transport occurs as sheet flow layer of high sediment concentration. The sediment transport in the form of sheet flow has been observed in the present study when suction was applied to the non-transporting channels designed on incipient motion condition. The erosion of the channel banks contributed to the sheet flow because of the increased channel bed shear stress. An empirical relation for the thickness of sheet flow layer has been developed which includes suction as independent parameter along with others.  相似文献   

11.
Radioactive wastes containing Cs+ and Sr2+ are among the most dangerous environmental pollutants. Therefore, removing Cs+ and Sr2+ from environmental media is needed. Removal can be done by nanocrystalline ion exchangers. Nanocrystalline ion exchangers are studied in depth for the treatment of nuclear wastes because these exchangers have high exchange capacity and fast kinetics. However, operating the columns of these exchangers is very difficult. This issue may be overcome by the preparation and use of nanocomposites. Here, we prepared a novel polyacrylonitrile–zeolite nanocomposite for the removal of Cs+ and Sr2+ in a fixed-bed column operation. We studied the effect of influent flow rate, nanocomposite bed height and initial concentrations. Experimental data were analysed using the Thomas model and the bed-depth service time model. The results reveal that total adsorbed ion and bed capacity increased with increasing initial ions concentration and bed height; and decreased with increasing influent flow rate. The maximum bed capacity was 0.085 meq/g for Cs+ and 0.128 meq/g for Sr2+. The critical bed height (Z 0) was 4.35 cm for Cs+ and 2.89 cm for Sr2+. These findings demonstrate that the new nanocomposite is suitable for removal of Cs+ and Sr2+.  相似文献   

12.
Channel confluences at which two channels merge have an important effect on momentum exchange and contaminant diffusion in both natural rivers and artificial canals. In this study, a three-dimensional numerical model, which is based on the Reynolds Averaged Navier–Stokes equations and Reynolds Stress Turbulence model, is applied to simulate and compare flow patterns and contaminant transport processes for different bed morphologies. The results clearly show that the distribution of contaminant concentrations is mainly controlled by the shear layer and two counter-rotating helical cells, which in turn are affected by the discharge ratio and the bed morphology. As the discharge ratio increases, the shear flow moves to the outer bank and the counter-clockwise tributary helical cell caused by flow deflection is enlarged, leading the mixing happens near the outer bank and the mixing layer distorted. The bed morphology can induce shrinkage of the separation zone and increase of the clockwise main channel helical cell, which is initiated by the interaction between the tributary helical cell and the main channel flow and strengthened by the deep scour hole. The bed morphology can also affect the distortion direction of the mixing layer. Both a large discharge ratio and the bed morphology could lead to an increase in mixing intensity.  相似文献   

13.
At the smallest scales of sediment transport in rivers, the coherent structures of the turbulent boundary layer constitute the fundamental mechanisms of bedload transport, locally increasing the instantaneous hydrodynamic forces acting on sediment particles, and mobilizing them downstream. Near the critical threshold for initiating sediment motion, the interactions of the particles with these unsteady coherent structures and with other sediment grains, produce localized transport events with brief episodes of collective motion occurring due to the near-bed velocity fluctuations. Simulations of these flows pose a significant challenge for numerical models aimed at capturing the physical processes and complex non-linear interactions that generate highly intermittent and self-similar bedload transport fluxes. In this investigation we carry out direct numerical simulations of the flow in a rectangular flat-bed channel, at a Reynolds number equal to Re = 3632, coupled with the discrete element method to simulate the dynamics of spherical particles near the bed. We perform two-way coupled Lagrangian simulations of 48,510 sediment particles, with 4851 fixed particles to account for bed roughness. Our simulations consider a total of eight different values of the non-dimensional Shields parameter to study the evolution of transport statistics. From the trajectory and velocity of each sediment particle, we compute the changes in the probability distribution functions of velocities, bed activity, and jump lengths as the Shields number increases. For the lower shear stresses, the intermittency of the global bedload transport flux is described by computing the singularity or multifr actal spectrum of transport, which also characterizes the widespread range of transport event magnitudes. These findings can help to identify the mechanisms of sediment transport at the particle scale. The statistical analysis can also be used as an ingredient to develop larger, upscaled models for predicting mean transport rates, considering the variability of entrainment and deposition that characterizes the transport near the threshold of motion.  相似文献   

