首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
The toxicity of 78 chemicals and pesticide formulations against the bleak, Alburnus alburnus (Pisces) and the harpacticoid Nitocra spinipes has been tested. The results are expressed as the 96 hr LC(I) 50 i.e. the initial concentration of a substance killing 50 per cent of the test organisms during 96 hours. Among the compounds tested are inorganic and organic compounds (metal salts, solvents and a few more complex compounds such as organotin compounds), pesticide formulations and other industrial chemicals (PCB-substitutes, phthalic acid esters and polychlorinated paraffins).  相似文献   

3.
Most polychlorinated naphthalones (PCN) accumulate rapidly according to their hydrophobicity. The uptake and ellmination rate constants are comparable to those of chlorinated benzenes and biphenyls.For most PCN-congeners the resulting bioaccumulation factors show an increase with increasing hydrophobicity. For higher Kd,oct-values (>105) however, no further increase of Kc is observed (Kc. max. = 3.5.104).For the two hepta- and the octachloronaphthalenes no detectable concentrations are found in the fishes, although no restricted blo-availability could be expected. Based on these observations and on data obtained from the literature. a loss of membrane permeation is suggested for hydrophobic molecules with widths over 9.5 Å.In addition a membrane permeation model, as part of the accumulation process of hydrophobic chemicals. Is proposed, which is based on diffusion and partition processes.  相似文献   

4.
A reverse-phase high pressure liquid chromatography/mass spectrometry (HPLC/MS method was developed for estimating n-octanol/water partition coefficients (Kow) of anthropogenic molecules in complex chemical mixtures (e.g., complex effluents and solid waste leachates). The average error for an estimated log Kow was ca. 0.5 and this error was similar for both aliphatic and aromatic compounds. The minimum level of detection using the total ion current profile generally decreased with increasing molecular weight between 100 and 600 daltons. Results obtained demonstrate that the HPLC/MS method is a viable technique for estimating log Kow's of anthropogenic chemicals in complex environmental samples.  相似文献   

5.
We investigated the respiratory uptake kinetics of polychlorinated biphenyls (PCBs), organohalogen pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), and 2,2′,4,4′-tetrabrominated diphenyl ether (BDE #47) in a marine benthic fish, Pseudopleuronectes yokohamae. The respiratory uptake efficiencies (EW) of the chemicals, of which there have been no reports for the majority of persistent organic pollutants (POPs), were obtained by measuring the respiratory uptake rate constants (k1) and the oxygen consumption rates of fish. Fish were exposed to water in which these chemicals were dissolved at environmentally relevant concentrations for 28 d, followed by 168 d of depuration in clean seawater. The k1 and EW values for 99 compounds were obtained, and they ranged from 2000 to 42 000 L kg-lipid−1 d−1 and from 0.060 to 1.3, respectively. The EW values of the chemicals, except for PAHs, tended to increase with increasing values of the log octanol–water partition coefficients (KOW) of the chemicals up to a log KOW of 5. For log KOW in the range 3–5, the EW values in this study were much lower than those in a published study (about one-third). As a result of analysis by a two-phase resistance model, the resistance of transport rates to the lipid phase in this study was lower than was the case in the published study. These findings indicate that the EW predicted by the published study for log KOW in the range 3–5 may differ among fish species and water temperature, and further study is needed.  相似文献   

6.
《Chemosphere》1987,16(4):791-802
The in vitro induction of the cytochrome P1-450-dependent monooxygenases, aryl hydrocarbon hydroxylase (AHH) or ethoxyresorufin O-deethylase (EROD) by 2,3,7,8-TCDD and related toxic halogenated aryl hydrocarbons in rat hepatoma H-4-II E cells has been developed as a short term quantitative bioassay for these toxic chemicals. There was a linear correlation between the -log EC50 (in vitro) AHH induction vs the -log ED50 (in vivo) for body weight loss, thymic atrophy, hepatic AHH and EROD induction in the rat for several polychlorinated biphenyl, dibenzo-p-dioxin and dibenzofuran congeners and mixtures. These data clearly support the utility of the in vitro AHH induction assay as a short term test system for quantitating the “toxic or 2,3,7,8-TCDD equivalents” in an extract containing toxic halogenated aromatics. The bioassay method is rapid, relatively accurate and much more cost effective than conventional analytical methods such as gas-chromatography-mass spectrometry from which it is difficult to determine the levels of 2,3,7,8-TCDD equivalents in specific analytes.  相似文献   

