首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Acrylate esters are α,β-unsaturated esters that contain vinyl groups directly attached to the carbonyl carbon. These compounds are widely used in the production of plastics and resins. Atmospheric degradation processes of these compounds are currently not well understood. The kinetics of the gas phase reactions of OH radicals with methyl 3-methylacrylate and methyl 3,3-dimethylacrylate were determined using the relative rate technique in a 50 L Pyrex photoreactor using in situ FTIR spectroscopy at room temperature (298?±?2 K) and atmospheric pressure (708?±?8 Torr) with air as the bath gas. Rate coefficients obtained were (in units cm3 molecule?1 s?1): (3.27?±?0.33)?×?10?11 and (4.43?±?0.42)?×?10?11, for CH3CH═CHC(O)OCH3 and (CH3)2CH═CHC(O)OCH3, respectively. The same technique was used to study the gas phase reactions of hexyl acrylate and ethyl hexyl acrylate with OH radicals and Cl atoms. In the experiments with Cl, N2 and air were used as the bath gases. The following rate coefficients were obtained (in cm3 molecule?1 s?1): k3 (CH2═CHC(O)O(CH2)5CH3?+?Cl)?=?(3.31?±?0.31)?×?10?10, k4(CH2═CHC(O)OCH2CH(CH2CH3)(CH2)3CH3?+?Cl)?=?(3.46?±?0.31)?×?10?10, k5(CH2═CHC(O)O(CH2)5CH3?+?OH)?=?(2.28?±?0.23)?×?10?11, and k6(CH2═CHC(O)OCH2CH(CH2CH3)(CH2)3CH3?+?OH)?=?(2.74?±?0.26)?×?10?11. The reactivity increased with the number of methyl substituents on the double bond and with the chain length of the alkyl group in –C(O)OR. Estimations of the atmospheric lifetimes clearly indicate that the dominant atmospheric loss process for these compounds is their daytime reaction with the hydroxyl radical. In coastal areas and in some polluted environments, Cl atom-initiated degradation of these compounds can be significant, if not dominant. Maximum Incremental Reactivity (MIR) index and global warming potential (GWP) were also calculated, and it was concluded that these compounds have significant MIR values, but they do not influence global warming.  相似文献   

2.
Relative kinetic studies have been performed on the reactions of Cl atoms with a series of methyl alkyl esters in a 405-liter borosilicate glass chamber at (298 ± 3) K and one atmosphere of synthetic air using in situ FTIR spectroscopy to monitor the reactants. Rate coefficients (in units of cm3 molecule?1 s?1) were determined for the following compounds: methyl acetate (2.48 ± 0.58) × 10?12; methyl propanoate (1.68 ± 0.36) × 10?11; methyl butanoate (4.77 ± 0.87) × 10?11; methyl pentanoate (7.84 ± 1.15) × 10?11; methyl hexanoate (1.09 ± 0.31) × 10?10; methyl heptanoate (1.56 ± 0.37) × 10?10; methyl cyclohexane carboxylate (3.32 ± 0.76) × 10?10; methyl-2-methyl butanoate (9.41 ± 1.39) × 10?11.In addition rate coefficients (in units of 10?11 cm3 molecule?1 s?1) have been obtained for the reactions of OH radicals with the following compounds: methyl butanoate (3.55 ± 0.71), methyl pentanoate (5.41 ± 1.08), and methyl-2-methyl butanoate (4.08 ± 0.82).Using the kinetic rate data tropospheric lifetimes for the methyl alkyl esters with respect to their reactions with OH, and Cl have been estimated for typical ambient air concentrations of these oxidants.  相似文献   

