首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Urbanization has transformed natural landscapes into anthropogenic impervious surfaces. Urban land use has become a major driving force for land cover and land use change in the Tampa Bay watershed of west-central Florida. This study investigates urban land use change and its impact on the watershed. The spatial and temporal changes, as well as the development density of urban land use are determined by analyzing the impervious surface distribution using Landsat satellite imagery. Population distribution and density are extracted from the 2000 census data. Non-point source pollution parameters used for measuring water quality are analyzed for the sub-drainage basins of Hillsborough County. The relationships between 2002 urban land use, population distribution and their environmental influences are explored using regression analysis against various non-point source pollutant loadings in these sub-drainage basins. The results suggest that strong associations existed between most pollutant loadings and the extent of impervious surface within each sub-drainage basin in 2002. Population density also exhibits apparent correlations with loading rates of several pollutants. Spatial variations of selected non-point source pollutant loadings are also assessed.  相似文献   

2.
ABSTRACT: The New Castle County Resource Protection Area Technical Advisory Committee (RPATAC) requested that the University of Delaware utilize impervious cover estimates to evaluate the performance of the Water Resource Protection Area (WRPA) ordinance. This 1991 ordinance was the first in Delaware to protect the quantity and quality of drinking water supplies by limiting new development in WRPAs ‐ such as areas of ground water recharge, wellhead protection, drainage above reservoirs (reservoir watersheds), and limestone aquifers ‐ to a maximum 20 percent impervious cover. The research used geographic information system (GIS) techniques to evaluate the effectiveness of the ordinance in attaining its objective. The analysis indicated that 138 new developments were proposed in WRPAs since the ordinance was approved in 1991. The composite impervious cover of the 231 square kilometers of WRPAs in New Castle County is 15 percent, less than the 20 percent code requirement, ranging from 7 percent in recharge areas to 41 percent in several wellhead protection areas. To further protect drinking water supplies, the study results indicate, New Castle County should discourage code variances for applications in the more developed WRPAs, those where impervious cover already exceeds 20 percent, and should acquire parks and open space to protect the healthier WRPAs where impervious cover is currently less than 20 percent.  相似文献   

3.
基于流域水质改善与水环境管理需求,结合目前流域非点源水污染排放存在的问题,本研究采用SOA-B/S架构,运用MVC6和GIS与环境模型集成关键技术,构建流域非点源水污染排放清单估算系统,并系统梳理了地形数据、污染源环境统计数据、气象数据等基础信息,采用基于输出系数法的非点源水污染负荷估算模型,实现了对全年及年内各分水期非点源水污染排放清单的处理分析和估算。系统通过数据库、GIS平台、模型集成和业务系统建设,实现了对不同时间和空间尺度下不同地区的非点源水污染负荷估算,推进了流域非点源污染排放的信息化、科学化及可视化管理,为决策者制定流域水环境管理措施和方案提供了有力的技术支持。  相似文献   

4.
Abstract: Impervious cover is a commonly used metric to help explain or predict anthropogenic impacts on aquatic resources; often it is used as a surrogate for intensity of human impacts when evaluating effects on aquatic resources. The most common way to estimate imperviousness is based on relationships with land use. Few studies have evaluated how the relationship between impervious surface and land use varies among geographies with different levels of development and between types of imagery used to assign land use type. In this study, we assess variability in estimates of imperviousness based on two locally available land use datasets: one based on aerial imagery (2‐m resolution) and another based on satellite imagery (30‐m resolution). The ranges and variability in imperviousness within land use categories were assessed at several spatial scales, including within counties, between counties, and between watersheds. Results indicate that there was considerable variability for all developed land use types. Estimated impervious cover often varied over a range of 20‐40% points within a land use category. Furthermore, there were clear spatial patterns both between and within counties, with impervious cover for a given land use type being higher near the urban centers and lower at the margins of development. Estimates of imperviousness for 12 study watersheds indicated that variability increased with increasing watershed development, making it difficult to confidently set management or regulatory targets based on impervious cover. This study suggests that locally derived, high resolution satellite or aerial imagery should be used to estimate imperviousness when a high level of accuracy and precision is required for regulatory or management decisions. Furthermore, the error associated with impervious land use relationships should be accounted for when using impervious cover in runoff or water quality models, or when making management decisions regarding stream health.  相似文献   

