首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of a research program aimed at improving the efficiency of fertilizer N in flooded rice, an assessment is being made of the losses of NH3 by volatilization. A model was developed to analyze the influence of floodwater chemistry and meteorological conditions. The complicated process of ammonia transfer across the gas-liquid interface was described using this model in conjunction with current theories of chemical reaction kinetics, evaporation from natural waters and atmospheric boundary layers. The model was shown to approximate with fair accuracy a data set obtained in a laboratory wind-water tunnel, simulating rice paddy conditions.Results of the analysis show the rate of ammonia volatilization to increase with increasing ammoniacal-N concentrations and pH of the floodwater as well as wind velocity and temperature, while it decreased with increasing fetch. The effects of wind, temperature and pH on the rate of ammonia volatilization are of the same order of magnitude. Some practical implications of the results are discussed.  相似文献   

2.
3.
《Chemosphere》2007,66(11):2216-2222
Five strains of basidiomycetes (Lentinula edodes, Coprinus phlyctidosporus, Hebeloma vinosophyllum, Pleurotus ostreatus and Agaricus bisporus), one strain of ascomycete (Hormoconis resinae) and six strains of imperfect fungi (Penicillium chrysogenum, Penicillium roquefortii, Cladosporium cladosporioides, Alternaria alternata, Aspergillus niger and Aspergillus oryzae) were cultured in a liquid medium containing a radioactive iodine tracer (125I), and were tested for their abilities to volatilize or accumulate iodine. Of the fungal strains tested, 11 strains volatilized a considerable amount of iodine, with L. edodes showing the highest volatilization rate of 3.4%. The volatile organic iodine species emitted from imperfect fungi cultures was identified as methyl iodide (CH3I). In contrast, six fungal strains in 12 strains accumulated a considerable amount of iodine from the medium with concentration factors of more than 1.0. Among these, Alt. alternata and Cl. cladosporioides accumulated more than 40% of the iodine in their hyphae, and showed high concentration factors of 22 and 18, respectively. These results suggest that filamentous fungi have a potential to influence the mobility and speciation of iodine by volatilization and accumulation. Considering their great biomass in soils, filamentous fungi may contribute to the global circulation of stable iodine and also the long-lived radioiodine, 129I (half-life: 1.6 × 107 years), released from nuclear facilities into the environment.  相似文献   

4.
Ban-nai T  Muramatsu Y  Amachi S 《Chemosphere》2006,65(11):2216-2222
Five strains of basidiomycetes (Lentinula edodes, Coprinus phlyctidosporus, Hebeloma vinosophyllum, Pleurotus ostreatus and Agaricus bisporus), one strain of ascomycete (Hormoconis resinae) and six strains of imperfect fungi (Penicillium chrysogenum, Penicillium roquefortii, Cladosporium cladosporioides, Alternaria alternata, Aspergillus niger and Aspergillus oryzae) were cultured in a liquid medium containing a radioactive iodine tracer (125I), and were tested for their abilities to volatilize or accumulate iodine. Of the fungal strains tested, 11 strains volatilized a considerable amount of iodine, with L. edodes showing the highest volatilization rate of 3.4%. The volatile organic iodine species emitted from imperfect fungi cultures was identified as methyl iodide (CH3I). In contrast, six fungal strains in 12 strains accumulated a considerable amount of iodine from the medium with concentration factors of more than 1.0. Among these, Alt. alternata and Cl. cladosporioides accumulated more than 40% of the iodine in their hyphae, and showed high concentration factors of 22 and 18, respectively. These results suggest that filamentous fungi have a potential to influence the mobility and speciation of iodine by volatilization and accumulation. Considering their great biomass in soils, filamentous fungi may contribute to the global circulation of stable iodine and also the long-lived radioiodine, 129I (half-life: 1.6 × 107 years), released from nuclear facilities into the environment.  相似文献   

5.
Pesticide volatilization to the atmosphere may be a major pathway of dissipation closely linked with environmental, physico-chemical and technical factors. Understanding the volatilization process requires systems that make it possible to control some of these factors. Wind tunnels meet to these criteria. The volatilization flux is determined from a mass balance, using the difference in atmospheric pesticide concentration between the entrance and the exit of the tunnel and the airflow rate. An experiment was carried out in June 2000 to study the repeatability of this technique. Volatilization of trifluralin was measured in three wind tunnels for 8 days with a sampling period varying between 3 h and 2 days. Pesticide concentration was determined by trapping by XAD-2 resin in a two-stage cartridge, solvent extraction and analysis by gas chromatography. Cumulated losses through volatilization reached 30% of the measured application dose after 8 days, with a variability of less than 20% between the three tunnels. Approximately 20% remained in the topsoil (0–2 cm), with a variability of 14% between the three tunnels. The decrease in the volatilization flux over time is coherent with the expected theoretical evolution for a volatile pesticide such as trifluralin and with previous experimental works.  相似文献   

