首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ryu JY  Mulholland JA  Chu B 《Chemosphere》2003,51(10):1031-1039
Dibenzofuran (DF) is formed from phenol and benzene in combustion gas exhaust streams prior to particle collection equipment. Subsequent chlorination at lower temperatures on particle surfaces is a potential source of chlorinated dibenzofuran (CDF). Gas streams containing 8% O2 and approximately 0.1% DF vapor were passed through particle beds containing copper (II) chloride (0.5% Cu, mass) at temperatures ranging from 200 to 400 °C to investigate the potential for CDF formation during particle collection. Experiment duration was sufficient to provide an excess amount of DF (DF/Cu=3). The efficiency of DF chlorination by CuCl2 and the distribution of CDF products were measured, with effects of temperature, gas velocity, and experiment duration assessed. Results of a more limited investigation of dibenzo-p-dioxin (DD) chlorination by CuCl2 to form chlorinated DD (CDD) products are also presented.

The efficiency of DF/DD chlorination by CuCl2 was high, both in terms of CuCl2 utilization and DF/DD conversion. Total yields of Cl on CDF/CDD products of up to 0.5 mole Cl per mole CuCl2 were observed between 200 and 300 °C; this suggests that nearly 100% CuCl2 was utilized, assuming a conversion of two moles of CuCl2 to CuCl per mole Cl added to DD/DF. In a short duration experiment (DF/Cu=0.3), nearly 100% DF adsorption and conversion to CDF was achieved. The degree of CDF chlorination was strongly dependent on gas velocity. At high gas velocity, corresponding to a gas–particle contact time of 0.3 s, mono-CDF (MCDF) yield was largest, with yields decreasing with increasing CDF chlorination. At low gas velocity, corresponding to a gas–particle contact time of 5 s, octa-CDF yield was largest. DF/DD chlorination was strongly favored at lateral sites, with the predominant CDF/CDD isomers within each homologue group those containing Cl substituents at only the 2,3,7,8 positions. At the higher temperatures and lower gas velocities studied, however, broader isomer distributions, particularly of the less CDD/CDF products, were observed, likely due to preferential destruction of the 2,3,7,8 congeners.  相似文献   


2.
Dibenzofuran (DF) is formed from phenol and benzene in combustion gas exhaust streams prior to particle collection equipment. Subsequent chlorination at lower temperatures on particle surfaces is a potential source of chlorinated dibenzofuran (CDF). Gas streams containing 8% O2 and approximately 0.1% DF vapor were passed through particle beds containing copper (II) chloride (0.5% Cu, mass) at temperatures ranging from 200 to 400 °C to investigate the potential for CDF formation during particle collection. Experiment duration was sufficient to provide an excess amount of DF (DF/Cu=3). The efficiency of DF chlorination by CuCl2 and the distribution of CDF products were measured, with effects of temperature, gas velocity, and experiment duration assessed. Results of a more limited investigation of dibenzo-p-dioxin (DD) chlorination by CuCl2 to form chlorinated DD (CDD) products are also presented.The efficiency of DF/DD chlorination by CuCl2 was high, both in terms of CuCl2 utilization and DF/DD conversion. Total yields of Cl on CDF/CDD products of up to 0.5 mole Cl per mole CuCl2 were observed between 200 and 300 °C; this suggests that nearly 100% CuCl2 was utilized, assuming a conversion of two moles of CuCl2 to CuCl per mole Cl added to DD/DF. In a short duration experiment (DF/Cu=0.3), nearly 100% DF adsorption and conversion to CDF was achieved. The degree of CDF chlorination was strongly dependent on gas velocity. At high gas velocity, corresponding to a gas–particle contact time of 0.3 s, mono-CDF (MCDF) yield was largest, with yields decreasing with increasing CDF chlorination. At low gas velocity, corresponding to a gas–particle contact time of 5 s, octa-CDF yield was largest. DF/DD chlorination was strongly favored at lateral sites, with the predominant CDF/CDD isomers within each homologue group those containing Cl substituents at only the 2,3,7,8 positions. At the higher temperatures and lower gas velocities studied, however, broader isomer distributions, particularly of the less CDD/CDF products, were observed, likely due to preferential destruction of the 2,3,7,8 congeners.  相似文献   