7.
The gas/particle partitioning of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) was measured at three sites for a year in order to monitor the variation of PCDD/Fs levels and describe their partitioning. The air concentrations of PCDD/Fs ranged from 71 to 1161 fg I-TEQ/m3 and large changes in these levels did not correlate with seasonal changes during this study. Different homolog patterns were observed in the gas/particle phase. High chlorinated dioxin/furans dominated the particle phase while low chlorinated dioxin/furans dominated the gas phase. The high correlation coefficient between log [(PCDD/Fsvap)(TSP)/(PCDD/Fspat)] and 1/T was observed in lower chlorinated dioxin/furans unlike in OCDD/F. The slope of homolog ranged from −0.410 to −1.025 and that of 2,3,7,8-substituted isomers ranged from −0.379 to −0.772 in plots of the log partition coefficient (Kp) versus the log subcooled vapor pressure (PL°).The octanol/air partition coefficient (Koa)-based model of PCDD/Fs is more compatible with experimental data than those of the Junge–Pankow model that tends to overestimate results, even though both models include some level of uncertainty. However, both models can underestimate the particle phase of PCDD/Fs, especially when the ambient air temperature is extremely low in winter.  相似文献   

8.
Beta blockers are widely used pharmaceuticals that have been detected in the environment. Interactions between beta blockers and dissolved organic matter (DOM) may mutually alter their environmental behaviors. To assess this potential, propranolol (PRO) was used as a model beta blocker to quantify the complexation with DOM from different sources using the fluorescence quenching titration method. The sources of studied DOM samples were identified by excitation–emission matrix spectroscopy (EEMs) combined with fluorescence regional integration analysis. The results show that PRO intrinsic fluorescence was statically quenched by DOM addition. The resulting binding constants (log K oc) ranged from 3.90 to 5.20, with the surface-water-filtered DOM samples claiming the lower log K oc and HA having the highest log K oc. Log K oc is negatively correlated with the fluorescence index, biological index, and the percent fluorescence response (P i,n) of protein-like region (P I,n) and the P i,n of microbial byproduct-like region (P II,n) of DOM EEMs, while it is correlated positively with humification index and the P i,n of UVC humic-like region (P III,n). These results indicate that DOM samples from allochthonous materials rich in aromatic and humic-like components would strongly bind PRO in aquatic systems, and autochthonous DOM containing high protein-like components would bind PRO more weakly.  相似文献   

9.
The discrimination of excess toxicity from narcotic effect plays a crucial role in the study of modes of toxic action for organic compounds. In this paper, the toxicity data of 758 chemicals to Daphnia magna and 993 chemicals to Tetrahymena pyriformis were used to investigate the excess toxicity. The result showed that mode of toxic action of chemicals is species dependent. The toxic ratio (TR) calculated from baseline model over the experimentally determined values showed that some classes (e.g. alkanes, alcohols, ethers, aldehydes, esters and benzenes) shared same modes of toxic action to both D. magna and T. pyriformis. However, some classes may share different modes of toxic action to T. pyriformis and D. magna (e.g. anilines and their derivatives). For the interspecies comparison, same reference threshold need to be used between species toxicity. The excess toxicity indicates that toxicity enhancement is driven by reactive or specific toxicity. However, not all the reactive compounds exhibit excess toxicity. In theory, the TR threshold should not be related with the experimental uncertainty. The experimental uncertainty only brings the difficulty for discriminating the toxic category of chemicals. The real threshold of excess toxicity which is used to identify baseline from reactive chemicals should be based on the critical concentration difference inside body, rather than critical concentration outside body (i.e. EC50 or IGC50). The experimental bioconcentration factors can be greatly different from predicted bioconcentration factors, resulting in different toxic ratios and leading to mis-classification of toxic category and outliers.  相似文献   