5.
Abstract: Dissolved silica (DSi) availability is a factor that affects the composition of algal populations in aquatic ecosystems. DSi cycling is tightly linked to the hydrological cycle, which is affected by human alterations of the landscape. Development activities that increase impervious cover change watershed hydrology and may increase the discharge of DSi‐poor rainwater and decrease the discharge of DSi‐rich ground water into aquatic ecosystems, possibly shifting algal community composition toward less desirable assemblages. In this study, DSi loadings from two adjacent coastal watersheds with different percent impervious cover were compared during four rain and five nonrain events. Loadings in the more impervious watershed contained a significantly larger proportion of surface runoff than base flow (ground‐water discharge) and had lower [DSi] water during rain events than the less impervious watershed. Application of the Soil Conservation Service Curve Number (CN) method showed that the minimum rainfall height necessary to yield runoff was significantly lower for the more impervious watershed, implying that runoff volumes increase with impervious cover as well as the frequency of runoff‐yielding events. Empirical data collected during this study and estimates derived from the CN method suggest that impervious cover may be responsible for both short‐term DSi limitation during rain events as well as long‐term reduction of DSi inputs into aquatic ecosystems.  相似文献   

6.
ABSTRACT: Land cover and land use change have long been known to influence the chemical, physical, and biological characteristics of streams. This study makes use of land cover maps derived from fine resolution satellite imagery and an extensive stream quality dataset to determine the relationship between small watershed health rankings and land cover composition and configuration. Landscape metrics were derived from digital impervious surface area (ISA), tree cover (percent), and agricultural crop maps within Montgomery County, Maryland. Watershed rankings were developed by state and county collaborators (MD‐DNR and MCDEP) using extensive biological and chemical measurements. In stepwise logistic regression models the factors accounting for the most variation in stream health ranking were the percent ISA, followed by the percent of tree cover. Riparian buffer zone tree cover was also a significant predictor. Of the metrics that considered the spatial configuration of the landscape, a contagion index and the percent of ISA in the flow path from the ISA to the stream were also found to be significant predictors of stream health. Despite limited ability to characterize landscape configuration or narrow riparian buffer zone vegetation with coarser resolution imagery (from Landsat), model results were not significantly different from those based on the use of fine‐resolution ISA information, suggesting that broader area applications of the approach are possible. The results indicate that management practices designed to improve stream water quality should focus on the amount of ISA and tree cover in both the watershed and within the buffer zone.  相似文献   

7.
Use of impervious cover is transitioning from an indicator of surface water condition to one that also guides and informs watershed planning and management, including Clean Water Act (33 U.S.C. §1251 et seq.) reporting. Whether it is for understanding surface water condition or planning and management, impervious cover is most commonly expressed as summary measurement (e.g., percentage watershed in impervious cover). We use the National Land Cover Database to estimate impervious cover in the vicinity of surface waters for three time periods (2001, 2006, 2011). We also compare impervious cover in the vicinity of surface waters to watershed summary estimates of impervious cover for classifying the spatial pattern of impervious cover. Between 2001 and 2011, surface water shorelines (streams and water bodies) in the vicinity of impervious cover increased nearly 10,000 km. Across all time periods, approximately 27% of the watersheds in the continental United States had proximally distributed impervious cover, i.e., the percentage of impervious cover in the vicinity of surface waters was higher than its watershed summary expression. We discuss how impervious cover spatial pattern can be used to inform watershed planning and management, including reporting under the Clean Water Act.  相似文献   

8.
Abstract: The spatial scale and location of land whose development has the strongest influence on aquatic ecosystems must be known to support land use decisions that protect water resources in urbanizing watersheds. We explored impacts of urbanization on streams in the West River watershed, New Haven, Connecticut, to identify the spatial scale of watershed imperviousness that was most strongly related to water chemistry, macroinvertebrates, and physical habitat. A multiparameter water quality index was used to characterize regional urban nonpoint source pollution levels. We identified a critical level of 5% impervious cover, above which stream health declined. Conditions declined with increasing imperviousness and leveled off in a constant state of impairment at 10%. Instream variables were most correlated (0.77 ≤ |r| ≤ 0.92, p < 0.0125) to total impervious area (TIA) in the 100‐m buffer of local contributing areas (~5‐km2 drainage area immediately upstream of each study site). Water and habitat quality had a relatively consistent strong relationship with TIA across each of the spatial scales of investigation, whereas macroinvertebrate metrics produced noticeably weaker relationships at the larger scales. Our findings illustrate the need for multiscale watershed management of aquatic ecosystems in small streams flowing through the spatial hierarchies that comprise watersheds with forest‐urban land use gradients.  相似文献   