6.
According to regulations, sows with piglets on organic farms must graze on pastures. Volatilization of ammonia (NH3) from urine patches may represent a significant source of nitrogen (N) loss from these farms. Inputs of N are low on organic farms and losses may reduce crop production. This study examined spatial variations in NH3 volatilization using a movable dynamic chamber, and the pH and total ammoniacal nitrogen (TAN) content in the topsoil of pastures with grazing sows was measured during five periods between June 1998 and May 1999. Gross NH3 volatilization from the pastures was also measured with an atmospheric mass balance technique during seven periods from September 1997 until June 1999. The dynamic chamber study showed a high variation in NH3 volatilization because of the distribution of urine; losses were between 0 and 2.8 g NH3–N m−2 day−1. Volatilization was highest near the feeding area and the huts, where the sows tended to urinate. Ammonia volatilization rate was linearly related to the product of NH3 concentration in the boundary layer and wind speed. The NH3 in the boundary layer was in equilibrium with NH3 in soil solution. Gross NH3 volatilization was in the range 0.07–2.1 kg NH3–N ha−1 day−1 from a pasture with 24 sows ha−1. Ammonia volatilization was related to the amount of feed given to the sows, incident solar radiation and air temperature during measuring periods, and also to temperature, incident solar radiation and rain 1–2 days before measurements. Annual ammonia loss was 4.8 kg NH3–N sow−1.  相似文献   

7.
西湖引水治理后的底栖动物群落   总被引:3,自引:0,他引:3  
1995年1月-1996年12月对西湖底栖大型无脊椎动物群落进行了连续监测与研究,共发现大型底栖无脊椎动物26种,其中寡毛类6种,多毛类1种,水生昆虫9种,蛭类,线虫和无节蠕虫各1种。  相似文献   

8.
The effects of surfactant composition on the ability of chemical dispersants to disperse crude oil in fresh water were investigated. The objective of this research was to determine whether effective fresh water dispersants can be designed in case this technology is ever considered for use in fresh water environments. Previous studies on the chemical dispersion of crude oil in fresh water neither identified the dispersants that were investigated nor described the chemistry of the surfactants used. This information is necessary for developing a more fundamental understanding of chemical dispersion of crude oil at low salinity. Therefore, we evaluated the relationship between surfactant chemistry and dispersion effectiveness. We found that dispersants can be designed to drive an oil slick into the freshwater column with the same efficiency as in salt water as long as the hydrophilic-lipophilic balance is optimum.  相似文献   

9.
Ammonia (NH3) emission from livestock manures used in agriculture reduces N uptake by crops and negatively impacts air quality. This laboratory study was conducted to evaluate NH3emission from different livestock manures applied to two soils: Candler fins sand (CFS; light-textured soil, pH 6.8 and field capacity soil water content of 70 g kg? 1) from Lake Alfred, Florida and Ogeechee loamy sand (OLS; medium-textured soil, pH 5.2 and field capacity soil water content of 140 g kg? 1) from Savannah, Georgia. Poultry litter (PL) collected from a poultry farm near Douglas, Georgia, and fresh solid separate of swine manure (SM) collected from a farm near Clinton, North Carolina were used. Each of the soil was weighed in 100 g sub samples and amended with either PL or SM at rates equivalent to either 0, 2.24, 5.60, 11.20, or 22.40 Mg ha? 1 in 1L Mason jars and incubated in the laboratory at field capacity soil water content for 19 days to monitor NH3 volatilization. Results indicated a greater NH3 loss from soils amended with SM compared to that with PL. The cumulative NH3volatilization loss over 19 days ranged from 4 to 27% and 14 to 32% of total N applied as PL and SM, respectively. Volatilization of NH3 was greater from light-textured CFS than that from medium-textured OLS. Volatilization loss increased with increasing rates of manure application. Ammonia volatilization was lower at night time than that during the day time. Differences in major factors such as soil water content, temperature, soil type and live stock manure type influenced the diurnal variation in volatilization loss of NH3 from soils. A significant portion (> 50%) of cumulative NH3 emission over 19 d occurred during the first 5–7 d following the application of livestock manures. Results of this study demonstrate that application of low rates of livestock manure (≤ 5.60 Mg ha? 1) is recommended to minimize NH3 emissions.  相似文献   