3.
Yamamoto T  Yasuhara A 《Chemosphere》2002,46(8):1215-1223
The chlorination of bisphenol A (BPA) in aqueous media was investigated in order to describe the degradation profile of this compound and the formation of chlorinated products. Aqueous solutions of BPA (approx. 1 mg/l) were chlorinated by sodium hypochlorite solution at room temperature and under weakly alkaline conditions. Chlorinated compounds were extracted with dichloromethane and determined by gas chromatography/mass spectrometry (GC/MS). BPA was consumed completely within 5 min of chlorination, when the initial chlorine concentration was 10.24 mg/l (molar ratio to BPA, 58.7). On the other hand, when the initial chlorine concentration was 1.03 mg/l (molar ratio, 6.56), 9.3% of BPA still remained after 60 min chlorination. Five chlorinated BPA congeners, 2-chlorobisphenol A (MCBPA), 2,6-dichlorobisphenol A (2,6-D2CBPA), 2,2'-dichlorobisphenol A (2,2'-D2CBPA), 2,2',6-trichlorobisphenol A (T3CBPA) and 2,2', 6,6'-tetrachlorobisphenol A (T4CBPA) were formed in the earlier stages of chlorination. Several chlorinated phenolic compounds, 2,4,6-trichlorophenol (T3CP), 2,6-dichloro-1,4-benzoquinone (D2CBQ), 2,6-dichloro-1,4-hydroquinone (D2CHQ), C9H10Cl2O2, C9H8Cl2O and C10H12Cl2O2, were also formed by further chlorination.  相似文献   

4.
A study of gas-phase mercury speciation using detailed chemical kinetics.   总被引:5,自引:0,他引:5  
Mercury speciation in combustion-generated flue gas was modeled using a detailed chemical mechanism consisting of 60 reactions and 21 species. This speciation model accounts for the chlorination and oxidation of key flue-gas components, including elemental mercury (Hg0). Results indicated that the performance of the model is very sensitive to temperature. Starting with pure HCl, for lower reactor temperatures (less than approximately 630 degrees C), the model produced only trace amounts of atomic and molecular chlorine (Cl and Cl2), leading to a drastic underprediction of Hg chlorination compared with experimental data. For higher reactor temperatures, model predictions were in good accord with experimental data. For conditions that produce an excess of Cl and Cl2 relative to Hg, chlorination of Hg is determined by the competing influences of the initiation step, Hg + Cl = HgCl, and the Cl recombination reaction, 2Cl = Cl2. If the Cl recombination reaction is faster, Hg chlorination will eventually be dictated by the slower pathway Hg + Cl2 = HgCl2.  相似文献   

5.
Jansson S  Fick J  Marklund S 《Chemosphere》2008,72(8):1138-1144
Non- to octa-chlorinated naphthalenes (PCNs) were analyzed in flue gas samples collected simultaneously at three different temperatures (450 degrees C, 300 degrees C and 200 degrees C, respectively) in the post-combustion zone during waste combustion experiments using a laboratory-scale fluidized-bed reactor. PCN homologue profiles in all samples were dominated by the lower chlorinated homologues (mono- to triCN), with successive reductions in abundance with each additional degree of chlorination. The isomer distribution patterns reflected ortho-directionality behavior of the first chlorine substituent, and the beta-positions, i.e. the 2,3,6,7-substitution sites, seemed to be favored for chlorination. Injection of naphthalene into the post-combustion zone resulted in increased PCN levels at 200 degrees C, demonstrating the occurrence of chlorination reactions in the post-combustion zone. However, the increases were restricted to the least-chlorinated homologue (monoCN), probably because there was insufficient residence time for further chlorination. In addition, an episode of poor combustion (manifested by high CO levels) was accompanied by extensive formation of 1,8-diCN, 1,2,3- and 1,2,8-triCN; congeners with substitution patterns that are not thermodynamically favorable. These are believed to be products of PAH breakdown reactions and/or chlorophenol condensation. Overall, PCN formation is likely to occur via more than one pathway, including chlorination of naphthalene that is already present, de novo synthesis from PAHs and, possibly, chlorophenol condensation.  相似文献   

