首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
It is well known that skin sea surface temperature (SSST) is different from bulk sea surface temperature (BSST) by a few tenths of a degree Celsius. However, the extent of the error associated with dry deposition (or uptake) estimation by using BSST is not well known. This study tries to conduct such an evaluation using the on-board observation data over the South China Sea in the summers of 2004 and 2006. It was found that when a warm layer occurred, the deposition velocities using BSST were underestimated within the range of 0.8–4.3%, and the absorbed sea surface heat flux was overestimated by 21 W m?2. In contrast, under cool skin only conditions, the deposition velocities using BSST were overestimated within the range of 0.5–2.0%, varying with pollutants and the absorbed sea surface heat flux was underestimated also by 21 W m?2. Scale analysis shows that for a slightly soluble gas (e.g., NO2, NO and CO), the error in the solubility estimation using BSST is the major source of the error in dry deposition estimation. For a highly soluble gas (e.g., SO2), the error in the estimation of turbulent heat fluxes and, consequently, aerodynamic resistance and gas-phase film resistance using BSST is the major source of the total error. In contrast, for a medium soluble gas (e.g., O3 and CO2) both the errors from the estimations of the solubility and aerodynamic resistance are important. In addition, deposition estimations using various assumptions are discussed. The largest uncertainty is from the parameterizations for chemical enhancement factors. Other important areas of uncertainty include: (1) various parameterizations for gas-transfer velocity; (2) neutral-atmosphere assumption; (3) using BSST as SST, and (4) constant pH value assumption.  相似文献   

2.
The common practice of remediating metal contaminated mine soils with compost can reduce metal mobility and promote revegetation, but the effect of introduced or colonising earthworms on metal solubility is largely unknown. We amended soils from an As/Cu (1150 mgAs kg−1 and 362 mgCu kg−1) and Pb/Zn mine (4550 mgPb kg−1 and 908 mgZn kg−1) with 0, 5, 10, 15 and 20% compost and then introduced Lumbricus terrestris. Porewater was sampled and soil extracted with water to determine trace element solubility, pH and soluble organic carbon. Compost reduced Cu, Pb and Zn, but increased As solubility. Earthworms decreased water soluble Cu and As but increased Pb and Zn in porewater. The effect of the earthworms decreased with increasing compost amendment. The impact of the compost and the earthworms on metal solubility is explained by their effect on pH and soluble organic carbon and the environmental chemistry of each element.  相似文献   

3.
The toxicity of commercially-available CuO and ZnO nanoparticles (NPs) to pathogenic bacteria was compared for a beneficial rhizosphere isolate, Pseudomonas chlororaphis O6. The NPs aggregated, released ions to different extents under the conditions used for bacterial exposure, and associated with bacterial cell surface. Bacterial surface charge was neutralized by NPs, dependent on pH. The CuO NPs were more toxic than the ZnO NPs. The negative surface charge on colloids of extracellular polymeric substances (EPS) was reduced by Cu ions but not by CuO NPs; the EPS protected cells from CuO NPs-toxicity. CuO NPs-toxicity was eliminated by a Cu ion chelator, suggesting that ion release was involved. Neither NPs released alkaline phosphatase from the cells’ periplasm, indicating minimal outer membrane damage. Accumulation of intracellular reactive oxygen species was correlated with CuO NPs lethality. Environmental deposition of NPs could create niches for ion release, with impacts on susceptible soil microbes.  相似文献   

4.
Ni L  Acharya K  Hao X  Li S 《Chemosphere》2012,88(9):1051-1057
The goals of this work were to isolate and identify an anti-algal compound from extracts of Artemisia annua and study its mode of action on Microcystis aeruginosa. The anti-algal compound was isolated from the extracts using column chromatography and activity-guided fractionation methods. Artemisinin with strong anti-algal activity was identified by gas chromatography-mass spectrometry and 1H Nuclear Magnetic Resonance. The EC50 of artemisinin on M. aeruginosa was 3.2 mg L−1. Artemisinin decreased the soluble protein content and increased the superoxide dismutase activity and ascorbic acid content of M. aeruginosa, but exerted no effect on soluble sugar content. The results suggested the mode of action of artemisinin on algae may primarily be the increasing level of reactive oxygen species in algae cells. The results of our research could aid in the development of new anti-algal substances and lead to further study of mechanisms of inhibitory effect on algae.  相似文献   

