首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 640 毫秒
1.
为了探明反硝化脱氮除磷工艺的碳源利用特性,通过SBR工艺对反硝化聚磷菌进行驯化在不同碳源浓度下,研究了反硝化脱氮除磷过程中的碳源利用特性。结果表明,反硝化脱氮除磷系统在厌氧段碳源转化过程中有一个饱和碳源,该研究中系统MLSS为3 000 mg/L时厌氧阶段饱和碳源浓度为250 mg/L COD。厌氧段进水碳源浓度低于该系统饱和碳源时,缺氧段总氮、磷去除随着厌氧段进水碳源浓度提高而增加,当进水碳源浓度超过饱和碳源时,总氮去除随着碳源浓度提高而进一步提高,但总磷去除率下降。说明缺氧段胞外碳源对系统脱氮有促进作用,但对除磷有抑制作用。厌氧进水碳源浓度达到饱和碳源时系统除磷效果最好,且脱氮所需的碳源利用效率最高此时系统COD(m)/NO_3~-N(m)值为3.3左右。  相似文献   

2.
在4个序批式反应器(SBR)R1、R2、R3和R4中,以静置段代替传统厌氧段,采用后置缺氧,考察进水氨氮浓度分别为20,30,40,50mg/L对静置/好氧/缺氧SBR脱氮除磷性能的影响.结果表明,R1、R2、R3和R4长期运行中磷去除率分别为82.3%、92.8%、92.6%和89.1%,总氮(TN)去除率分别为97.2%、88.6%、84.5%和72.6%.静置段省却搅拌,但仍起厌氧段作用,仍可实现生物强化除磷.4个反应器好氧段均发生同步硝化-反硝化(SND),分别贡献14.7%、16.6%、17.8%和14.8%的进水后TN量,且后置缺氧段利用糖原驱动反硝化,脱氮效果较好,出水TN分别为0.57,4.43,6.61,13.70mg/L.研究表明,进水氨氮浓度可影响静置释磷、好氧摄磷、反硝化除磷.静置段代替厌氧段的后置缺氧工艺可取得较好脱氮除磷效果,且节约成本,简化工艺.  相似文献   

3.
多级厌氧缺氧好氧活性污泥法是由若干个厌氧缺氧好氧串联的形式组成,利用分段厌氧进水,形成多级厌氧-缺氧和多级缺氧-好氧同时交替运行,具有反硝化除磷和高效脱氮功能,采用无内回流技术,通过调节流量比值实现强化除磷与强化脱氮的控制目标,并具有污泥浓度高、抗冲击能力强、污泥减量、优化利用碳源、节省运行能耗和曝气量等特点,是节能型高效除磷脱氮新工艺,为城市污水高效除磷脱氮提供新的思路及途径。  相似文献   

4.
为强化CMICAO(多点交替进水阶式A2/O)工艺的脱氮除磷性能,通过调整进水C/N〔ρ(CODCr)/ρ(TN)〕、进水端厌氧池和缺氧池的进水流量比对CMICAO工艺参数进行优化,考察其对氮、磷去除的影响. 结果表明:试验条件下,C/N的提高可增强SND(同步硝化反硝化)作用,氮的去除效果也随之提高,C/N≥7时,前好氧池同步硝化反硝化率达到61%,出水ρ(TN)≤9.0 mg/L;在相同工况下,较低的C/N下反硝化除磷现象更明显. 综合考虑,C/N在5~7范围内,可取得较好的整体脱氮除磷效果. 优化工艺进水碳源分配可提高碳源利用效率,氮、磷的去除效果受进水流量比的影响较大,当厌氧池和缺氧池进水流量比为2.0时,可强化缺氧池的反硝化除磷作用,TN和TP去除率分别为75%和92%,出水ρ(CODCr)、ρ(NH+4-N)、ρ(TN)和ρ(TP)分别为28.7、1.9、9.2和0.27 mg/L,通过优化实现了CMICAO工艺对氮、磷去除的强化.   相似文献   