6.
Correlations between products of incomplete combustion (PIC), e.g., chloroaromatic compounds, can be used to characterise the emissions from combustion processes, like municipal or hazardous waste incineration. A possible application of such relationships may be the on-line real-time monitoring of a characteristic surrogate, e.g., with Resonance-Enhanced Multiphoton Ionization-Time-of-Flight Mass Spectrometry (REMPI-TOFMS). In this paper, we report the relationships of homologues and individual congeners of chlorinated benzenes (PCBz), dibenzo-p-dioxins (PCDD), dibenzofurans (PCDF) and phenols (PCPh) to the International Toxicity Equivalent (I-TEQ) of the PCDD/F (I-TEQ value) in the flue gas and stack gas of a 22 MW hazardous waste incinerator (HWI). As the REMPI detection sensitivity is decreasing with the increase of the degree of chlorination, this study focuses on the lower chlorinated species of the compounds mentioned above. Lower chlorinated species, e.g., chlorobenzene (MCBz), 1,4-dichlorobenzene, 2,4,6-trichlorodibenzofuran or 2,4-dichlorophenol, were identified as I-TEQ surrogates in the flue gas. In contrast to the higher chlorinated phenols, the lower chlorinated phenols (degree of chlorination <4) were not reliable as surrogates in the stack gas. The identified surrogates are evaluated in terms of their detectability by REMPI-TOFMS laser mass spectrometry. The outcome is that MCBz is the best suited surrogate for (indirect) on-line measuring of the I-TEQ value in the flue gas by REMPI-TOFMS. The correlation coefficient r of the MCBz concentration to the I-TEQ in the flue gas was 0.85.  相似文献   

7.
Yang X  Shen Q  Guo W  Peng J  Liang Y 《Chemosphere》2012,88(1):25-32
The formation of trichloronitromethane (TCNM) and dichloroacetonitrile (DCAN) was investigated during chlorination and chloramination of 31 organic nitrogen (org-N) compounds, including amino acids, amines, dipeptides, purines, pyrimidones and pyrroles. Tryptophan and alanine generated the greatest amount of TCNM during chlorination process and asparagine and tyrosine yielded the highest amount of TCNM during chloramination process. Tryptophan, tyrosine, asparagine, and alanine produced more DCAN than other org-N compounds regardless of chlorination or chloramination. TCNM and DCAN formation was higher by chlorination than by chloramination. NH2Cl:org-N molar ratios, reaction time, and pH affected N-DBPs formation in varying degrees. TCNM and DCAN yields were usually high during chloramination of tyrosine, asparagine, and methylpyrrole under the following reaction conditions: NH2Cl:org-N molar ratios greater than 10, reaction time for 1 d, and at pH 7.2. NH2Cl as a major nitrogen origin in TCNM and DCAN was confirmed via labeled 15N-monochloramine during chloramination of tyrosine, asparagine and methylpyrrole. In contrast, the majority of nitrogen in TCNM originated from glycine, and that in DCAN originated from pyrrole. Based on the intermediates identified by gas chromatography/mass spectrometry (GC/MS), a pathway scheme was proposed for TCNM and DCAN formation.  相似文献   

8.
Two samples of tab water and double distilled water were chlorinated using chlorine gas. A series of PCDFs could be identified from these experiments, however no PCDDs could be found. The two water samples gave very similar isomeric patterns ( . . tetra-CDFs), however the congener profile (Cl4 --- Cl8) was different. These experiments indicate that all products formed by chlorination reactions are potentially contaminated by PCDFs by a specific “chlorine pattern”.  相似文献   