10.
Emerging contaminants in wastewater and sewage sludge spread on agricultural soil can be transferred to the human food web directly by uptake into food crops or indirectly following uptake into forage crops. This study determined uptake and translocation of the organophosphates tris(1-chloro-2-propyl) phosphate (TCPP) (log K ow 2.59), triethyl-chloro-phosphate (TCEP) (log K ow 1.44), tributyl phosphate (TBP) (log K ow 4.0), the insect repellent N,N-diethyl toluamide (DEET) (log K ow 2.18) and the plasticiser N-butyl benzenesulfonamide (NBBS) (log K ow 2.31) in barley, wheat, oilseed rape, meadow fescue and four cultivars of carrot. All species were grown in pots of agricultural soil, freshly amended contaminants in the range of 0.6–1.0 mg/kg dry weight, in the greenhouse. The bioconcentration factors for root (RCF), leaf (LCF) and seed (SCF) were calculated as plant concentration in root, leaf or seed over measured initial soil concentration, both in dry weight. The chlorinated flame retardants (TCEP and TCPP) displayed the highest bioconcentration factors for leaf and seed but did not show the same pattern for all crop species tested. For TCEP, which has been phased out due to toxicity but is still found in sewage sludge and wastewater, LCF was 3.9 in meadow fescue and 42.3 in carrot. For TCPP, which has replaced TCEP in many products and also occurs in higher residual levels in sewage sludge and wastewater, LCF was high for meadow fescue and carrot (25.9 and 17.5, respectively). For the four cultivars of carrot tested, the RCF range for TCPP and TCEP was 10–20 and 1.7–4.6, respectively. TCPP was detected in all three types of seeds tested (SCF, 0.015–0.110). Despite that DEET and NBBS have log K ow in same range as TCPP and TCEP, generally lower bioconcentration factors were measured. Based on the high translocation of TCPP and TCEP to leaves, especially TCPP, into meadow fescue (a forage crop for livestock animals), ongoing risk assessments should be conducted to investigate the potential effects of these compounds in the food web.  相似文献   

11.
The gas-particle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) was examined (i) by re-interpreting results from controlled field experiments and (ii) in diurnal samples taken in the New Jersey (NJ), New York (NY) City region. In the controlled field experiments, aerosol-laden filters were exposed to elevated concentrations of PCDD/Fs. Gas-particle partitioning coefficients, Kp's, were significantly correlated with octanol–air partitioning coefficients, Koa's. The regression of all individual datapoints resulted in the following best fit (r2=0.74, n=87): log Kp,meas=1.00(±0.13) log(10−12fomKoa/ρoct)−0.15(±0.48). We interpret this as showing that the ability of organic matter (OM) to absorb PCDD/Fs is generally well described by the octanol–air partitioning model (fomKoa). At the NJ land-based sites, samples were taken and analyzed for organic carbon (OC) and elemental carbon (EC), gaseous and particulate PCDD/Fs. Kp's were significantly correlated with the fomKoa approach. Adsorption to the filter and possibly to black carbon (BC), which was estimated based on EC measurements, could have contributed to the observed Kp values. Gas-particle predictions based on BC adsorption and OM absorption, with Kp=fomKoa/(1012ρoct)+fBCKBC–air/(1012ρBC) resulted in Kp predictions that were close to measured values. Adsorption to the filter might have been the major reason for elevated Kp's: The one NJ site with highest Kp's was most prone to the filter adsorption sampling artefact because of relatively low sampling volumes and concentrations of total suspended particulates. In addition, while adsorption to BC would result in better prediction of Kp values, no influence of fBC or fBC/fom ratios was seen, suggesting that it was of lesser importance in our sample set.  相似文献   

12.
According to present understanding, persistent superlipophilic chemicals — such as octachlorodibenzo-p-dioxin, octachlorodibenzofuran, Mirex etc — with log Kow > 6 and cross sections > 9.5 Å, bioconcentrate in aquatic organisms only little from ambient water. The most convincing argument against it is that in bioconcentration experiments with superlipophilic chemicals amounts applied exceeded water solubility by several orders of magnitude. This paper describes various methods for determining bioconcentration factors (BCF) of superlipophilic compounds. As exemplified with octachlorodibenzo-p-dioxin, BCF values evaluated by these methods match well with those calculated by QSARs for fish and mussels based on log Kow and water solubility. As expected, these BCF values exceed previous values by several orders of magnitude. For BCF evaluation of superlipophilic chemicals in aquatic organisms we recommend:
  1. flow-through systems, kinetic method (OECD guideline No. 305 E)
  2. ambient concentrations < water solubility
  3. during the uptake and especially during the elimination phase no toxic effects of the test organisms should occur.
  相似文献   