5.
Aerosol–cloud condensation nuclei (CCN) closure was studied in a semi-rural location 80 km north of Toronto, Canada at the Centre for Atmospheric Research Experiments outside of Egbert, Ontario during the fall of 2005. This site is subject to both polluted air from southern Ontario and clean air from the north. The purpose of the investigation was to evaluate the degree to which closure is attained at a supersaturation of 0.32% when size-resolved aerosol compositions from an Aerodyne Quadrupole Aerosol Mass Spectrometer are made alongside measurements of CCN number density and aerosol size distribution. Attention was given to assessing the sensitivity of closure to assumptions made concerning the water solubility and surface tension of the organic fraction of the aerosol in the Köhler analysis. By assuming that the organics are insoluble and that the growing droplet has the surface tension of water, a good overall degree of closure is attained throughout the analysis time period, with the predicted numbers of CCN within 15% of the modelled numbers, which is within our estimated systematic uncertainties. However, for the specific periods during which the organic content of the aerosol is high, the degree of closure is significantly lower. Sensitivity analyses indicate that some degree of organic water solubility and/or surface tension reduction is necessary to achieve the best agreement and least variance between the modelled and measured numbers of CCN. A general conclusion is that significant uncertainties arise in predicting CCN levels only when the level of soluble inorganic species is below approximately 25% by mass.  相似文献   

6.
Atmospheric dust deposition is a major external iron source for remote surface ocean waters. Organic complexation is known to play a role in the dissolution of iron-containing minerals. In this paper, we present our study on the effect of oxalate on dust iron solubility in simulated rainwater. Our results reveal that the solubility of iron carried by analogs of different African dusts varies with the dust source. Our experiments indicate a positive linear correlation between iron solubility and oxalate concentration. Soluble iron (SFe) increases from 0.0025(±0.0005)% to 0.26(±0.01)% of total iron, considering all dust sources and with oxalate concentrations ranging from 0 to 8 μM. These results show that the observed variability of iron solubility in aerosols collected over the Atlantic Ocean is, at least partly, due to an increase in dust iron solubility, with the presence of oxalate complexation, rather than to the presence of more soluble anthropogenic iron. Considering the mineralogical composition of those particles, experiments with pure minerals (hematite, goethite and illite) were performed to study the dissolution process. We found that oxalate promotes the solubility of iron contained in clay and hence confirmed that more than 95% of SFe from soil dust is provided by clay (illite). This experimental work enables us to establish a parameterization of iron solubility in dust as a function of oxalate concentration and based on the individual iron solubility of pure iron-bearing minerals usually present in dust particles. Finally, our results emphasize that oxalate contributes to iron solubility on the same order of magnitude as the acid processes. Organic complexation appears to be a process that increases iron solubility and likely enhances the bioavailability of iron from dust.  相似文献   

7.
The discovery that negatively charged aggregates of C60 fullerene (nC60) are stable in water has raised concerns regarding the potential environmental and health effects of these aggregates. In this work, we show that nC60 aggregates produced by extended mixing in the presence of environmentally relevant carboxylic acids (acetic acid, tartaric acid, citric acid) have surface charge and morphologic properties that differ from those produced by extended mixing in water alone. In general, aggregates formed in the presence of these acids have a more negative surface charge and are more homogeneous than those produced in water alone. Carboxylic acid identity, solution pH, and sodium ion concentration, which are all intricately coupled, play an important role in setting the measured surface charge. Comparisons between particle sizes determined by analysis of TEM images and those obtained by dynamic light scattering (DLS) indicate that DLS results require careful evaluation when used to describe nC60 aggregates.  相似文献   

8.

Purpose

This research is on the evaluation of biosorption capability of the core of Artocarpus odoratissimus (Tarap), grown in Brunei Darussalam, towards Cd(II) and Cu(II) ions present in synthetic solutions, and to characterize the surface of Tarap particles.

Methods

Thermogravimetric analysis and surface titrations were conducted to characterize the surface of dried Tarap core particles. Atomic absorption spectroscopic measurements were conducted to determine the extent of removal of Cd(II) and Cu(II) under different experimental conditions.

Results

Mass reductions associated with many exothermic reaction peaks were observed beyond 200°C up to 650°C indicating the combustion of organic matter in Tarap. Dried particles of core of Tarap bear a negative surface charge promoting strong interaction towards positively charged ions, such as Cu(II) and Cd(II). Biosorption of the two metal ions on Tarap, which is relatively high beyond pH?=?4, occurs within a short period of exposure time. The extent of biosorption is enhanced by acid treatment of the biosorbent, and further it does not significantly depend on the presence of nonreacting ions up to an ionic strength of 2.0?M.

