首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Alluvial fans are continuously being developed for residential, industrial, commercial, and agricultural uses in southern California. Development and alteration of alluvial fans need to consider the possibility of mud and debris flows from upstream mountain watersheds affected by fires. Accurate prediction of sediment yield (or hyper‐concentrated sediment yield) is essential for the design, operation, and maintenance of debris basins to safeguard properly the general populace. This paper presents a model for the prediction of sediment yields that result from a combination of fire and subsequent storm events. The watersheds used in this analysis are located in the foothills of the San Gabriel Mountains in southern California. A multiple regression analysis is first utilized to establish a fundamental statistical relationship for sediment yield as a function of relief ratio, drainage area, maximum 1‐h rainfall intensity and fire factor using 45 years of data (1938‐1983). In addition, a method for multi‐sequence sediment yield prediction under fire conditions was developed and calibrated using 17 years of sediment yield, fire, and precipitation data for the period 1984‐2000. After calibration, this model was verified by applying it to provide a prediction of the sediment yields for the 2001‐2002 fire events in southern California. The findings indicate a strong correlation between the estimated and measured sediment yields. The proposed method for sequence sediment yield prediction following fire events can be a useful tool to schedule cleanout operations for debris basins and to develop an emergency response strategy for the southern California region where plentiful sediment supplies exist and frequent fires occur.  相似文献   

2.
This study reviews five models commonly used in post‐fire hydrologic assessments: the Rowe Countryman and Storey (RCS), United States Geological Survey (USGS) Linear Regression Equations, USDA Windows Technical Release 55 (USDA TR‐55), Wildcat5, and U.S. Army Corps of Engineers (USACE) Hydrologic Modeling System (HEC‐HMS). The models are applied to eight diverse basins in the western United States (U.S.) (Arizona, California, Colorado, Montana, and Washington) affected by wildfires and assessed by input parameters, calibration methods, model constraints, and performance. No one model is versatile enough for application to all study sites. Results show inconsistency between model predictions for events across the sites and less confidence with larger return periods (25‐ and 50‐year events) and post‐fire predictions. The RCS method performs well, but application is limited to southern California. The USGS linear regression model has wider regional application, but performance is less reliable at the large recurrence intervals and post‐fire predictions are reliant on a subjective modifier. Of the three curve number‐based models, Wildcat5 performs best overall without calibration, whereas the calibrated TR‐55 and HEC‐HMS models show significant improvement in pre‐fire predictions. Results from our study provide information and guidance to ultimately improve model selection for post‐fire prediction and encourage uniform parameter acquisition and calibration across the western U.S.  相似文献   

3.
Major drainage basins within the Angeles National Forest in southern California USA are aggregated into zones of homogeneous wildland fire damage-potential using multivariate statistical techniques. Mathematical models are utilized to examine the policy implications of ongoing and projected fuel management strategies in different Forest zones based on simulated impacts of fuelbreak construction and maintenance upon two proxies for future damage-potential: the expected area burned and an index of relative value used by Forest planners. Alternative strategies for future fuelbreak investments are evaluated based on model outcomes.  相似文献   

4.
Fire Management of California Shrubland Landscapes   总被引:2,自引:0,他引:2  
  相似文献   

5.
A mathematical model simulates the cumulative volume of debris produced from brushland watersheds. Application of this model to a 176-km2 (0.678 = mi2) watershed along the southern flank of the Central San Gabriel Mountains permits assessment of expected debris production associated with alternative fire-management policies. The political implications of simulated debris production are evaluated through a conceptual model that links interest groups to particular successional stages in brushland watersheds by means of the resources claimed by each group. It is concluded that in theory, a rotation burn policy would provide benefits to more interest groups concerned about southern California's brushland watersheds than does the current fire exclusion policy.This research was supported by the College of Agriculture and Life Sciences, University of Wisconsin-Madison, and by the Office of Water Research and Technology, USDI, under the Allotment program of Public Law 88–379, as amended, and by the University of California. Water Resources Center, as a part of Office of Water Research and Technology Project No. A-058-CAL and Water Resources Center Project UCAL-WRC-499. Support was also provided by the California Agricultural Experiment Station, Berkeley, California.  相似文献   