3.
4.
Goal, Scope and Background Within the non-methane hydrocarbons, alkanes constitute the largest fraction of the anthropogenic emissions of volatile organic compounds. For the case of cyclic alkanes, tropospheric degradation is expected to be initiated mainly by OH reactions in the gas phase. Nevertheless, Cl atom reaction rate constants are generally one order of magnitude larger than those of OH. In the present work, the reaction of cyclooctane with Cl atoms has been studied within the temperature range of 279–333 K. Methods The kinetic study has been carried out using the fast flow tube technique coupled to mass spectrometry detection. The reaction has been studied under low pressure conditions, p=1 Torr, with helium as the carrier gas. Results The measured room temperature rate constant is very high, k=(2.63±0.54)×10−10 cm3molecule−1s−1, around 20 times larger than that for the corresponding OH reaction. We also report the results of the rate coefficients obtained at different temperatures: k = (3.5±1.2)×10−10 exp[(−79±110)/T] cm3 molecule−1 s−1 within the range of 279–333 K. This reaction shows an activation energy value close to zero. Discussion Quantitative formation of HCl has been observed, confirming the mechanism through H-atom abstraction. The reactivity of cyclic alkanes towards Cl atoms is clearly dependent on the number of CH2 groups in the molecule, as is shown by the increase in the rate constant when the length of the organic chain increases. This increase is very high for the small cyclic alkanes and it seems that the reactions are approaching the collision-controlled limit for cyclohexane and cyclooctane. Conclusions These results show that gas-phase reaction with Cl in marine or coastal areas is an efficient sink (competing with the gas phase, OH initiated degradation) for the Earth’s emissions of cyclooctane, with a Cl-based lifetime ranging from 11 to 2000 hours, depending on the location and time of day. Recommendations and Perspectives Cl and OH fast reactions with cyclooctane are expected to define the lifetime of cyclooctane emissions to the atmosphere. The degradation of cyclooctane occurs in a short period of time and consequently (under conditions of low atmospheric mass transport), close to the emission sources enabling a significant contribution to local effects, like the formation of photochemical smog. ESS-Submission Editor: Prof. Dr. Gerhard Lammel (lammel@recetox.muni.cz)  相似文献   

5.
Rate coefficients for the reactions of hydroxyl radicals and chlorine atoms with acrylic acid and acrylonitrile have been determined at 298 K and atmospheric pressure. The decay of the organics was followed using a gas chromatograph with a flame ionization detector (GC-FID) and the rate constants were determined using a relative rate method with different reference compounds. Room temperature rate constants are found to be (in cm3 molecule−1 s−1): k1(OH+CH2CHC(O)OH)=(1.75±0.47)×10−11, k2(Cl+CH2CHC(O)OH)=(3.99±0.84)×10−10, k3(OH+CH2CHCN)=(1.11±0.33)×10−11 and k4(Cl+CH2CHCN)=(1.11±0.23)×10−10 with uncertainties representing ±2σ. This is the first kinetic study for these reactions under atmospheric pressure. The rate coefficients are compared with previous determinations taking into account the effect of pressure on the rate constants. The effect of substituent atoms or groups on the overall rate constants is analyzed in comparison with other unsaturated compounds in the literature. In addition, atmospheric lifetimes based on the homogeneous sinks of acrylic acid and acrylonitrile are estimated and compared with other tropospheric sinks for these compounds.  相似文献   

6.
Rate coefficients for the gas-phase reactions of Cl atoms with a series of unsaturated esters CH2C(CH3)C(O)OCH3 (MMA), CH2CHC(O)OCH3 (MAC) and CH2C(CH3)C(O)O(CH2)3CH3 (BMA) have been measured as a function of temperature by the relative technique in an environmental chamber with in situ FTIR detection of reactants. The rate coefficients obtained at 298 K in one atmosphere of nitrogen or synthetic air using propene, isobutene and 1,3-butadiene as reference hydrocarbons were (in units of 10?10 cm3 molecule?1 s?1) as follows: k(Cl+MMA) = 2.82 ± 0.93, k(Cl+MAC) = 2.04 ± 0.54 and k(Cl+BMA) = 3.60 ± 0.87. The kinetic data obtained over the temperature range 287–313 K were used to derive the following Arrhenius expressions (in units of cm3 molecule?1 s?1): k(Cl+MMA) = (13.9 ± 7.8) × 10?15 exp[(2904 ± 420)/T], k(Cl+MAC) = (0.4 ± 0.2) × 10?15 exp[(3884 ± 879)/T], k(Cl+BMA) = (0.98 ± 0.42) × 10?15 exp[(3779 ± 850)/T]. All the rate coefficients display a slight negative temperature dependence which points to the importance of the reversibility of the addition mechanism for these reactions. This work constitutes the first kinetic and temperature dependence study of the reactions cited above.An analysis of the available rates of addition of Cl atoms and OH radicals to the double bond of alkenes and unsaturated and oxygenated volatile organic compounds (VOCs) at 298 K has shown that they can be related by the expression: log kOH = 1.09 log kCl ? 0.10. In addition, a correlation between the reactivity of unsaturated VOCs toward OH radicals and Cl atoms and the HOMO of the unsaturated VOC is presented. Tropospheric implications of the results are also discussed.  相似文献   

7.
Chlorination of naphthalene by Cl atoms has been studied in the gas phase. The chlorinating agent was produced by γ-radiolysis of tetrachloromethane. At low conversions only monosubstituted products are observed. Both isomers are formed, the yield of 1-chloronaphthalene exceeding that one of its isomer. The extent of the addition reaction increases with the temperature. The relative Arrhenius plot of observed rate constants is linear over the temperature range investigated (60–120 °C) and its slope corresponds to a difference of 11.0 kJ/mol between the activation energies of 2-chloronaphthalene and 1-chloronaphthalene.  相似文献   