Conclusion

Strong attraction between each metal ion and the biosorbent is attributed to the negative surface charge on the biosorbent within a broad pH range. Acid treatment of the biosorbent improves sorption characteristics, suggesting that ion exchange plays an important role in the metal ion??biosorbent interaction process.  相似文献   

9.
CuO nanoparticles (CuO-NP) were synthesized in a hydrogen diffusion flame. Particle size and morphology were characterized using scanning mobility particle sizing, Brunauer-Emmett-Teller analysis, dynamic light scattering, and transmission electron microscopy. The solubility of CuO-NP varied with both pH and presence of other ions. CuO-NP and comparable doses of soluble Cu were applied to duckweeds, Landoltia punctata. Growth was inhibited 50% by either 0.6 mg L−1 soluble copper or by 1.0 mg L−1 CuO-NP that released only 0.16 mg L−1 soluble Cu into growth medium. A significant decrease of chlorophyll was observed in plants stressed by 1.0 mg L−1 CuO-NP, but not in the comparable 0.2 mg L−1 soluble Cu treatment. The Cu content of fronds exposed to CuO-NP is four times higher than in fronds exposed to an equivalent dose of soluble copper, and this is enough to explain the inhibitory effects on growth and chlorophyll content.  相似文献   

10.
The in vivo localization and speciation of lead (Pb) in tissues of the accumulator Sedum alfredii grown in EDTA-Pb and Pb(NO3)2 was studied by synchrotron X-ray investigation. The presence of EDTA-Pb in solution resulted in a significant reduction of Pb accumulation in S. alfredii. Lead was preferentially localized in the vascular bundles regardless of treatments but the intensities of Pb were lower in the plants treated with EDTA. Lead was predominantly presented as a Pb-cell wall complex in the plants regardless of its supply form. However, a relatively high proportion of Pb was observed as Pb-EDTA complex when the plant was treated with EDTA-Pb, but as a mixture of Pb3(PO4)2, Pb-malic, and Pb-GSH when cultured with ionic Pb. These results suggest that EDTA does not increase the internal mobility of Pb, although the soluble Pb-EDTA complex could be transported and accumulated within the plants of S. alfredii.  相似文献   

11.
This study hypothesized that the positive or negative effects of exogenous abscisic acid (ABA) on oxidative stress caused by lead were dose dependent. The effects of different levels of ABA (2.5, 5, and 10 mg L?1) on lead toxicity in the leaves of Atractylodes macrocephala were studied by investigating plant growth, soluble sugars, proteins, lipid peroxidation, and antioxidative enzymes. Excess Pb inhibited root dry weight, root length, and the number of lateral roots, but increased shoot growth. In addition, lead stress significantly decreased the levels of chlorophyll pigments, protein, and activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD). Different levels of ABA significantly increased SOD, CAT, POD, and APX activities, but decreased the level of hydrogen peroxide and malondialdehyde in nonstressed plants. Exogenous application of 2.5 mg L?1 ABA detoxified the stress-generated damages caused by Pb and also enhanced plant growth, soluble sugars, proteins, and all four antioxidant enzyme activities but reduced Pb uptake of lead-stressed plant compared to lead treatment alone. However, the toxic effects of Pb were further increased by the applications of 5 and 10 mg L?1 ABA. The levels of antioxidants caused by a low concentration of exogenous ABA might be responsible for minimizing the Pb-induced toxicity in A. macrocephala.  相似文献   

12.
Water solubility of polycyclic aromatic hydrocarbons (PAHs), viz, naphthalene and phenanthrene, in micellar solutions at 25 °C was investigated, using two series of different binary mixtures of anionic and nonionic surfactants. Tween 80 and Brij-35 were used as nonionic surfactants whereas fatty acids or amphiphilic cyclodextrins (Mod-β-CD) synthesized in our laboratory were used as anionic ones. Solubilization capacity has been quantified in terms of the molar solubilization ratio and the micelle-water partition coefficient, using UV-visible spectrophotometry. Anionic surfactants exhibited less solubilization capacity than nonionics. The mixtures between Tween 80 and Mod-β-CD did not show synergism to increase the solubilization of PAHs. On the other hand, the mixtures formed by Tween 80 and fatty acids at all mole fractions studied produced higher enhancements of the solubility of naphthalene than the individual surfactants. The critical micellar concentration of the mixtures of Tween 80/sodium laurate was determined by surface tension measurements and spectrofluorimetry using pyrene as probe. The system is characterized by a negative interaction parameter (β) indicating attractive interactions between both surfactants in the range of the compositions studied.  相似文献   