6.
The invasion of the aquarium strain of the green alga Caulerpa taxifolia and subsequent alteration of community structure in the Mediterranean Sea raised awareness of the potential for non-native seaweeds to impact coastal communities. An introduction of C. taxifolia in southern California in 2000, presumably from the release of aquarium specimens, cost ~$7 million for eradication efforts. Besides C. taxifolia, other Caulerpa species being sold for aquarium use also may have the potential to invade southern Californian and U.S. waters. Surveys of the availability of Caulerpa species in southern California aquarium retail stores in 2000-2001 revealed that 26 of 50 stores sold at least one Caulerpa species (52 %) with seven stores selling C. taxifolia. In late 2001, California imposed a ban on the importation, sale, or possession of nine Caulerpa species; the City of San Diego expanded these regulations to include the entire genus. To determine the effectiveness of the California ban, we resurveyed Caulerpa availability at 43 of the 50 previously sampled retail stores in southern California in ~2006, ~4 years following the ban. Of the 43 stores, 23 sold Caulerpa (53 %) with four stores selling C. taxifolia. A χ(2) test of frequency of availability before and after the California ban suggests that the ban has not been effective and that the aquarium trade continues to represent a potential vector for distributing Caulerpa specimens, including C. taxifolia. This study underscores the need for increased enforcement and outreach programs to increase awareness among the aquarium industry and aquarium hobbyists.  相似文献   

7.
California and other regions in the United States are becoming more populated and ethnically diverse, and thus, ecological impacts on the wildland–urban interface are a significant policy concern. In a socioeconomic assessment focused on the geographic regions surrounding four national forests in southern California, population projections are being formulated to assist in the update of forest plans. In southern California, the projected trend of explosive population growth combined with increased ethnic and racial diversity indicates four challenges for environmental management. First, patterns of recreation use on wildlands are likely to change, and management of these areas will have to address new needs. Second, as land-management agencies face changing constituencies, new methods of soliciting public involvement from ethnic and racial groups will be necessary. Third, growth in the region is likely to encroach upon wildland areas, affecting water, air, open space, and endangered species. Fourth, in order to address all these concerns in a climate of declining budgets, resource management agencies need to strengthen collaborative relationships with other agencies in the region. How environmental managers approach these changes has widespread implications for the ecological sustainability of forests in southern California.  相似文献   

8.
Fire is a primary agent of landcover transformation in California semi-arid shrubland watersheds, however few studies have examined the impacts of fire and post-fire succession on streamflow dynamics in these basins. While it may seem intuitive that larger fires will have a greater impact on streamflow response than smaller fires in these watersheds, the nature of these relationships has not been determined. The effects of fire size on seasonal and annual streamflow responses were investigated for a medium-sized basin in central California using a modified version of the MIKE SHE model which had been previously calibrated and tested for this watershed using the Generalized Likelihood Uncertainty Estimation methodology. Model simulations were made for two contrasting periods, wet and dry, in order to assess whether fire size effects varied with weather regime. Results indicated that seasonal and annual streamflow response increased nearly linearly with fire size in a given year under both regimes. Annual flow response was generally higher in wetter years for both weather regimes, however a clear trend was confounded by the effect of stand age. These results expand our understanding of the effects of fire size on hydrologic response in chaparral watersheds, but it is important to note that the majority of model predictions were largely indistinguishable from the predictive uncertainty associated with the calibrated model - a key finding that highlights the importance of analyzing hydrologic predictions for altered landcover conditions in the context of model uncertainty. Future work is needed to examine how alternative decisions (e.g., different likelihood measures) may influence GLUE-based MIKE SHE streamflow predictions following different size fires, and how the effect of fire size on streamflow varies with other factors such as fire location.  相似文献   

9.
Managers of wilderness resources must maintain, preserve, and sometimes restore pristine ecosystems while providing for public use and enjoyment of these areas. These managers require a resource information system that can store, retrieve and integrate basic data, synthesize components to solve particular problems, and provide simulations and predictions of natural processes and management actions. Traditional information systems based on land classification and type-mapping do not provide these capabilities.Gradient modeling, a new approach to resource management and forest fire simulation, has been developed to meet these needs in Glacier National Park. The method links four major components: (1) a terrestrial site inventory coded from aerial photographs that offers 10-m resolution; (2) gradient models of vegetation and fuel that derive quantitative stand compositional data from the parameters stored in the coded inventory; (3) a fuel moisture and microclimate model that extrapolates basestation weather data to remote sites using the parameters stored in the inventory; and (4) fire behavior and fire ecology models that integrate the data from the inventory and models to calculate real-time fire behavior and ecological succession following a fire.  相似文献   

10.
ABSTRACT: Indices of annual diameter growth of trees were used to reconstruct drought in southern California back to A.D. 1700. A regional Palmer Drought Index served as predictand and tree-ring indices from eight sites as predictors in multiple linear regression analyses that yielded the prediction (reconstruction) equations. The regression explained 69 percent of the variance in Palmer Index in the period of calibration. The long-term reconstruction indicated that drought was rare in the first half of the current century relative to other discrete 50-year periods, and that based on evidence to date the last half of the 20th century may well turn out to be the most drought prone since A.D. 1700 in southern California.  相似文献   