8.
The kinetics of two structurally similar unsaturated alcohols, 3-butene-2-ol and 2-methyl-3-butene-2-ol (MBO232), with Cl atoms have been investigated for the first time, as a function of temperature using a relative method. As far as we know, the present work also provides the first value for 3-buten-2-ol. The coefficient at room temperature was also obtained for 2-propene-1-ol (allyl alcohol). The reactions were investigated using a 400 L Teflon reaction chamber coupled with gas chromatograph-coupled with flame-ionization detection (GC-FID) detection. The experiments were performed at atmospheric pressure and at temperatures between 256 and 298 K in air or nitrogen as the bath gas. The obtained kinetic data were used to derive the Arrhenius expressions, kMBO232=(2.83±2.50)×10−14 exp (2670±249)/T, k3-buten-2-ol=(0.65±1.60)×10−15 exp (3656±695)/T (in units of cm3 molecule−1 s−1). Finally, results and atmospheric implications are discussed and compared with the reactivity with OH and NO3 radicals.  相似文献   

9.
Encapsulation technology is being investigated as a method for controlling pH in situ at contaminated groundwater sites where pH may limit remediation of organic contaminants. This study examined the effectiveness of using KH2PO4 buffer encapsulated in a pH-sensitive coating to neutralize pH in laboratory sand columns (1.5-1) under a simulated groundwater flow rate and characterized the pattern of capsule release in the flow-through system. Denitrification was used in the columns to increase the pH of the pore water. Each of three columns was equipped with three miniature mesh wells to allow contact of the buffer with column pore water, but capsules (15 g) were inserted into only one column (amended). The two other columns served as amendment (no buffer) and abiotic (no denitrification) controls. Oxidation-reduction potential, dissolved organic and inorganic carbon, NH4+, NO3- +NO2-, PO(4)3-, and pH were measured in the influent, two side ports, and effluent of the columns over time. Near complete conversion of 80 mg N/1 of nitrate and 152 mg/l of ethanol per day resulted in a mean pH increase from 6.2 to 8.2 in the amendment control column. The amended column maintained the target pH of 7.0 +/- 0.2 for 4 weeks until the capsules began to be depleted, after which time the pH slowly started to increase. The capsules exhibited pulses of buffer release, and were effectively dissolved after 7.5 weeks of operation. Base-neutralizing capacity contributed by the encapsulated buffer over the entire study period, calculated as cation equivalents, was 120 mM compared to 8 mM without buffer. This study demonstrates the potential for this technology to mediate pH changes and provides the framework for future studies in the laboratory and in the field, in which pH is controlled in order to enhance organic contaminant remediation by pH-sensitive systems.  相似文献   

10.
An analysis of tritium and 36Cl data collected at Yucca Mountain, Nevada suggests that fracture flow may occur at high velocities through the thick unsaturated zone. The mechanisms and extent of this “fast flow” in fractures at Yucca Mountain are investigated with data analysis, mixing models and several one-dimensional modeling scenarios. The model results and data analysis provide evidence substantiating the weeps model [Gauthier, J.H., Wilson, M.L., Lauffer, F.C., 1992. Proceedings of the Third Annual International High-level Radioactive Waste Management Conference, vol. 1, Las Vegas, NV. American Nuclear Society, La Grange Park, IL, pp. 891–989] and suggest that fast flow in fractures with minimal fracture–matrix interaction may comprise a substantial proportion of the total infiltration through Yucca Mountain. Mixing calculations suggest that bomb-pulse tritium measurements, in general, represent the tail end of travel times for thermonuclear-test-era (bomb-pulse) infiltration. The data analysis shows that bomb-pulse tritium and 36Cl measurements are correlated with discrete features such as horizontal fractures and areas where lateral flow may occur. The results presented here imply that fast flow in fractures may be ubiquitous at Yucca Mountain, occurring when transient infiltration (storms) generates flow in the connected fracture network.  相似文献   