9.
Water chlorination results in formation of a variety of organic compounds, known as chlorination by-products (CBPs), mainly trihalomethanes (THMs) and haloacetic acids (HAAs). Factors affecting their concentrations have been found to be organic matter content of water, pH, temperature, chlorine dose, contact time and bromide concentration, but the mechanisms of their formation are still under investigation. Within this scope, chlorination experiments have been conducted with river waters from Lesvos island, Greece, with different water quality regarding bromide concentration and organic matter content. The factors studied were pH, time and chlorine dose. The determination of CBPs was carried out by gas chromatography techniques. Statistical analysis of the results was focused on the development of multiple regression models for predicting the concentrations of total trihalomethanes and total HAAs based on the use of pH, reaction time and chlorine dose. The developed models, although providing satisfactory estimations of the concentrations of the CBPs, showed lower correlation coefficients than the multiple regression models developed for THMs only during previous study. It seems that the different water quality characteristics of the two river waters in the present study is responsible for this phenomenon. The results indicate that under these conditions the formation of THMs and HAAs in water has a more stochastic character, which is difficult to be described by the conventional regression techniques.  相似文献   

10.
Chlorinated derivatives of bisphenol A were detected in the final effluents of eight paper manufacturing plants in Shizuoka, Japan, where thermal paper and/or other printed paper is used as the raw material. Their amounts were determined by gas chromatography/mass spectrometry (GC/MS) after treatment with N, O-bis(trimethylsilyl)trifluoroacetamide, and ranged from traces to 2.0 microg/l. They are likely produced by chlorination of bisphenol A, which was released into the effluents from the pulping process of wastepaper, during or after bleaching with chlorine.  相似文献   

11.
Chlorination of chlortoluron: kinetics, pathways and chloroform formation   总被引:1,自引:0,他引:1  
Xu B  Tian FX  Hu CY  Lin YL  Xia SJ  Rong R  Li DP 《Chemosphere》2011,83(7):909-916
Chlortoluron chlorination is studied in the pH range of 3-10 at 25 ± 1 °C. The chlorination kinetics can be well described by a second-order kinetics model, first-order in chlorine and first-order in chlortoluron. The apparent rate constants were determined and found to be minimum at pH 6, maximum at pH 3 and medium at alkaline conditions. The rate constant of each predominant elementary reactions (i.e., the acid-catalyzed reaction of chlortoluron with HOCl, the reaction of chlortoluron with HOCl and the reaction of chlortoluron with OCl) was calculated as 3.12 (± 0.10) × 107 M−2 h−1, 3.11 (±0.39) × 102 M−1 h−1 and 3.06 (±0.47) × 103 M−1 h−1, respectively. The main chlortoluron chlorination by-products were identified by gas chromatography-mass spectrometry (GC-MS) with purge-and-trap pretreatment, ultra-performance liquid chromatography-electrospray ionization-MS and GC-electron capture detector. Six volatile disinfection by-products were identified including chloroform (CF), dichloroacetonitrile, 1,1-dichloropropanone, 1,1,1-trichloropropanone, dichloronitromethane and trichloronitromethane. Degradation pathways of chlortoluron chlorination were then proposed. High concentrations of CF were generated during chlortoluron chlorination, with maximum CF yield at circumneutral pH range in solution.  相似文献   

12.
Yu RF 《Chemosphere》2004,56(10):973-980
In this study, a simple automatic pH-ORP titration device was developed for identifying the various ammonia concentrations and chlorine dose requirements for wastewater chlorination by identifying the peaks in the ORP-slope profiles and knees/valleys in the pH profiles. In addition, breakpoint chlorination experiments have shown that the ORP values at the monochloramine humps and breakpoints are linearly correlated with the ammonia concentrations. Therefore, a feed-forward control strategy, based on the chlorine/ammonia weight ratio (Cl/N), is proposed in this paper, to control the chlorine doses for a continuous wastewater chlorination experiment in a laboratory-scale reactor. The result of this continuous wastewater chlorination experiment has shown that the pH-ORP titration was able to precisely determine the variations of ammonia concentrations in the chlorination influent. Under this control strategy, effective and stable disinfection efficiencies in terms of total coliform count were obtained.  相似文献   