13.
《Chemosphere》2009,74(11):1832-1837
Sorption of nonpolar (phenanthrene and butylate) and polar (atrazine and diuron) organic chemicals to oil-contaminated soil was examined to investigate oil effects on sorption of organic chemicals and to derive oil–water distribution coefficients (Koil). The resulting oil-contaminated soil–water distribution coefficients (Kd) for phenanthrene demonstrated sorption-enhancing effects at both lower and higher oil concentrations (Coil) but sorption-reducing (competitive) effects at intermediate Coil (approximately 1 g kg−1). Rationalization of the different dominant effects was attempted in terms of the relative aliphatic carbon content which determines the accessibility of the aromatic cores to phenanthrene. Little or no competitive effect occurred for butylate because its sorption was dominated by partitioning. For atrazine and diuron, the changes in Kd at Coil above approximately 1 g kg−1 were negligible, indicating that the presently investigated oil has little or no effect on the two tested compounds even though the polarity of the oil is much less than soil organic matter (SOM). Therefore, specific interactions with the active groups (aromatic and polar domains) are dominantly responsible for the sorption of polar sorbates, and thus their sorption is controlled by available sorption sites. This study showed that the oil has the potential to be a dominant sorptive phase for nonpolar pollutants when compared to SOM, but hardly so for polar compounds. The results may aid in a better understanding of the role of the aliphatic and aromatic domains in sorption of nonpolar and polar organic pollutants.  相似文献   

14.
The metal ion binding characteristics of particulate matter obtained from column experiments on the anaerobic digestion of solid waste were studied using a titrimetric approach. The experimental set-up allowed us to study the dynamics of particle bound ligand concentrations during digestion processes typically found in landfills.We developed a continuous titration method by simultaneously using a Cd-sensitive and pH electrode and combining metal and acid/base titrations. This technique allows for a more precise determination of pKa-log KM pairs for each ligand than metal titrations alone. The results were compared with titration methods using differential pulse anodic stripping voltammetry (DPASV) and atomic absorption spectroscopy (AAS) with longer equilibration times in order to further characterize ligand properties such as reaction kinetics, the electrochemical lability of the respective complex during DPASV, the distinction between metal adsorption to particulate matter and metal complexation by soluble ligands adhered to particles, reversibility of the binding process by competition studies, and resistance against purging with nitrogen gas.The properties of seven major metal binding ligands were identified and assignments to the most likely functional groups were made. The most important ligand properties are for ligand A: pKa ≈ 9.2, log Kcd ≈ 7.0 fast reaction kinetics (mercapto groups); ligand B: pKa = 4.8, log KCd ≈ 6.0, slow reaction kinetics (chelates with 3 or 4 carboxylic groups); ligand C: pKa ≈ 6.0, log KCd ≈ 13.0, irreversible metal binding at basic pH-values (uptake inside bacterial cells); ligand D: pKa = 7.7, log KCd = 4.0, runs parallel to N content of particulate matter with digestion time (primary amines neighboring oxo groups); ligand E: pKa ≈ 12.0, log KCd = 9.0, runs parallel to P content of particulate matter (phosphate); ligand F:pKa > 9.0, log KCdf = pKa + 0.4, runs parallel to N content of particulate matter (primary amines neighboring SH groups); and ligand G: pKa ≤ 4.8, log KPb ≈ 4.3, strong Pb2+ ligand, even at low pH-values.Metal ions were found to be irreversibly bound by ligand C at low heavy-metal concentratins, whereas at higher concentrations the binding is reversible and can be predicted using the mass of the digestion process (methanogenic phase). All other ligands have their concentration maximum in the transition phase between acetogenic and methanogenic phase.  相似文献   

15.
High mountains may serve both as condenser for vapor phase persistent organic pollutants (POPs) and as barrier/sink for particulate associated less volatile POPs. The fractionation of POPs along altitudinal profiles is of interest in understanding the role of high mountains in the atmospheric transport of POPs. In the present study, polycyclic aromatic hydrocarbons (PAHs) in a selected moss species, Hypnum plumaeformae WILS, from two altitudinal profiles on the northern slope of Nanling mountains in Southern China were analyzed and compared with those in air samples. The total PAH concentration in the mosses was 310–1340 ng g−1 dry weight, with phenanthrene being the most abundant. The distribution patterns of PAHs in the moss samples matched well with those in bulk atmosphere deposition in the adjacent source areas. The PAH distribution pattern in the mosses was a composite of both particle-associated and vapor phase PAHs, with heavy PAHs are susceptible to uptake/retention by mosses than light PAHs. A plot of log (Cmoss/Cair) against log Koa gave a good linear relationship in the log Kao range of 6.7–10.2. It is suggested that the widely spread moss, H. plumaeformae WILS, can be used as an effective tool in the biomonitoring of atmospheric PAHs pollution in East Asia. The concentrations of most PAHs in the mosses generally declined with increasing altitude. In addition, there was a shift in compound pattern with an increase in the proportion of light PAHs (2–3 rings), a decrease in heavy PAHs (5–6 rings) and a relatively stable content of 4-ring PAHs. A combination of particulate scavenging and cold condensation are proposed as the major mechanisms for the compositional fractionation of PAHs along the altitudinal profile.  相似文献   