10.
Here we investigate the photodegradation of structurally similar organophosphorus pesticides; methyl-parathion and fenitrothion in water (20 °C) and ice (−15 °C) under environmentally-relevant conditions with the aim of comparing these laboratory findings to limited field observations. Both compounds were found to be photolyzed more efficiently in ice than in aqueous solutions, with quantum yields of degradation being higher in ice than in water (fenitrothion > methyl-parathion). This rather surprising observation was attributed to the concentration effect caused by freezing the aqueous solutions. The major phototransformation products included the corresponding oxons (methyl-paraoxon and fenitroxon) and the nitrophenols (3-methyl-nitrophenol and nitrophenol) in both irradiated water and ice samples. The presence of oxons in ice following irradiation, demonstrates an additional formation mechanism of these toxicologically relevant compounds in cold environments, although further photodegradation of oxons in ice indicates that photochemistry of OPs might be an environmentally important sink in cold environments.  相似文献   

11.
12.
Validated sample preparation procedures and high resolution gas chromatography-high resolution mass spectrometry techniques were utilized for the quantitative measurement of 4 to 695 pg/g (ppt) levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2378-TCDD) in the edible portions of fish from the state of Michigan. The methodology and the analytical results are presented.  相似文献   

13.
水葫芦压滤脱水与鲜汁强化除磷工艺   总被引:1,自引:0,他引:1  
就地对水葫芦进行粉碎压滤能有效减少质量和体积,降低处置难度,减少运输成本。针对水葫芦鲜渣含水率高,鲜汁污染物浓度高的问题,研究不同压滤时间、压力和调理剂的添加对压滤后鲜渣的含水率的影响;同时采用化学混凝法研究不同混凝剂、pH和混凝时间以及CaO的添加对鲜汁中COD和TP的去除效果的影响。结果表明:鲜渣含水率随着压滤压力、时间的增加而降低,8 MPa压力条件下鲜渣含水率为66.35%,添加鲜货质量10%的木屑和CaO能使含水率降为46.17%和40.21%,加快鲜渣脱水速度;FeCl3、Al2(SO4)3和PAC等3种混凝剂均能有效去除鲜汁中COD和TP,去除率分别可达80%以上和85%以上,进一步添加CaO能强化TP的去除效果,去除率可达96%以上;水葫芦压滤脱水和鲜汁预处理工艺为水葫芦处置提供了一种新的途径。  相似文献   

14.
Several simple models for the estimation of the half-life (t(1/2)) for the depletion of an organic chemical from a soil surface to air were examined. For moist surfaces, two models are proposed: the first requires knowledge of the soil/organic carbon partition coefficient (K(oc)) and the Henry's law constant (H) and the second the vapor pressure (P(s)) of the chemical involved. Due to uncertainties in the experimental K(oc) values those ones predicted by the group-contribution model of Meylan et al. [Environ. Sci. Technol. 26 (1992) 1560]-and proposed by the U.S. Environmental Protection Agency (EPA)-should be used. If reliable experimental P(s) values are not available, the first model is proposed, where in cases when H values are not available, predicted ones by the Bond-Contribution method of Meylan and Howard [Environ. Toxicol. Chem. 10 (1991) 1283]-and also proposed by EPA-can be used. In general, the agreement of the predicted t(1/2) values with the measured ones is within a factor of 3-5. Similar expressions, but with somewhat poorer results, are presented for dry field soils. In all cases, the obtained results represent a substantial improvement over those obtained with the currently used Dow method: t(1/2) = 1.58 x 10(-8)((K(oc) x S)/P(S)), where S is the solubility of the compound in water.  相似文献   

15.
This study was undertaken to determine the dissipation and degradation of coumaphos [O-(3-chloro-4-methyl-2-oxo-2H-1-benzopyran-7-yl) O,O-diethyl phosphorothioate] under different sunlight conditions and at different temperatures. The effect of the ultra violet (UV) component of solar radiation was also studied using quartz tubes in addition to other radiation in the visible range using glass tubes and the results were compared with those obtained under the dark light conditions. Water suspensions of coumaphos were incubated at three temperatures viz. 22 degrees C, 37 degrees C and 53 degrees C in closed systems to study the effect of temperature. Volatilization, mineralization and degradation of coumaphos increased with an increase in temperature and exposure to solar radiation, particularly under the UV component of the solar radiation. Major loss of the pesticide occurred through volatilization. The optimum temperature for the degradation of coumaphos was found to be at 37 degrees C. The data obtained from the mineralization and degradation studies indicated that 53 degrees C crosses the biological range for suitable growth of microorganism. UV radiation exposure along with maintaining temperature at 37 degrees C may prove useful in the dissipation and/or degradation of coumaphos prior to its disposal as waste from cattle dipping vats.  相似文献   