13.
A study on chlorination of raw greywater with hypochlorite is reported in this paper. Samples were chlorinated in a variety of conditions, and residual chlorine (Cl2) was measured spectrophotometrically. For each sample, the chlorination curve (chlorine residuals versus chlorine dose) was obtained. Curves showed the typical hump-and-dip profile attributable to the formation and destruction of chloramines. It was observed that, after reactions with strong reductants and chloramines-forming compounds, the remaining organic matter exerted a certain demand of chlorine. The evolution of chlorination curves with addition of ammonia and dodecylbencene sulfonate sodium salt and with dilution of the greywater sample were studied. In addition, chlorination curves at several contact times have been obtained, resulting in slower chlorine decay in the hump zone than in the dip zone. In addition, the decay of coliforms in chlorinated samples was also investigated. It was found that, for a chlorination dosage corresponding to the maximum of the hump zone (average 8.9 mg Cl2/ L), samples were negative in coliforms after 10 to 30 minutes of contact time. After-growth was not observed within 3 days after chlorination. Implications in chlorination treatments of raw greywater can be derived from these results.  相似文献   

14.
Tauno Kuokkanen  Pekka Autio 《Chemosphere》1989,18(9-10):1921-1925
p-Cymene was chlorinated by chlorine in CCl4. The products of the chlorination were separated by distillation and purified by preparative gas chromatography. The structures of chlorocompounds were confirmed by means of their NMR and mass spectra. The distillation gave as the main compounds: (2) 2-chloro-, (4) 2,3-dichloro-, (5) 2,5-dichloro-, (6) 2,3,6-trichloro-, (7) 2,3,5,6-tetrachloro-p-cymenes and as by-products: (8) 2,5,7-trichloro-p-cymene, (9) 2,6-dichloro-1-methyl-4-(1-methylethenyl)benzene (cymenene), and (10) 2,3,6-trichloro-1-methyl-4-(1-methylethenyl)benzene (cymenene).  相似文献   

15.
Sulfaquinoxaline (SQX) is an antimicrobial of the sulfonamide class, frequently detected at low levels in drinking and surface water as organic micropollutant. The main goal of the present study is the evaluation of SQX reactivity during chlorination and UV irradiations which are two processes mainly used in water treatment plants. The SQX transformation by chlorination and UV lights (254 nm) was investigated in purified water at common conditions used for water disinfection (pH =?7.2, temperature =?25 °C, [chlorine] =?3 mg L?1). The result shows a slow degradation of SQX during photolysis compared with chlorination process. Kinetic studies that fitted a fluence-based first-order kinetic model were used to determine the kinetic constants of SQX degradation; they were equal to 0.7?×?10?4 and 0.7?×?10?2 s?1corresponding to the half time lives of 162 and 1.64 min during photolysis and chlorination, respectively. In the second step, seven by-products were generated during a chlorination and photo-transformation of SQX and identified using liquid chromatography with electrospray ionization and tandem mass spectrometry (MS-MS). SO2 extrusion and direct decomposition were the common degradation pathway during photolysis and chlorination. Hydroxylation and isomerization were observed during photodegradation only while electrophilic substitution was observed during chlorination process.  相似文献   