14.
The coherent structure in near-bed turbulent boundary layer of vortex chamber, particularly the bursting events and their associated shear stresses play the main role in sediment flushing process and consequently the trap efficiency of the vortex settling chamber. Hence, three-dimensional velocity measurements were made at 48 points near the bed of physical model of vortex chamber by using Micro-ADV. The pattern of sediment deposition at the bed of vortex settling chamber reveals three separate regions formed by three predominant currents of inlet flow, flushing flow and outlet over flow. Additionally, due to the instability and three-dimensional nature of the bursting events near the bed of chamber, the new method of Markovian–Octant analysis was applied to study the different classes of near-bed stable shear stresses of vortex chamber in three dimensions. Moreover, the role of each class of stable shear stresses on Sediment transport mechanism at the bed of vortex chamber is investigated.  相似文献   

15.
This paper describes a σ-coordinate scalar transport model coupled with a Boussinesq-type hydrodynamic model. The Boussinesq model has the ability to calculate both three-dimensional velocity distributions and the water surface motion. To capture ‘dispersion’ processes in open channel flow, horizontal vorticity effects induced by a bottom shear stress are included in the Boussinesq model. Thus, a reasonable representation of vertical flow structure can be captured in shallow and wavy flow fields. To solve the coupled Boussinesq and scalar transport system, a finite-volume method, based on a Godunov-type scheme with the HLL Riemann solver, is employed. Basic advection and advection–diffusion numerical tests in a non-rectangular domain were carried out and the computed results show good agreement with analytic solutions. With quantitative comparisons of dispersion experiments in an open channel, it is verified that the proposed coupled model is appropriate for both near and far field scalar transport predictions. From numerical simulations in the surf zone, physically reasonable results showing expected vertical variation are obtained.  相似文献   

16.
This paper investigates, experimentally and numerically, the shear velocity distribution along a single transverse dune and along two closely spaced dunes, analyzing the flow effects of one dune upon the other. The paper focuses on two-dimensional models simulating transverse sand dunes. The shape of the two pile geometries studied is described by sinusoidal curves, one having a maximum slope of $32^{\circ }$ and the other $27.6^{\circ }$ , with leeward flow separation. The tests were carried out for two undisturbed wind speeds and the experimental data obtained through wind-tunnel modeling encompass flow visualization and shear-velocity results. A generally good agreement is observed between the experimental measurements and computational results. From the inquiry between shear velocity distributions and published eroded contours for the same geometries, it appears the Bagnold’s approach is insufficient in the prediction of threshold conditions in wake flows formed in the dune’s leeward side.  相似文献   

17.
The current study investigates the role of nonlinearity in the development of two-dimensional coherent structures (2DCS) in shallow mixing layers. A nonlinear numerical model based on the depth-averaged shallow water equations is used to investigate temporal shallow mixing layers, where the mapping from temporal to spatial results is made using the velocity at the center of the mixing layer. The flow is periodic in the stream-wise direction and the transmissive boundary conditions are used in the cross-stream boundaries to prevent reflections. The numerical results are examined with the aid of Fourier decomposition. Results show that the previous success in applying local linear theory to shallow mixing layers does not imply that the flow is truly linear. Linear stability theory is confirmed to be only valid within a short distance from the inflow boundary. Downstream of this linear region, nonlinearity becomes important for the roll-up and merging of 2DCS. While the energy required for the merging of 2DCS is still largely provided by the velocity shear, the merging mechanism is one where nonlinear mode interaction changes the velocity field of the subharmonic mode and the gradient of the along-stream velocity profile which, in turn, changes the magnitude of the energy production of the subharmonic mode by the velocity shear implicitly. The nonlinear mode interaction is associated with energy up-scaling and is consistent with the inverse energy cascade which is expected to occur in shallow shear flows. Current results also show that such implicit nonlinear interaction is sensitive to the phase angle difference between the most unstable mode and its subharmonic. The bed friction effect on the 2DCS is relatively small initially and grows in tandem with the size of the 2DCS. The bed friction also causes a decrease in the velocity gradient as the flow develops downstream. The transition from unstable to stable flow occurs when the bed friction balances the energy production. Beyond this point, the bed friction is more dominant and the 2DCS are progressively damped and eventually get annihilated. The energy production by the velocity shear plays an important role from the upstream end all the way to the point of transition to stable flow. The fact that linear stability theory is valid only for a short distance from the inflow boundary suggests that some elements of nonlinearity is incorporated in the mean velocity profile in experiments by the averaging process. The implicit nature of nonlinear interaction in shallow mixing layers and the sensitivity of the nonlinear interaction to phase angle difference between the most unstable mode and its subharmonic allows local linear theory to be successful in reproducing features of the instability such as the dominant mode of the 2DCS and its amplitude.  相似文献   