11.
Fire management planning for wildlands traditionally uses fire behavior estimated on the basis of worst-case weather at a specific site, but more realistic estimates can be obtained by considering the entire distribution of possible sites and weather conditions. Probability distributions of four widely used fire behavior variables were derived for four test cases in the Northern Rockies and Northern Intermountain Zone. The variables were rate of spread, fireline intensity, fire perimeter length-to-width ratio, and scorch height. Results were depicted in simple line graphs, three-dimensional pin graphs, and tables; they ranged from the cumulative probability of one variable to joint probabilities of four variables. Increasing the number of variables depicted increased the amount and scope of information available. Examples of interpreting the graphs and tables show how these techniques can be used in long-term fire program planning, fire suppression, management of various resources affected by fire, and interdisciplinary resource planning.  相似文献   

12.
Recent advances in fire modeling permit quantitative estimations of fire behavior from quantitative inputs that describe the fuel array and conditions, such as weather and site data, under which it will burn. This paper describes the collection, analysis, and stratification of flammable forest fuels data for coniferous forest ecosystems in Montana and then illustrates the resource management application of these data in three areas: the development of the fire behavior model, a determination of the model's sensitivity to input errors as reflected by fire behavior prediction errors, and the development of a fire hazard simulator (TAROT). A new integrated stand simulator, GANDALF, is highlighted.Conclusions center on the need to integrate fire management into the land management planning decision-making process.This work was supported by a USDI National Park Service contract to Gradient Modeling, Inc., a nonprofit research foundation devoted to ecologic research and resource management applications, and by cooperative aid agreements between Gradient Modeling, Inc. and the USDA Forest Service, Intermountain Forest and Range Experiment Station, Northern Forest Fire Laboratory (Fire in Multiple Use Management, R, D, and A Program).  相似文献   

13.
An ecological data base for the San Jacinto Mountains, California, USA, was used to construct a probability model of wildland fire occurrence. The model incorporates both environmental and human factors, including vegetation, temperature, precipitation, human structures, and transportation. Spatial autocorrelation was examined for both fire activity and vegetation to determine the specification of neighborhood effects in the model. Parameters were estimated using stepwise logistic regressions. Among the explanatory variables, the variable that represents the neighborhood effects of spatial processes is shown to be of great importance in the distribution of wildland fires. An important implication of this result is that the management of wildland fires must take into consideration neighborhood effects in addition to environmental and human factors. The distribution of fire occurrence probability is more accurately mapped when the model incorporates the spatial term of neighborhood effects. The map of fire occurrence probability is useful for designing large-scale management strategies of wildfire prevention.  相似文献   

14.
Semi-structured focus group interviews were employed to examine factors that affect the likelihood that resource managers in southern Africa will use information on vegetation fires provided by two satellite-derived products: an active fire product and a burned area product. The two products are updated regularly and aim to deliver the state-of-the-art in the global monitoring of fires from satellite remote-sensing. Both products are derived from data transmitted by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors carried onboard NASA's Aqua and Terra satellites. The active fire product can be accessed for free via the internet and on media by users working anywhere in the world; the burned area product will be accessible in a similar manner in 2006. The MODIS fire products provide systematic, near-global coverage and are freely available; as such, they give resource managers new opportunities to obtain or supplement information they need to manage vegetation fires effectively. However, the availability of these products does not mean that resource managers will use them, and many other factors are involved. To understand factors that affect whether southern African resource managers will use the two products, two focus groups were held with members of the Southern African Fire Network (SAFNet) in Malawi, Africa, August 2004. Analysis of the group discussions reveals a number of factors that influence whether they will use the products. The qualitative, in depth nature of the group discussions revealed 12 main factors that influence product use; not least the low international internet bandwidths for African countries outside of South Africa. Analysis of the group discussions also suggests how the uptake of MODIS fire products by resource managers in southern Africa might be enhanced by affecting specific changes to how MODIS products are packaged and delivered.  相似文献   

15.
The lack of knowledge regarding social diversity in the Wildland Urban Interface (WUI) or an in-depth understanding of the ways people living there interact to address common problems is concerning, perhaps even dangerous, given that community action is necessary for successful wildland fire preparedness and natural resource management activities. In this article, we lay out the knowledge and preliminary case study evidence needed to begin systematically documenting the differing levels and types of adaptive capacity WUI communities have for addressing collective problems such as wildland fire hazard. In order to achieve this end, we draw from two theoretical perspectives encompassing humans' interactions with their environment, including (1) Kenneth Wilkinson's interactional approach to community, (2) and certain elements of place literature. We also present case study research on wildfire protection planning in two drastically different California communities to illustrate how social diversity influences adaptive capacity to deal with hazards such as wildland fire. These perspectives promote an image of the WUI not as a monolithic entity but a complex mosaic of communities with different needs and existing capacities for wildland fire and natural resource management.  相似文献   