5.
改进分段进水A/O生物脱氮工艺强化生物除磷   总被引:4,自引:1,他引:3  
王伟  彭永臻  殷芳芳  王淑莹 《环境科学》2009,30(10):2968-2974
采用分段进水A/O中试处理系统处理低C/N生活污水.为实现同步脱氮除磷,对分段进水A/O工艺进行改进并对改进前后系统的脱氮除磷效率进行评价.改进前分段进水A/O工艺平均TN去除率为66.52%,TP去除率为29.74%;改进后的分段进水A/O工艺不仅可以稳定地实现同步脱氮除磷,在三段进水比为0.45∶0.35∶0.20时,系统平均TP去除率达89.81%,且由于反硝化除磷的强化节省部分碳源,TN去除率达73.61%,比改进前提高7.09%.为验证不同阶段聚磷菌及反硝化聚磷菌在系统内的选择增殖情况,试验对不同运行阶段的活性污泥进行静态厌氧放磷、好氧及缺氧吸磷试验,结果表明,工艺经过改进后,聚磷菌及反硝化聚磷菌均得到较大程度地选择富集.采用改进工艺,污泥最大比好氧吸磷速率[P/(MLSS.t)]由2.34 mg/(g.h)提高到10.67 mg/(g.h),最大比缺氧吸磷速率由0.33 mg/(g.h)提高到2.81 mg/(g.h).  相似文献   

6.
以乙酸钠和丙酸钠1:2混合作为碳源,进水COD浓度分别为200,400,600,800mg/L,研究混合碳源浓度对单级好氧生物脱氮除磷的影响,并通过比较微生物体内储能物质的变化,探讨混合碳源浓度对生物脱氮除磷性能影响的机理.结果表明,当进水磷和氨氮浓度分别为12,30mg/L时,随着进水COD由200增加至800mg/L,磷去除率由39.9%提升至86.4%(氮去除率从13.5%提升至96.4%).进水COD为400mg/L时单位挥发性悬浮固体(VSS)的磷和氮去除量达到最高[分别为(4.31±0.08)和(6.15±0.22)mg/g].当进水COD由200增加至400mg/L时生物除磷活性增强,而COD继续增加会使污泥沉降性能变差,脱氮除磷生物活性降低.好氧吸磷和同步硝化反硝化主要由微生物体内储能物质多β羟基烷酸盐(PHA)驱动,当进水COD为400mg/L时单位VSS消耗的PHA最多.混合碳源浓度通过影响碳源的好氧代谢,使微生物体内储能物质的积累/转化量不同,进而影响系统的脱氮除磷性能.  相似文献   

7.
静置/好氧/缺氧序批式反应器(SBR)脱氮除磷效果研究   总被引:5,自引:1,他引:4  
以静置段代替传统厌氧段,采用后置缺氧方式,考察了静置/好氧/缺氧序批式反应器(SBR)(R1)的生物脱氮除磷(BNR)性能,并与传统厌氧/好氧/缺氧序批式反应器(SBR)(R2)进行对比.两反应器进水乙酸钠、氨氮(NH+4-N)及磷酸盐(PO3-4-P)浓度均分别为350 mg·L-1(以COD计)、40 mg·L-1及12 mg·L-1,水力停留时间(HRT)为12 h.研究结果表明,R1长期运行中磷的去除率与R2相当,分别为92.4%和92.1%,而总氮(TN)去除率则较R2高,分别为83.5%和77.0%.R1静置段省去搅拌但仍能起到厌氧段的作用,为好氧快速摄磷奠定了基础,同时R1缺氧段发生反硝化摄磷,使出水磷降至0.91 mg·L-1.好氧段内R1发生了同步硝化-反硝化(SND),贡献了18.0%的TN去除量,R2也存在SND,但脱氮贡献率较少,仅为9.8%.R1和R2后置缺氧反硝化均以糖原驱动,反硝化速率分别为0.98、0.84 mg·g-1·h-1(以每g VSS产生的N(mg)计),出水TN分别为6.62、9.21 mg·L-1.研究表明,静置段代替传统厌氧段后,可获得更好的脱氮效果,且工艺更为简化.  相似文献   