13.
Lead (II) has been as one of the most toxic heavy metals because it is associated with many health hazards. Therefore, people are increasingly interested in discovering new methods for effectively and economically scavenging lead (II) from the aquatic system. Recent studies demonstrate biosorption is a promising technology for the treatment of pollutant streams. To apply these techniques, suitable adsorbents with high efficiency and low cost are demanded. The waste biomass of Bacillus gibsonii S-2 biosorbent was used as low-cost biosorbent to remove metallic cations lead (II) from aqueous solution. To optimize the maximum removal efficiency, the effect of pH and temperature on the adsorption process was studied. The isotherm models, kinetic models and thermodynamic parameters were analysed to describe the adsorptive behaviour of B. gibsonii S-2 biosorbent. The mechanisms of lead (II) biosorption were also analysed by FTIR and EDX. The results showed that the optimum pH values for the biosorption at three different temperatures, i.e. 20, 30 and 40 °C, were determined as 4. The equilibrium data were well fitted to Langmuir model, with the maximum lead (II) uptake capacities of 333.3 mg?g?1. The kinetics for lead (II) biosorption followed the pseudo-second-order kinetic equation. The thermodynamic data showed that the biosorption process were endothermic (?G?<?0), spontaneous (?H?>?0) and irreversible (?S?>?0). The mechanism of lead (II) biosorption by the waste biomass of B. gibsonii S-2 biosorbent could be a combination of ion exchange and complexation with the functional groups present on the biosorbent surface. The application of the waste biomass of B. gibsonii S-2 for lead (II) adsorption, characterized with higher lead (II) sorption capacity and lower cost, may find potential application in industrial wastewater treatment.  相似文献   

14.
This study aims to investigate the effects of UV-C irradiation on photosynthetic processes of Microcystis aeruginosa to unravel the mechanism(s) involved in how and in what ways UV-C mediates growth suppression and cellular recovery. Changes in the concentration of photosynthetic pigments, photochemical efficiency, PS II core protein (D1) content, and the coding genes expressions were measured. The results indicate that UV-C doses at 20–200 mJ cm−2 lead to rapid reduction in gene expression of both psbA (for D1) and cpc (for phycocyanin), but the suppression was short term and recoverable within 3 d of post-UV incubation. Conversely, UV-C doses at ?50 mJ cm−2 could induce marked decline in photochemical efficiency (represented by the optimal PS II quantum yield, FV/FM, and the effective PS II quantum yield, Y) as well as decreases in D1 content and water soluble pigments (phycoerythrins, phycocyanins, allophycocyanins) in M. aeruginosa during the post UV-C incubation period. The results suggest that interruption of both the light energy harvesting apparatus (especially the water soluble pigments) and the photochemical process mainly accounted for the growth suppression effect in UV-C irradiated M. aeruginosa.  相似文献   

15.
Dinetofuran (DNT), imidacloprid (IMD) and thiamethoxam (THM) are among the neonicotinoid insecticides widely used for managing insect pests of agricultural and veterinary importance. Environmental occurrence of neonicotinoid in post-application scenario poses unknown issues to human health and ecology. A sorption kinetic study provides much needed information on physico-chemical interaction of neonicotinoid with soil material. In this research study, time-dependent sorption behavior of DNT, IMD and THM in vineyard soil was studied. Sorption kinetics studies were conducted over a period of 96 hours with sampling duration varying from 0, 2, 4, 8, 12, 24, 60 and 96 hours. All three neonicotinoids exhibited very low sorption potential for the soil investigated. Overall percent sorption for all three neonicotinoids was below 20.04 ± 2.03% with highest percent sorption being observed for IMD followed by DNT and THM. All three neonicotinoids are highly soluble with solubility increasing with IMD < THM < DNT. Although, DNT has the highest solubility among all three neonicotinoids investigated, it exhibited higher percent sorption compared to THM, indicating factors other than solubility influenced the sorption kinetics. Low sorption potential of neonicotinoids indicates greater leaching potential with regard to groundwater and surface water contamination.  相似文献   