9.
本文运用综合污染指数法对濑溪河泸县段天竺寺大桥和官渡大桥上、下两个断面的水质进行现状评价和污染变化规律分析,表明濑溪河泸县段污染情况逐年恶化,超标频率和倍数都成上升趋势,枯水月份、平水月份、丰水月份分别对水体污染起着不同的作用,在丰水月份来临之前、之后的平水月份非点源污染污染突出,可见濑溪河泸县段非点源污染在濑溪河的水体污染中占有一定的比重,濑溪河泸县段水质状况不容乐观,亟待加强水质污染的防治和控制力度,并提出治理的建议。  相似文献   

10.
Landscape characteristics of a watershed are important variables that influence surface water quality. Understanding the relationship between these variables and surface water quality is critical in predicting pollution potential and developing watershed management practices to eliminate or reduce pollution risk. To understand the impacts of landscape characteristics on water quality in mine waste-located watersheds, we conducted a case study in the Tri-State Mining District which is located in the conjunction of three states (Missouri, Kansas and Oklahoma). Severe heavy metal pollution exists in that area resulting from historical mining activities. We characterized land use/land cover over the last three decades by classifying historical multi-temporal Landsat imagery. Landscape metrics such as proportion, edge density and contagion were calculated based on the classified imagery. In-stream water quality data over three decades were collected, including lead, zinc, iron, cadmium, aluminum and conductivity which were used as key water quality indicators. Statistical analyses were performed to quantify the relationship between landscape metrics and surface water quality. Results showed that landscape characteristics in mine waste-located watersheds could account for as much as 77% of the variation of water quality indicators. A single landscape metric alone, such as proportion of mine waste area, could be used to predict surface water quality; but its predicting power is limited, usually accounting for less than 60% of the variance of water quality indicators.  相似文献   

11.
我国非点源污染的基本特征与时空分布规律研究综述   总被引:3,自引:0,他引:3  
张丹  杨洪霞  段慧  范力  杨朋  罗彬 《四川环境》2014,(4):140-145
随着点源污染控制的逐步完善,非点源污染对环境造成的危害日益突出,成为了目前我国水质环境恶化的又一重大因素。为有效控制非点源污染,本研究对非点源污染的基本特征进行了概述,分析了非点源污染的研究方法。根据国内学者对非点源污染负荷时空分布的调查、计算及研究成果,总结分析了我国非点源污染负荷时空分布规律的特征,并针对性地提出了非点源污染的控制需从源头减量、过程控制及末端治理等方面进行,从而为非点源污染的预防和治理提供相应的指导。  相似文献   

12.
以2001~2007年实测水文、水质数据为基础,计算了四川省主要出川断面高锰酸盐指数(CODMn)和氨氮(NH3-N)污染负荷通量;利用断面水质目标约束,通过污染负荷历时曲线,分析了区域水环境承载力;在基流分割的基础上,利用水文分割法,识别了区域污染物的主要来源,为从源头上开展三峡水库水环境保护提供数据支撑。分析结果表明,各出川断面干流主要污染物(CODMn、NH3-N)大致在可接受的范围内,2001年以来,出川断面CODMn通量呈降低的趋势,有效的减缓了输入三峡库区的污染物总量,氨氮通量整体稳定。嘉陵江、涪江、渠江流域污染物来源主要为非点源,应重点加强面源的污染防控;长江干流为点面源混合型,简单的削减点源已不能保证高功能水体要求,应加强点源和面源污染的综合防控。  相似文献   

13.
Abstract: We describe relationships between pH, specific conductance, calcium, magnesium, chloride, sulfate, nitrogen, and phosphorus and land‐use patterns in the Mullica River basin, a major New Jersey Pinelands watershed, and determine the thresholds at which significant changes in water quality occur. Nonpoint sources are the main contributors of pollutants to surface waters in the basin. Using multiple regression and water‐quality data for 25 stream sites, we determine the percentage of variation in the water‐quality data explained by urban land and upland agriculture and evaluate whether the proximity of these land uses influences water‐quality/land‐use relationships. We use a second, independently collected water‐quality dataset to validate the statistical models. The multiple‐regression results indicate that water‐quality degradation in the study area is associated with basin‐wide upland land uses, which are generally good predictors of water‐quality conditions, and that both urban land and upland agriculture must be included in models to more fully describe the relationship between watershed disturbance and water quality. Including the proximity of land uses did not improve the relationship between land use and water quality. Ten‐percent altered‐land cover in a basin represents the threshold at which a significant deviation from reference‐site water‐quality conditions occurs in the Mullica River basin.  相似文献   