8.
针对现有城市污水处理厂进水碳源不足的问题,通过建立多段进水改良A~2/O中试反应器处理低C/N(C/N 5)城市污水,以研究多段进水对其脱氮除磷性能和微生物种群结构变化的影响.结果表明,与传统厌氧段进水的模式相比,多段进水优化了进水碳源在厌氧段和缺氧段中的分布,从而提高了系统的反硝化脱氮和反硝化除磷性能; Q预缺∶Q厌∶Q缺=0. 1∶0. 2∶0. 3(阶段Ⅳ)为系统的最佳工况,此时出水COD、NH4+-N、TN和TP的平均浓度分别为30. 10、1. 85、9. 41和0. 71 mg·L-1,去除率分别为89. 41%、95. 30%、83. 00%和90. 09%;在120d的试验过程中,系统均未出现丝状菌膨胀现象,曝气池活性污泥沉降性能良好,好氧池活性污泥SVI随着缺氧段进水比例的增加而降低,至阶段Ⅴ达到最佳状态,此时的SVI和VSS/TSS分别为112. 09 m L·g-1和0. 84;通过对各阶段好氧区活性污泥16S rRNA基因测序数据的梳理,发现系统较好的脱氮除磷和污泥沉降性能分别与6类异养型菌属、4类反硝化菌属、5类聚磷菌属和2类菌胶团菌属的富集,3类丝状菌的淘汰密切相关.  相似文献   

9.
双污泥SBR工艺反硝化除磷脱氮特性及影响因素   总被引:11,自引:3,他引:8  
以生活污水为处理对象,研究了双污泥A2NSBR工艺反硝化除磷脱氮特性,重点考察了进水C/P和C/N及HRT的影响作用;同时基于DO、ORP和pH的典型变化规律,验证它们作为反硝化除磷过程控制参数的可行性.结果表明,在本试验条件下, P的去除率随着进水C/P的升高整体呈现上升趋势.当进水C/P≥19.39左右时,系统可维持优良的除磷效果;而当进水C/P降至15.36以下时,系统除磷效果呈恶化趋势.另一方面, A2NSBR在低C/N条件下仍可获得相对良好的除磷率,但易导致反硝化脱氮率的下降. C/N的升高增加了聚磷菌厌氧阶段合成PHB的量,继而提高最终的脱氮和除磷效果;但C/N过高将使厌氧段未反应完全的过剩碳源滞留到缺氧段,优先支持反硝化异养菌(ordinary heterotrophic organisms, OHOs)的反硝化反应而减少了缺氧阶段DNPAOs可利用的电子受体数,致使缺氧除磷效果恶化.此外, A2NSBR拥有2套完全独立的SBR,较利于建立以DO、ORP和pH为参数的过程控制体系.  相似文献   

10.
进水C/N对A~2/O-BCO工艺反硝化除磷特性的影响   总被引:1,自引:0,他引:1  
采用厌氧/缺氧/好氧与生物接触氧化工艺组成的双污泥系统(A~2/O-BCO)处理实际生活污水.通过投加乙酸钠调节进水碳氮比(C/N=2.44~8.85),考察了系统的反硝化除磷特性.试验结果表明:进水有机物主要是通过改变硝化性能(即缺氧段反硝化负荷)以及聚-β-羟基链烷酸脂(PHA)的贮存和利用,进而影响系统的脱氮除磷效果.当进水C/N为4~5时,COD、TN和PO_4~(3-)-P去除率分别达到88%,80%和96%,实现了有机物、氮和磷的同步高效去除.碳平衡分析表明,A~2/O反应器去除的COD占去除总量的71.86%~77.28%,BCO反应器去除的COD仅占2%~12%,碳源的高效利用是A~2/O-BCO工艺在低C/N条件下实现深度脱氮除磷的重要原因.此外,通过进水C/N与曝气量、硝化液回流比、厌/缺氧反应时间等相关性的分析,提出了系统的优化运行策略.  相似文献   