16.
This study was undertaken to determine the dissipation and degradation of coumaphos [O-(3-chloro-4-methyl-2-oxo-2H-1-benzopyran-7-yl) O,O-diethyl phosphorothioate] under different sunlight conditions and at different temperatures. The effect of the ultra violet (UV) component of solar radiation was also studied using quartz tubes in addition to other radiation in the visible range using glass tubes and the results were compared with those obtained under the dark light conditions. Water suspensions of coumaphos were incubated at three temperatures viz. 22°C, 37°C and 53°C in closed systems to study the effect of temperature. Volatilization, mineralization and degradation of coumaphos increased with an increase in temperature and exposure to solar radiation, particularly under the UV component of the solar radiation. Major loss of the pesticide occurred through volatilization. The optimum temperature for the degradation of coumaphos was found to be at 37°C. The data obtained from the mineralization and degradation studies indicated that 53°C crosses the biological range for suitable growth of microorganism. UV radiation exposure along with maintaining temperature at 37°C may prove useful in the dissipation and/or degradation of coumaphos prior to its disposal as waste from cattle dipping vats.  相似文献   

17.
氨气是城市污水污泥产生的恶臭气体之一,控制或抑制其产生是资源化利用甚至处置过程中至关重要的.通过改进氨气测量方法定量分析外掺页岩对污泥氨气挥发的抑制作用和机理,实验研究了页岩掺量、陈放形式以及环境温度对污泥氨气挥发浓度的影响.结果表明,外掺页岩对污泥氨气挥发具有明显的抑制作用,随温度升高、陈放时间延长抑制效果有所减弱但仍具有明显作用;页岩对污泥氨气挥发的抑制作用主要为对氨气的吸附作用.  相似文献   

18.
Ammonia volatilization from crop residues and frozen green manure crops   总被引:1,自引:0,他引:1  
Agricultural systems can lose substantial amounts of nitrogen (N). To protect the environment, the European Union (EU) has adopted several directives that set goals to limit N losses. National Emission Ceilings (NEC) are prescribed in the NEC directive for nitrogen oxides and ammonia. Crop residues may contribute to ammonia volatilization, but sufficient information on their contribution to the national ammonia volatilization is lacking. Experiments were carried out with the aim to assess the ammonia volatilization of crop residues left on the soil surface or incorporated into the soil under the conditions met in practice in the Netherlands during late autumn and winter.Ammonia emission from residues of broccoli, leek, sugar beet, cut grass, fodder radish (fresh and frozen) and yellow mustard (frozen) was studied during two winter seasons using volatilization chambers. Residues were either placed on top of soil or mixed with soil. Mixing residues with soil gave insignificant ammonia volatilization, whereas volatilization was 5–16 percent of the N content of residues when placed on top of soil.Ammonia volatilization started after at least 4 days. Total ammonia volatilization was related to C/N-ratio and N concentration of the plant material. After 37 days, cumulative ammonia volatilization was negligible from plant material with N concentration below 2 percent, and was 10 percent of the N content of plant material with 4 percent N. These observations can be explained by decomposition of plant material by micro-organisms. After an initial built up of the microbial population, NH4+ that is not needed for their own growth is released and can easily emit as NH3 at the soil surface.The results of the experiments were used to estimate the contribution of crop residues to ammonia volatilization in the Netherlands. Crop residues of arable crops and residues of pasture topping may contribute more than 3 million kg NH3–N to the national ammonia volatilization of the Netherlands, being more than 3 percent of the national emissions in 2005. This contribution should therefore be considered when focusing on the national ceilings for ammonia emissions.  相似文献   

19.
富营养化淡水水体中微囊藻毒素的研究进展   总被引:2,自引:0,他引:2  
微囊藻毒素(Microcystins,MCYSTs,MCs)为富营养化淡水水体中最常见的藻类毒素,从毒理学、环境科学、生物学及化学等方面对MCs的研究已有较多报道。本文综述了关于MCS在产生机理、毒理效应、分离检测方法和水处理过程中的去除方法等方面的研究进展,并对目前研究的不足提出了几点意见。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号