14.
人工湿地控制非点源污染的应用   总被引:7,自引:0,他引:7  
何少林  周琪 《四川环境》2004,23(6):71-74,97
随着点源污染的有效管理和控制,非点源污染已成为水环境污染的主要原因。人工湿地作为一种控制水环境非点源污染的有效工具,已被世界上很多国家所认可。本文首先简述了非点源污染的危害,其次对人工湿地的概念和类型进行了介绍,论述了人工湿地对非点源污染中氮、磷、重金属和农药等主要污染物的去除机理,最后对人工湿地处理系统的附属设施、水力因素、表土层以及植物收割等应用问题进行了探讨。  相似文献   

15.
ABSTRACT: Many coastal states are facing increasing urban growth along their coast lines. The growth has caused urban non-point source nitrogen runoff to be a major contributor to coastal and estuarine enrichment. Water resource managers are responsible for evaluating the impacts from point and non-point sources in developed watersheds and developing strategies to manage future growth. Non-point source models provide an effective approach to these management challenges. The Agricultural Non-Point Source Model (AGNPS) permits the incorporation of important spatial information (soils, landuse, topography, hydrology) in simulating surface hydrology and nitrogen non-point source runoff. The AGNPS model was adapted for developed coastal watersheds by deriving urban coefficients that reflect urban landuse classes and the amount of impervious surface area. Popperdam Creek watershed was used for model parameter development and model calibration. Four additional watersheds were simulated to validate the model. The model predictions of the peak flow and total nitrogen concentrations were close to the field measurements for the five sub-basins simulated. Measured peak flow varied by 30 fold among the sub-basins. The average simulated peak flow was within 14 percent of the average measured peak flow. Measured total nitrogen loads varied over an order of magnitude among the sub-basins yet error between the measured and simulated loads for a given sub-basin averaged 5 percent. The AGNPS model provided better estimates of nitrogen loads than widely used regression methods. The spatial distribution of important watershed characteristics influenced the impacts of urban landuse and projecting future residential expansion on runoff, sediment and nitrogen yields. The AGNPS model provides a useful tool to incorporate these characteristics, evaluate their importance, and evaluate fieldscale to watershed-scale urban impacts.  相似文献   

16.
我国的农业非点源污染治理正处于攻坚期,但部分政策一定程度上缺少具体执行标准和规范,难以执行到位,法律法规碎片化、分散且难以评估执行效果。本文从美国治理非点源的国际经验出发,梳理了联邦层面的法律法规、农业环境管理机构的运作形式以及州层面流域管理规划和非点源控制计划。最后,根据国际经验提出了如下建议:一是建议要求各省在农业规划中加入推进农业流域治理清单;二是建议制定流域地表水质达标规划,实现点源与非点源联合管理;三是建议形成最佳管理实践规范技术指南,并对执行者进行相应补贴,形成监管机制;四是建议建立农业绿色补贴制度,鼓励地方形成可持续的农业发展机制。  相似文献   

17.
Soil erosion associated with non-point source pollution is viewed as a process of land degradation in many terrestrial environments. Careful monitoring and assessment of land use variations with different temporal and spatial scales would reveal a fluctuating interface, punctuated by changes in rainfall and runoff, movement of people, perturbation from environmental disasters, and shifts in agricultural activities and cropping patterns. The use of multi-temporal remote sensing images in support of environmental modeling analysis in a geographic information system (GIS) environment leading to identification of a variety of long-term interactions between land, resources, and the built environment has been a highly promising approach in recent years. This paper started with a series of supervised land use classifications, using SPOT satellite imagery as a means, in the Kao-Ping River Basin, South Taiwan. Then, it was designed to differentiate the variations of eight land use patterns in the past decade, including orchard, farmland, sugarcane field, forest, grassland, barren, community, and water body. Final accuracy was confirmed based on interpretation of available aerial photographs and global positioning system (GPS) measurements. Finally, a numerical simulation model (General Watershed Loading Function, GWLF) was used to relate soil erosion to non-point source pollution impacts in the coupled land and river water systems. Research findings indicate that while the decadal increase in orchards poses a significant threat to water quality, the continual decrease in forested land exhibits a potential impact on water quality management. Non-point source pollution, contributing to part of the downstream water quality deterioration of the Kao-Ping River system in the last decade, has resulted in an irreversible impact on land integrity from a long-term perspective.  相似文献   