11.
基于低碳源污水易硝化难反硝化的问题,构建了在A2O缺氧池添加天然碳源玉米芯的中试系统,采用物料衡算、反硝化速率测定和微生物群落分析等方法,研究了该系统的脱氮效能和反硝化体系特征.结果表明,TN去除率提升13%,出水从16.2降至10.0mg/L;同时不会造成出水氨氮和色度超标的风险.物料衡算表明,COD碳源的氧化消耗量和出水排放量降低,更多的碳源用于反硝化和污泥增殖,从而提升了氮素的去除量,其中反硝化的提升贡献更大.缺氧池形成了悬浮污泥加生物膜的复合型脱氮体系:在污水自身碳源存在时,生物膜和悬浮污泥的反硝化速率分别为24.89和32.42mg/(L∙h),可实现快速脱氮;当自身碳源消耗殆尽,二者的反硝化速率分别是4.71和1.73mg/(L×h),单位生物量反硝化速率分别是1.58和59.1mg NO3--N/(g VSS×h),表明玉米芯主要被生物膜利用以维持反硝化进行.该体系的主要反硝化菌属为Azospira,此外在生物膜表面还富集了能够附着生长的IamiaHaliangium,以及能够降解玉米芯木质素的Sulfuritalea等反硝化菌属.  相似文献   

12.
采用脉冲进水缺好氧交替工艺(SAOSBR)处理低C/N实际生活污水,考察了短程脱氮对于低碳源生活污水同步脱氮除磷效果的强化作用,并分析了短程脱氮强化生物除磷的机理.结果表明,通过短时的饥饿处理配合缺好氧交替的运行方式实现了系统的短程硝化,亚硝酸盐积累率稳定在95%以上.短程的实现还强化了系统的同步脱氮除磷效果,总氮和磷的平均去除率相比于全程脱氮过程分别提高了约6%和36%.分析表明短程强化生物除磷的原因主要是由于残留的NO2-对聚磷菌厌氧释磷的影响较小.静态试验也证实,在碳源不足的条件下,以NO2-为电子受体的反硝化作用相比于NO3-可以减弱反硝化菌与聚磷菌之间的碳源竞争,从而提高聚磷菌的厌氧释磷量和聚羟基烷酸(PHA)的合成量.因此,在处理低C/N生活污水时,短程脱氮的实现更有利于系统的生物除磷.  相似文献   

13.
Since the ammonia in the effluent of the traditional water purification process could not meet the supply demand, the advanced treatment of a high concentration of NH4 +-N micro-polluted source water by biological activated carbon filter (BACF) was tested. The filter was operated in the downflow manner and the results showed that the removing rate of NH4 +-N was related to the influent concentration of NH4 +-N. Its removing rate could be higher than 95% when influent concentration was under 1.0 mg/L. It could also decrease with the increasing influent concentration when the NH4 +-N concentration was in the range from 1.5 to 4.9 mg/L and the dissolved oxygen (DO) in the influent was under 10 mg/L, and the minimum removing rate could be 30%. The key factor of restricting nitrification in BACF was the influent DO. When the influent NH4 +-N concentration was high, the DO in water was almost depleted entirely by the nitrifying and hetetrophic bacteria in the depth of 0.4 m filter and the filter layer was divided into aerobic and anoxic zones. The nitrification and degradation of organic matters existed in the aerobic zone, while the denitrification occurred in the anoxic zone. Due to the limited carbon source, the denitrification could not be carried out properly, which led to the accumulation of the denitrification intermediates such as NO2 . In addition to the denitrification bacteria, the nitrification and the heterotrophic bacteria existed in the anoxic zone. __________ Translated from Environmental Science, 2006, 27(1): 69–73 [译自: 环境科学]  相似文献   

14.
为了进一步合理利用碳源,降低曝气能耗,有效解决低C/N生活污水的脱氮问题,采用2个串联的SBR在无外加碳源的条件下处理低C/N实际生活污水,分别启动内碳源反硝化反应器(ED-SBR)和低DO硝化反应器(LDON-SBR),并按照厌氧(ED-SBR)-好氧(LDON-SBR)-缺氧(ED-SBR)的方式运行,综合考察各反应器处理性能,并探讨低DO硝化耦合内碳源反硝化工艺脱氮的可行性.结果表明:LDON-SBR反应器在DO浓度为0.3~0.5mg/L的条件下能够成功实现90%以上的硝化并稳定维持,同时反应器存在明显的同步硝化反硝化(SND)现象,SND率可达29.6%;ED-SBR反应器在厌氧阶段能够将进水中的有机物转化为内碳源并储存,在缺氧阶段能够进行内源反硝化,使NO3--N平均浓度从27.3mg/L降低至3.9mg/L,NO3--N平均去除率为86.5%;系统整体COD去除率为80%左右.  相似文献   