18.
19.
The 1997/1998 El Niño Southern Oscillation (ENSO) was the most severe coral bleaching event in recent history, resulting in the loss of 16 % of the world’s coral reefs. Mortality was particularly severe in French Polynesia, where unprecedented mortality of massive Porites was observed in lagoonal sites of Rangiroa Atoll. To assess the recovery of massive Porites 15 years later, we resurveyed the size structure and extent of partial mortality of massive Porites at Tivaru (Rangiroa). Surveys revealed an abundance of massive Porites colonies rising from the shallow lagoonal floor. Colony width averaged 2.65 m, reaching a maximum of 7.1 m (estimated age of ~391 ± 107 years old). The relative cover of recently dead skeleton within quadrats declined from 42.8 % in 1998 to zero in 2013, yet the relative cover of old dead skeleton increased only marginally from 22.1 % in 1998 to 26.1 % in 2013. At a colony level, the proportion of Porites dominated by living tissue increased from 34.9 % in 1998 to 73.9 % in 2013, indicating rapid recovery of recent dead skeleton to living tissue rather than transitioning to old dead skeleton. Such rapid post-bleaching recovery is unprecedented in massive Porites and resulted from remarkable self-regeneration termed the ‘Phoenix effect’, whereby remnant cryptic patches of tissue that survived the 1997/1998 ENSO event regenerated and rapidly overgrew adjacent dead skeleton. Contrary to our earlier predictions, not only are large massive Porites relatively resistant to stress, they appear to have a remarkable capacity for recovery even after severe partial mortality.  相似文献   

20.
In this study, the flow dynamics of intrusive gravity currents past a bottom-mounted obstacle were investigated using highly resolved numerical simulations. The propagation dynamics of a classic intrusive gravity current was first simulated in order to validate the numerical model with previous laboratory experiments. A bottom-mounted obstacle with a varying non-dimensional height of \(\tilde{D}=D/H\), where D is the obstacle height and H is the total flow depth, was then added to the problem in order to study the downstream flow pattern of the intrusive gravity current. For short obstacles, the intrusion re-established itself downstream without much distortion. However, for tall obstacles, the downstream flow was found to be a joint effect of horizontal advection, overshoot-springback phenomenon, and associated Kelvin-Helmholtz instabilities. Analysis of the numerical results show that the relationship between the downstream propagation speed and the obstacle height can be subdivided into three regimes: (1) a retarding regime (\(\tilde{D}\) \(\approx \) 0–0.3) where a 30 % increase in obstacle height leads to a 20 % reduction in propagation speed, simply due to the obstacle’s retarding effect; (2) an impounding regime (\(\tilde{D}\) \(\approx \) 0.3–0.6) where the additional 30 % increase in obstacle height only leads to a further (negligible) 5 % reduction in propagation speed, due to the accelerating effect of upstream impoundment and downstream enhanced mixing; and (3) a choking regime (\(\tilde{D}\) \(\approx \) 0.6–1.0) where the propagation speed is dramatically reduced due to the dominance of the obstacle’s blocking effect. The obstacle thickness was found to be irrelevant in determining the downstream propagation speed at least for the parameter range explored in this study. The present work highlights the significance of topographic effects in stratified flows with horizontal pressure forcing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号