18.
n integrated approach coupling water quality computer simulation modeling with a geographic information system (GIS) was used to delineate critical areas of nonpoint source (NPS) pollution at the watershed level. Two simplified pollutant export models were integrated with the Virginia Geographic Information System (VirGIS) to estimate soil erosion, sediment yield, and phosphorus (P) loading from the Nomini Creek watershed located in Westmoreland County, Virginia. On the basis of selected criteria for soil erosion rate, sediment yield, and P loading, model outputs were used to identily watershed areas which exhibit three categories (low, medium, high) of non-point source pollution potentials. The percentage of the watershed area in each category, and the land area with critical pollution problems were also identified. For the 1505-ha Nomini Creek watershed, about 15, 16, and 21 percent of the watershed area were delineated as sources of critical soil erosion, sediment, and phosphorus pollution problems, respectively. In general, the study demonstrated the usefulness of integrating GIS with simulation modeling for nonpoint source pollution control and planning. Such techniques can facilitate making priorities and targeting nonpoint source pollution control programs.  相似文献   

19.
Land-use change, dominated by an increase in urban/impervious areas, has a significant impact on water resources. This includes impacts on nonpoint source (NPS) pollution, which is the leading cause of degraded water quality in the United States. Traditional hydrologic models focus on estimating peak discharges and NPS pollution from high-magnitude, episodic storms and successfully address short-term, local-scale surface water management issues. However, runoff from small, low-frequency storms dominates long-term hydrologic impacts, and existing hydrologic models are usually of limited use in assessing the long-term impacts of land-use change. A long-term hydrologic impact assessment (L-THIA) model has been developed using the curve number (CN) method. Long-term climatic records are used in combination with soils and land-use information to calculate average annual runoff and NPS pollution at a watershed scale. The model is linked to a geographic information system (GIS) for convenient generation and management of model input and output data, and advanced visualization of model results. The L-THIA/NPS GIS model was applied to the Little Eagle Creek (LEC) watershed near Indianapolis, Indiana, USA. Historical land-use scenarios for 1973, 1984, and 1991 were analyzed to track land-use change in the watershed and to assess impacts on annual average runoff and NPS pollution from the watershed and its five subbasins. For the entire watershed between 1973 and 1991, an 18% increase in urban or impervious areas resulted in an estimated 80% increase in annual average runoff volume and estimated increases of more than 50% in annual average loads for lead, copper, and zinc. Estimated nutrient (nitrogen and phosphorus) loads decreased by 15% mainly because of loss of agricultural areas. The L-THIA/NPS GIS model is a powerful tool for identifying environmentally sensitive areas in terms of NPS pollution potential and for evaluating alternative land use scenarios for NPS pollution management.  相似文献   

20.
农业面源污染治理对完成好"水污染防治行动计划"、"大气污染防治行动计划"具有举足轻重的作用。从农业废水面源污染现状来看,畜禽养殖业排污在农业源中占绝对优势,且全国仍有90%以上的分散养殖畜禽未得到综合整治,整治力度亟需进一步加强;农业废气面源污染主要来源于秸秆焚烧,已成为重污染天气的帮凶之一,近年来秸秆综合利用率有所提升但仍存在秸秆焚烧现象。"监督指导农业面源污染治理"是生态环境部的新职能,新职能带来新挑战:由于农业源具有分布分散、受地域等因素影响较大、治理的责任主体不明确等特点,以工业污染治理为核心的环境管理体系"难以作为";另一方面,基层监管工作缺少数据、缺少人员,现有基层环保队伍承接新职能的能力明显不足。为此,提出应对建议:一是建立适应农业面源特点的环境管理体系,二是采取多种手段强化农业面源的环境监管,三是推动各级政府加大农业面源治理力度,通过规范农业生产的清洁化水平,从源头控制农业面源污染产生量和排放量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号