15.
缺氧附着生长反应器同步脱氮除硫除碳运行效果探讨   总被引:1,自引:1,他引:0  
李巍  赵庆良  刘颢 《环境科学》2008,29(7):1855-1859
在缺氧环境下,应用附着生长反应器,通过降低水力停留时间增加进水底物负荷,对废水中硫化物,硝酸盐、亚硝酸盐和有机物等污染物质的降解情况进行了研究.结果表明,进水硫化物、硝酸盐氮、亚硝酸盐氮和有机物浓度分别为200、52.5、20和20mg/L,去除率分别达到99%、99%、95.5%和80%,实现了兼养脱硫反硝化氮、硫、碳的同步去除.随着底物负荷的增大,硝酸盐和亚硝酸盐对冲击负荷的适应性逐渐变小;硝酸盐降解对进水负荷冲击的适应性强于亚硝酸盐;与增加进水负荷对反应器带来的冲击相比,缺氧环境的破坏对硝酸盐和亚硝酸盐的降解影响大;去除硫化物的60%被生物氧化为单质硫;缺氧反应器中发生了自养反硝化和异养反硝化作用,自养反硝化占主导地位,异养反硝化的发生力度为21.76%.  相似文献   

16.
Both internal carbon source and some external carbon sources were used to improve the nutrient removal in Anaerobic-Anoxic-Oxic-Membrane Bioreactor(A~2/O-MBRs), and their technical and cost analysis was investigated. The experimental results showed that the nutrient removals were improved by all the carbon source additions. The total nitrogen and phosphorus removal efficiency were higher in the experiments with external carbon source additions than that with internal carbon source addition. It was found that pathways of nitrogen and phosphorus transform were different dependent on different carbon source additions by the mass balance analysis. With external carbon source addition, the simultaneous nitrification and denitrification occurred in aerobic zone, and the P-uptake in aerobic phase was evident. Therefore, with addition of C-MHP(internal carbon source produced from sludge pretreatment by microwave-H_2O_2 process), the denitrification and phosphorus-uptake in anoxic zone was notable. Cost analysis showed that the unit nitrogen removal costs were 57.13 CNY/kgN of C-acetate addition and 54.48 CNY/kgN of C-MHP addition, respectively. The results indicated that the C-MHP has a good technical and economic feasibility to substitute external carbon sources partially for nutrient removal.  相似文献   

17.
选用4组同规格SBR反应器,在A/O/A模式下以水解酸化液为进水,调整厌/缺氧时间分别为50min/170min、90min/130min、130min/90min、180min/40min,探讨颗粒污泥在不同厌/缺氧时间下脱氮除磷特性.结果表明,厌氧时间从50min延长至90min时,污泥内碳源储存量和释磷量增加,同步硝化反硝化(SND)效率提高至62.65%,TN、TP去除率分别从81.1%、82.2%上升92.9%、98.5%.当厌氧时间从90min升至180min时,释磷量反而下降,厌氧内源性条件刺激胞外聚合物(EPS)增加造成聚羟基烷酸(PHA)合成下降,TP去除率降至88.1%;同时缺氧时间从130min降至40min,系统残留的NOX-较多,造成TN去除率降低至84%.机理分析表明系统中TN在好氧段由反硝化聚磷菌(DPAOs)和反硝化聚糖菌(DGAOs)利用PHA以SND方式消耗,并在缺氧段由DGAOs内源反硝化进一步去除,TP由PAOs和DPAOs去除,由批次实验估算得DPAOs占比在R2中最高,达41%,4组反应器运行期间颗粒均未发生解体,以水解酸化液为基质培养的颗粒...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号