16.
Under fair weather conditions, a weak electric field exists between negative charge induced on the surface of plants and positive charge in the air. This field is magnified around points (e.g. stigmas) and can reach values up to 3×106 V m−1. If wind-dispersed pollen grains are electrically charged, the electrostatic force (which is the product of the pollen's charge and the electric field at the pollen's location) could influence pollen capture. In this article, we report measurements of the electrostatic charge carried by wind-dispersed pollen grains. Pollen charge was measured using an adaptation of the Millikan oil-drop experiment for seven anemophilous plants: Acer rubrum, Cedrus atlantica, Cedrus deodara, Juniperus virginiana, Pinus taeda, Plantago lanceolata and Ulmus alata. All species had charged pollen, some were positive others negative. The distributions (number of pollen grains as a function of charge) were bipolar and roughly centered about zero although some distributions were skewed towards positive charges. Most pollen carried small amounts of charge, 0.8 fC in magnitude, on average. A few carried charges up to 40 fC. For Juniperus, pollen charges were also measured in nature and these results concurred with those found in the laboratory. For nearly all charged pollen grains, the likelihood that electrostatics influence pollen capture is evident.  相似文献   

17.
The effectiveness of phosphate treatment for Cd, Cu, Pb, and Zn immobilization in mine waste soils was examined using batch conditions. Application of synthetic hydroxyapatite (HA) and natural phosphate rock (FAP) effectively reduced the heavy metal water solubility generally by about 84-99%. The results showed that HA was slightly superior to FAP for immobilizing heavy metals. The possible mechanisms for heavy metal immobilization in the soil involve both surface complexation of the metal ions on the phosphate grains and partial dissolution of the phosphate amendments and precipitation of heavy metal-containing phosphates. HA and FAP could significantly reduce Cd, Cu, Pb, and Zn availability in terms of water solubility in contaminated soils while minimizing soil acidification and potential risk of eutrophication associated with the application of highly soluble phosphate sources.  相似文献   

18.
Transport of soluble toxic substances through porous media lead to some significant geoenvironmental problems, for example, leachate migration from municipal and industrial solid waste resulting from unregulated disposal. Advection, dispersion, diffusion, and decay are reported to be the principal mechanisms in such phenomena. Geotechnical properties of the soil also play a significant role in this deterioration. In the present study, laboratory tests were conducted to formulate an appropriate method for assessment of migration of metal ions, such as nickel, through the soil. Relevant kinetic and process parameters, such as aquifer data, surface area, dielectric constant, pH of zero point charge (pHzpc), and permeability were also studied. One-dimensional mathematical modeling was used to describe the dynamics of the process. The present investigation was carried out at an ash pond site of a thermal power plant situated in West Bengal, India.  相似文献   

19.
Atmospheric depositions were collected monthly using a modified wet and dry sampler (dry deposition was collected on a water surface) located in Bologna, a northern Italian urban area, to evaluate the impact of airborne heavy metals on the local pollution load. Wet deposition samples were filtered and heavy metal contents in soluble and insoluble fractions were determined. The same procedure was applied to the water samples which collected dry deposition. The entire procedure was tested using a certified reference material (CRM), which provided satisfying recovery results. The percentage of heavy metal soluble fraction in dry deposition was generally lower than in wet one; Cd, V, Cu and Zn showed a higher average solubility than Cr, Ni and Pb both in wet and dry deposition. Factor analysis, after a varimax rotation of principal components, suggested possible anthropogenic sources which explain different metal deposition patterns. This data analysis also allowed to distinguish different clusters formed by monthly fluxes of heavy metals.  相似文献   

20.
Brix R  Hvidt S  Carlsen L 《Chemosphere》2001,44(4):759-763
The water solubility of nonylphenol (NP) has been estimated to be 4.9 +/- 0.4 mg/l corresponding to (2.22 +/- 0.18) x 10(-5) mol/l at 25 degrees C using shake flask and surface tension techniques. The low solubility in combination with an observed rather slow dissolution process will limit the leachability of NP in the terrestrial environment. Based on indirect evidence, it is suggested that NP, in contrast to nonylphenol ethoxylate (NPEO) with, e.g., 12 ethoxylate moieties, is not subject to micelle formation, and as such does not constitute a potential vehicle for the transport of hydrophobic pollutants in the environment. For NPEOs with a very high number of ethoxy moieties, e.g., 100, the compounds appear water soluble without micelle formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号