16.
An inventory was conducted to assess the number, type, spatial distribution, and costs of microbiological monitoring programs in southern California marine waters from Point Conception to the US/Mexico International Border. The location of each sampling site was determined using global positioning system (GPS), and estimates of geographic coverage were determined using geographic information system (GIS) techniques. Twenty-one programs conducted 87,007 tests annually at 576 sites in the study area. The largest number of sites was sampled in Orange County, whereas the largest number of analyses was performed in Los Angeles County because monitoring programs in this area focused on daily monitoring. Fifteen of the 21 programs were managed by National Pollutant Discharge Elimination System (NPDES) permitted sewage effluent dischargers who sampled both offshore and shoreline waters and typically tested for three indicator bacteria (total coliform, fecal coliform, and enterococcus). Their combined efforts comprised 82% of all of the microbiological indicator analyses conducted on an annual basis. Five of the remaining monitoring organizations were public health agencies, which typically focus their efforts on testing only total coliforms. Laboratory methodology also varied considerably, with NPDES permittees predominantly utilizing membrane filtration while public health agencies generally used multiple tube fermentation or premanufactured test kits. Nearly three quarters of all the effort expended in southern California occurred along the shoreline as opposed to offshore locations. Two thirds of this shoreline effort was focused on high-use sandy beaches and in proximity to perennial freshwater outlets (storm drains and creeks). Most sampling occurred at a set of fixed sites that were revisited frequently, but only represented about 7% of the total shoreline. We estimated that roughly $3 million is spent annually on monitoring bathing water quality in southern California, exceeding that spent in any other part of the country.  相似文献   

17.
Every year approximately half a million hectares of land are burned by wildfires in southern Europe, causing large ecological and socio-economic impacts. Climate and land use changes in the last decades have increased fire risk and danger. In this paper we review the available scientific knowledge on the relationships between landscape and wildfires in the Mediterranean region, with a focus on its application for defining landscape management guidelines and policies that could be adopted in order to promote landscapes with lower fire hazard. The main findings are that (1) socio-economic drivers have favoured land cover changes contributing to increasing fire hazard in the last decades, (2) large wildfires are becoming more frequent, (3) increased fire frequency is promoting homogeneous landscapes covered by fire-prone shrublands; (4) landscape planning to reduce fuel loads may be successful only if fire weather conditions are not extreme. The challenges to address these problems and the policy and landscape management responses that should be adopted are discussed, along with major knowledge gaps.  相似文献   

18.
Every year, more than 50,000 wildland fires affect about 500,000 ha of vegetation in southern European countries, particularly in wildland-urban interfaces (WUI). This paper presents a method to characterize and map WUIs at large scales and over large areas for wildland fire prevention in the South of France. Based on the combination of four types of building configuration and three classes of vegetation structure, 12 interface types were classified. Through spatial analysis, fire ignition density and burned area ratio were linked with the different types of WUI. Among WUI types, isolated WUIs with the lowest housing density represent the highest level of fire risk.  相似文献   

19.
20.
Wildfire can significantly change watershed hydrological processes resulting in increased risks for flooding, erosion, and debris flow. The goal of this study was to evaluate the predictive capability of hydrological models in estimating post‐fire runoff using data from the San Dimas Experimental Forest (SDEF), San Dimas, California. Four methods were chosen representing different types of post‐fire runoff prediction methods, including a Rule of Thumb, Modified Rational Method (MODRAT), HEC‐HMS Curve Number, and KINematic Runoff and EROSion Model 2 (KINEROS2). Results showed that simple, empirical peak flow models performed acceptably if calibrated correctly. However, these models do not reflect hydrological mechanisms and may not be applicable for predictions outside the area where they were calibrated. For pre‐fire conditions, the Curve Number approach implemented in HEC‐HMS provided more accurate results than KINEROS2, whereas for post‐fire conditions, the opposite was observed. Such a trend may imply fundamental changes from pre‐ to post‐fire hydrology. Analysis suggests that the runoff generation mechanism in the watershed may have temporarily changed due to fire effects from saturation‐excess runoff or subsurface storm dominated complex mechanisms to an infiltration‐excess dominated mechanism. Infiltration modeling using the Hydrus‐1D model supports this inference. Results of this study indicate that physically‐based approaches may better reflect this trend and have the potential to provide consistent and satisfactory prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号