16.
This study shows the catalyzing effects of iron and copper on the formation of chlorinated compounds such as chlorobenzenes (ClBzs), chlorophenols (CIPhs), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). Both total concentrations and congener distributions have been studied. The parameters and conditions varied during the combustion tests were the complete and incomplete combustion and the metal and chlorine addition. The incomplete combustion promoted the formation of organic chlorinated compounds in flue gas particles. Highly chlorinated congeners of PCDD/F were dominant in the flue gas particles, whereas the importance of lower chlorinated congener were increased in the gas phase. In the complete combustion conditions the concentrations of PCDD/Fs increased when the degree of chlorination were high, nevertheless the concentrations of tetra and penta PCDD/Fs were higher in the gas phase than the concentrations in the fly ash particles. Organic chlorine promoted the formation of chlorinated compounds more effectively than inorganic chlorine, which instead promoted the formation of PCDD/Fs in the gas phase, especially with copper catalyst. Different concentration levels of chlorinated compounds were observed in the gas phase and in particles when the chlorine source and combustion conditions were varied from incomplete to optimum conditions. Both copper and iron seem to have a catalytic effect on PCDD/F formation.  相似文献   

17.
Operating conditions were optimised in a new compact scrubber in order to remove odorous sulphur (H(2)S and CH(3)SH) and ammonia compounds. The influence of the superficial gas and liquid velocities, pH, contactor length, inlet concentrations (sulphur compounds, ammonia, chlorine), and the mixing effects was characterised. Whereas abatement increased with velocities, pH and the chlorine concentration, an increase of inlet CH(3)SH concentration drove to a worse efficiency of process. Moreover, the contactor length and the presence of another pollutant in the gas phase only played a role on the methylmercaptan removal. Finally, the reactive consumptions were estimated at the outlet of the reactor. The chlorination by-product quantification permitted to understand the under-stoichiometry.  相似文献   

18.
传统城市供水管网一般在净水厂实行消毒以减少用户受到病原体及各种水传播疾病的危害.既要保证足够的氯残留,又要减少过量氯产生的气味和可能的消毒副产物(DBPs),传统的消毒方法经常是不可能的.为了解决这对矛盾,二次加氯将会是个很好的解决策略.二次加氯的优势已经吸引了国内外许多专家学者的关注,对二次加氯的研究进展进行了综合的论述,从新的角度对现有的优化模型进行了分类,并比较和推荐了认为可行或相对较好的模型.  相似文献   

19.
Antibiotic-resistant bacteria are an emerging threat to public health during drinking water consumption and reclaimed water reuse. Several studies have shown that the proportions of antibiotic-resistant bacteria in waters may increase when exposed to low doses of UV light or chlorine. In this study, inactivation of tetracycline-resistant Escherichia coli and antibiotic-sensitive E. coli by UV disinfection and chlorination was compared to determine the tolerance of tetracycline-resistant E. coli to UV light and chlorine, and tetracycline resistance of a tetracycline-resistant E. coli population was studied under different doses of the disinfectants. Our results showed that relative to antibiotic-sensitive E. coli, tetracycline-resistant E. coli had the same tolerance to UV light and a potentially higher tolerance to chlorination. The mortality frequency distributions of tetracycline-resistant E. coli exposed to tetracycline were shifted by both chlorination and UV disinfection. When compared to the hemi-inhibitory concentrations (IC50) of tetracycline-resistant E. coli with no exposure to UV or chlorination, the IC50 of tetracycline-resistant E. coli treated with tetracycline was 40% lower when inactivation by UV light or chlorination reached 3-log but was 1.18 times greater when inactivation by chlorination reached 4.3-log. Chlorination applied to drinking water or reclaimed water treatment may increase the risk of selection for highly tetracycline-resistant E. coli.  相似文献   

20.
Thirty organic compounds were selected to investigate their chloroform formation characteristics during chlorination with sodium hypochlorite at pH-values 7.0 and 8.0. These experiments were conducted under conditions similar to those applied on the chlorination of raw water. The results indicated that the chloroform concentrations occurred by the all tested compounds was in the ppm range. The maximum levels of chloroform (11-13 mg/l) were determined during the reaction of resorcinol and phloroglucinol at pH-value 8.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号