16.
The activities of several individual polychlorinated biphenyls (PCBs) and dibenzofurans (PCDFs) and several environmentally significant reconstituted mixtures of these compounds as inducers of aryl hydrocarbon hydroxylase (AHH) and ethoxyresorufin O-deethylase (EROD) in rat hepatoma H-4-II E cells were determined. The observed AHH and EROD induction EC50S for the mixtures were compared with the calculated values, which were based on the summation of the relative per cent contributions of the individual components of the reconstituted PCB and PCDF mixtures. The results show that the differences between the observed and calculated EC50s for these mixtures were minimal or not significant and the data supports the use of the rat hepatoma H-4-II E cell system as a bioassay for toxic halogenated aryl hydrocarbons.  相似文献   

17.
Air–water exchange is an important process controlling the fate of many organic chemicals in the environment. Modeling this process is hampered by the lack of direct observations. Thus, the purpose of this work was to derive direct measurements of the mass transfer coefficients for air–water exchange (vaw) of polychlorinated biphenyls (PCBs) that may be used to check the validity of values derived from tracer gas experiments. vaw values for PCBs were determined using previously published turbulent fluxes divided by the corresponding dissolved phase concentrations. The median vaw values for each homolog decreased with increasing molecular weight and ranged from 0.29 for hexachlorobiphenyls to 2.2 m d?1 for monochlorobiphenyls with a propagated uncertainty of about 70%, lower than in previous studies. Due to relatively low wind speeds and possible sorption of PCBs to colloids, these numbers may be biased low. These field measurements of vaw differ by as much as a factor of 23 from predictions based on the widely-used Whitman two-film model. Therefore a new formulation for the calculation of vaw based on field measurements is needed. This study demonstrates that micrometeorological approaches are a viable option for the measurement of vaw for hydrophobic organics such as PCBs and should be used to generate enough field data on the air–water exchange of hydrophobic organics to allow the development of new predictive models.  相似文献   

18.
19.
EPA's TEAM Study of personal exposure to volatile organic compounds (VOC) in air and drinking water of 650 residents of seven U.S. cities resulted in the identification of a number of possible sources encountered in peoples' normal daily activities and in their homes. A follow-up EPA study of publicaccess buildings implicated other potential sources of exposure. To learn more about these potential sources, 15 building materials and common consumer products were analyzed using a headspace technique to detect organic emissions and to compare relative amounts. About 10–100 organic compounds were detected offgassing from each material. Four mixtures of materials were then chosen for detailed study: paint on sheetrock; carpet and carpet glue; wallpaper and adhesives; cleansers and a spray pesticide. The materials were applied as normally used, allowed to age 1 week (except for the cleansers and pesticides, which were used normally during the monitoring period), and placed in an environmentally controlled chamber. Organic vapors were collected on Tenax-GC over a 4-h period and analyzed by GC-MS techniques. Emission rates and chamber concentrations were calculated for 17 target chemicals chosen for their toxic, carcinogenic or mutagenic properties. Thirteen of the 17 chemicals were emitted by one or more of the materials. Elevated concentrations of chloroform, carbon tetrachloride, 1,1,1-trichloroethane, n-decane, n-undecane, p-dichlorobenzene, 1,2-dichloroethane and styrene were produced by the four mixtures of materials tested. For some chemicals, these amounts were sufficient to account for a significant fraction of the elevated concentrations observed in previous indoor air studies. We conclude that common materials found in nearly every home and place of business may cause elevated exposures to toxic chemicals.  相似文献   

20.
The formation of secondary organic aerosol from the gas-phase reaction of catechol (1,2-dihydroxybenzene) with ozone has been studied in two smog chambers. Aerosol production was monitored using a scanning mobility particle sizer and loss of the precursor was determined by gas chromatography and infrared spectroscopy, whilst ozone concentrations were measured using a UV photometric analyzer. The overall organic aerosol yield (Y) was determined as the ratio of the suspended aerosol mass corrected for wall losses (Mo) to the total reacted catechol concentrations, assuming a particle density of 1.4 g cm?3. Analysis of the data clearly shows that Y is a strong function of Mo and that secondary organic aerosol formation can be expressed by a one-product gas–particle partitioning absorption model. The aerosol formation is affected by the initial catechol concentration, which leads to aerosol yields ranging from 17% to 86%. The results of this work are compared to similar studies reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号