11.
The kinetics of Hg chlorination (with HCl) was studied using a flow reactor system with an online Hg analyzer, and speciation sampling using a set of impingers. Kinetic parameters, such as reaction order (alpha), overall rate constant (k'), and activation energy (Ea), were estimated based on the simple overall reaction pathway. The reaction order with respect to C(Hg), k', and Ea were found to be 1.55, 5.07 x 10(-2) exp(-1939.68/T) [(microg/m3)(-055)(s)(-1)]. and 16.13 [kJ/ mol], respectively. The effect of chlorine species (HCl, CH2Cl2) on the in situ Hg capture method previously developed (28) was also investigated. The efficiency of capture of Hg by this in situ method was higher than 98% in the presence of chlorine species. Furthermore, under certain conditions, the presence of chlorine enhanced the removal of elemental Hg by additional gas-phase oxidation.  相似文献   

12.
An analysis of tritium and 36Cl data collected at Yucca Mountain, Nevada suggests that fracture flow may occur at high velocities through the thick unsaturated zone. The mechanisms and extent of this "fast flow" in fractures at Yucca Mountain are investigated with data analysis, mixing models and several one-dimensional modeling scenarios. The model results and data analysis provide evidence substantiating the weeps model [Gauthier, J.H., Wilson, M.L., Lauffer, F.C., 1992. Proceedings of the Third Annual International High-level Radioactive Waste Management Conference, vol. 1, Las Vegas, NV. American Nuclear Society, La Grange Park, IL, pp. 891-989] and suggest that fast flow in fractures with minimal fracture-matrix interaction may comprise a substantial proportion of the total infiltration through Yucca Mountain. Mixing calculations suggest that bomb-pulse tritium measurements, in general, represent the tail end of travel times for thermonuclear-test-era (bomb-pulse) infiltration. The data analysis shows that bomb-pulse tritium and 36Cl measurements are correlated with discrete features such as horizontal fractures and areas where lateral flow may occur. The results presented here imply that fast flow in fractures may be ubiquitous at Yucca Mountain, occurring when transient infiltration (storms) generates flow in the connected fracture network.  相似文献   

13.
Gas phase ozonolysis of camphene in air results in a 1:1 mixture of camphenilone and 6,6-dimethyl-ϵ-caprolactone-2,5-methylene. In the presence of SO2 (0.4 mg/10 ℓ), the product ratio rises to 8:1. This seems to indicate that the Criegee diradical oxidizes SO2 to SO3 prior to cyclization to dioxirane.  相似文献   

14.
15.
Weber R  Hagenmaier H 《Chemosphere》1999,38(3):529-549
The pyrolysis of chlorinated phenates at a temperature of about 280 degrees C results in the formation of definite chlorinated dibenzodioxin (PCDD) congeners [1-3]. It is shown that in gas phase reactions chlorophenols react in the presence of oxygen above 340 degrees C not only to PCDD but also to chlorinated dibenzofurans (PCDF). The mechanism of this reaction of chlorophenols to PCDD and PCDF was elucidated. In a first step phenoxyradicals are formed which are capable of forming PCDDs and PCDFs. This is confirmed by the oxygen dependency of the reaction. In an argon atmosphere no dimerization of chlorophenols could be observed at 420 degrees C. By the identification of intermediates and by analyzing the PCDF isomers formed from individual chlorophenols the reaction pathway is elucidated. As intermediates in the formation of PCDFs polychlorinated dihydroxybiphenyls (DOHB) were identified. These are most likely formed by the dimerization of two phenoxy radicals at the hydrogen substituted carbons in ortho-positions under simultaneous movement of the hydrogen atoms to the phenolic oxygen PCDDs are formed in the gas phase via ortho-phenoxyphenols (POP) analogous to the pyrolysis of phenates, but due to the radical mechanism in the first condensation step to POPs not only a chlorine atom is capable for substitution but also the hydrogen atoms. The formation of the DOHBs and their condensation to PCDFs and hydroxylated PCDFs as well as the ratio of PCDD to PCDF formed show a strong dependency on the reaction temperature, the substitution pattern of the chlorophenols and the oxygen concentration.  相似文献   

16.
Five materials were used in gas-solid phase reactions between dibenzo-p- dioxin(DD) and HCl in order to determine the role of organic and inorganic components in fly ash on chlorine substitution reactions of chlorinated dioxins. The five solids were: granular activated carbon, silica gel, diatomaceous earth, Tenax-GC, and fly ash. Conditions for reactions were 10 min at 150°C with 5% HCl in air. Extent of chlorination was measured using GC/MS analyses of extracts of fly ash after treatment processes and was expressed as the ratio monochloroDD/original unreacted DD. These ratios were: fly ash, 1.082; silica gel, 0.059; activated carbon, 0.024; and Tenax-GC, 0.001. Measurement of similar behavior on diatomaceous earth was impossible since starting material and possible products were irreversibly adsorbed completely. The major chlorinated dioxin produced under these conditions was 2-chlorodibenzo-p- dioxin which is the isomer favored through an electrophilic substitution mechanism.  相似文献   

17.
The goal of this study was to investigate the influence of one variable, natural organic matter, on residual gasoline saturation in sandy soils. Capillary pressure-saturation (PcS) relationships (air-gasoline) were determined for three physically-similar sandy soils, with different organic carbon contents (0.086%, 0.89% and 1.65%) and residual gasoline saturations were compared. Two initial moisture conditions, residual water saturation and air-dry, were evaluated. One soil type was packed to two different bulk densities. Visualization of the soils using cryo-scanning electron microscopy was performed to aid in better understanding the role of the organic matter in the soil. The results showed that soils with higher organic contents had higher residual gasoline saturations when starting with an initially air-dry soil. Increasing the bulk density of the same air-dried soil resulted in an increase in residual gasoline saturation. In the presence of a residual water saturation, however, residual gasoline saturations were virtually identical for the three soils and independent of bulk density; approximately 5–10 times lower than in soil that was initially air-dry. The presence of the residual water effectively coated the surface of the soil thereby reducing or eliminating gasoline/soil interactions. Some residual water may also be occupying very small pore spaces, making these locations inaccessible to the gasoline.  相似文献   

18.
Ozonation of pentachlorophenol in unsaturated soils   总被引:1,自引:0,他引:1  
A heterogeneous model was developed to describe interactions between ozone and hydrophobic organic compounds, exemplified by pentachlorophenol, in highly gas-saturated vadose zones where water moisture was limited to a thin film on soil particle surfaces. The soil was assumed to be free of soil organic matter. The model included a set of transient equations considering diffusion with simultaneous chemical reaction and hydrophobic partitioning. From dimensionless analysis, it was found that the film concentrations of ozone and the hydrophobic organic component were dependent on the Damk?hler numbers. Effects of Damk?hler numbers on the film profiles of components were examined. With the interfacial flux of ozone calculated from film profiles, dimensionless governing equations of ozone transport and contaminant removal across an experimental column were established. These equations were dependent on the Stanton number. One-dimensional column experiments were conducted to test the model. The optimal time for flow rate adjustment during the process was approximated. Finally, effects of ozone velocity and ozone gas concentration on the Stanton number were evaluated.  相似文献   

19.
In the last years, a continuous increase of the O3 concentration has been recorded in the lower atmospheric layers. Photochemical reactions with NO(x), CO and organic compounds are the main sources of O3 in the troposphere. In this work, an attempt was made to determine the impact of alkenes on the O3 concentration in the troposphere. A study on the gas-phase reactions of 03 with 1-hexene, 1-heptene and 1-nonene was made. The reactions were carried out at room temperature under atmospheric pressure. Ozone was formed by the ultraviolet radiation emitted by a mercury lamp, in order to simulate the atmospheric conditions. The changes with time in the concentration of O3, 1-alkenes and formed aldehydes were investigated. Qualitative and quantitative analyses were done by means of the gas chromatography and colorimetry. The following products were identified: pentanal from 1-hexene; hexanal from 1-heptene; oktanal from 1-nonene. For each of the reactions, HCHO was also determined as a product. The reaction rate constants were calculated and obtained in units of 10(-17) cm(-3) molecule(-1) s(-1): 1.94-0.99 for 1-hexene, 5.54-4.51 for 1-heptene and 1.54-0.76 for 1-nonene. Based on the results obtained, an explanation of O3 concentration variations in the planetary boundary layer can be given. Last year a considerable increase of O3 concentration on the roads of Western Europe was recorded. This increase could have resulted from the decrease of alkene concentration in the air due to common use of the catalytic converters in cars. The unsaturated hydrocarbons rapidly oxidize on the catalyst. In Eastern Europe, where the amount of cars equipped with catalytic converters is smaller than in Western Europe, the alkene content in the exhaust fumes results in a decrease of the O3 concentration in the troposphere.  相似文献   

20.
Chemical reactions of metals with humic material   总被引:3,自引:0,他引:3  
Humic substances are chemically very complex materials whose structure and reactions are not fully understood. They are believed to be macromolecules, spanning a wide range of molecular weights, which are formed from quinones and phenolic compounds. They contain a wide variety of functional groups, which may react with metals. Many different physical and chemical procedures have been used to study these interactions, and numerous different reaction mechanisms and products have been postulated. The colloidal properties of humic materials also affects their interactions with metals. Reaction with humic substances profoundly affects the environmental behaviour of metals. Solubility, plant availability and even volatility are all greatly influenced and can be either enhanced or reduced by these reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号