首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Multiple efforts have been directed towards optimized processes in which enzymes, like peroxidases, are used to remove phenolic compounds from polluted wastewater. Here we describe the use of peroxidase isoenzymes from tomato hairy roots, which were able to oxidise 2,4-dichlorophenol (2,4-DCP) and phenol from aqueous solutions. This could be an interesting alternative for the removal of these compounds from contaminated sites. We used different enzyme fractions: total peroxidases (TP), ionically bound to cell wall peroxidases (IBP), basic (BP) and acidic peroxidases (AP). We analyzed the optimum conditions of removal, the effect of Polyethyleneglycol (PEG-3350) on the process and on the enzyme activities, to obtain the maximum efficiency. The optimal H2O2 concentrations for 2,4-DCP and phenol removal were 1 and 0.1mM, respectively. TP, IBP and BP showed better removal efficiencies than AP, for both contaminants. The addition of different concentrations (10-100mg l(-1)) of PEG-3350 to solutions containing 2,4-DCP showed no effect on the removal efficiencies of the isoenzymes. However, PEG (100mg l(-1)) increased the removal efficiency of phenol by BP and IBP fractions. On the other hand, peroxidase activities from BP and IBP fractions were 3 and 13 times higher, respectively, than those detected for the same fractions in phenol treated solutions without PEG. The protective effect of PEG, which depends on the contaminant as well as of the enzyme fraction used, would be important to improve the removal efficiency of phenol by some peroxidase isoenzymes.  相似文献   

2.
In this study, the occurrence of trace amounts of natural and synthetic steroid estrogens in the aquatic environment was studied using liquid chromatography coupled with electrospray mass spectrometry, following solid-phase extraction (SPE). The SPE was performed with C18 and NH2 cartridges. The first objective was to develop a reliable method for analyzing steroid estrogens (resulting from human and animal excretions) in different matrices. The method developed was then applied to quantify the occurrence of natural and synthetic hormones (estrone [E1], 17beta-estradiol [betaE2], 17alpha-estradiol [alphaE2], estriol [E3], and 17alpha-ethinylestradiol [EE2]) in environmental samples in surface water and wastewater treatment plant (WWTP) influent and effluent. In the WWTP influents, betaE2, alphaE2, and E3 were identified as ranging up to 72.6 ng/L in WWTP influent and to 16 ng/L in WWTP effluent. Analysis o f surface wa ter sampled upstream from the WWTP revealed the presence of all five estrogens, at levels up to 19.8 ng/L. These concentrations of estrogens pose an issue for large and small communities, because they are higher than the recommended guidelines for estrogen-active compounds and because a lot of communities use surface water as drinking-water sources.  相似文献   

3.
Management of Endosulfan contaminated eluent (24 mg/l) resulting from a treatment process to remove Endosulfan from water with wood charcoal, was attempted using various methods viz. volatilisation, hydrolysis and sorption by viable cell bacteria with and without acclimatisation. Volatilisation failed in giving better result, as Endosulfan was not considerably volatile. It could achieve a removal efficiency of 1.4-2%. Hydrolysis resulted in 28.4% and 17.9% removal of Endosulfan in acidic and alkaline media, respectively. Viable cell bacteria (aerobic) without prior acclimatization showed efficiency of 89.7% and after prior acclimatisation showed 96% removal efficiency. Sorption by the acclimatized biomass was found a suitable method for the removal of Endosulfan at a concentration of 24 mg/l.  相似文献   

4.
为了研究缺氧(75 min)-好氧(294 min)交替运行的SBR系统中除磷的原因,采用静态实验,对比了不同碳源、水质及运行环境下对磷的去除情况。实验结果表明,该SBR脱氮系统中的好氧段磷的减少是生物去除的结果。当供给碳源为丙酸-乙酸混合物(摩尔比为2∶1)、葡萄糖、淀粉或蛋白胨时,污泥都可将磷去除,去除效率依次降低;COD/NO3--N为8.77∶1(400 mg/L∶45.6 mg/L)时除磷效果明显好于5.41∶1(400 mg/L∶73.9 mg/L)和3.57∶1(400 mg/L∶112 mg/L);进水磷浓度为8 mg/L时,COD由50 mg/L增加到400 mg/L,污泥对磷的去除效果基本一样;完全的缺氧或完全的好氧环境下,污泥对磷的去除能力逐渐丧失。  相似文献   

5.
Novel hydrophilic molecularly imprinted polymers (MIPs) with high adsorption capacity were used as the sorbents to remove 2,4-dinitrophenol (2,4-DNP) from surface water and wastewater samples. Kinetic studies, dynamic adsorption and selectivity experiments of hydrophilic MIPs were investigated in this study. The results indicated that the maximum adsorption capacity of 2,4-DNP on hydrophilic MIPs was 138.9 mg g?1 and kinetic experimental data were described by the pseudo-second-order model. Furthermore, the effects of flow rate, initial concentration, pH value, and humic acid on the removal efficiency of 2,4-DNP were optimized. Compared with the active carbon, carbon nanotube, C18 sorbents and common MIPs, the removal efficiency of hydrophilic MIPs (100 mg) was very high with all above 92 % even though the sampling volume was more than 1 L. Investigated results of five times adsorption–desorption cycles indicated hydrophilic MIPs were high stability. In a word, the obtained results demonstrated that hydrophilic MIPs could be used as the effective sorbents for 2,4-DNP removal in practical application.  相似文献   

6.
Gong Z  Wilke BM  Alef K  Li P  Zhou Q 《Chemosphere》2006,62(5):780-787
Laboratory column experiments were performed to remove PAHs (polycyclic aromatic hydrocarbons) from two contaminated soils using sunflower oil. Two liters of sunflower oil was added to the top of the columns (33 cm x 21 cm) packed with 1 kg of PAH-contaminated soil. The sunflower oil was applied sequentially in two different ways, i.e. five additions of 400 ml or two additions of 1l. The influence of PAH concentration and the volume of sunflower oil on PAH removal were examined. A soil respiration experiment was carried out and organic carbon contents of the soils were measured to determine degradability of remaining sunflower oil in the soils. Results showed that the sunflower oil was effective in removing PAHs from the two soils, more PAHs were removed by adding sunflower oil in two steps than in five steps, probably because of the slower flow rate in the former method. More than 90% of total PAHs was removed from a heavily contaminated soil (with a total 13 PAH concentration of 4721 mg kg(-1)) using 4 l of sunflower oil. A similar removal efficiency was obtained for another contaminated soil (with a total 13 PAH concentration of 724 mg kg(-1)), while only 2l was needed to give a similar efficiency. Approximately 4-5% of the sunflower oil remained in the soils. Soil respiration curves showed that remaining sunflower oil was degraded by allowing air exchange and supplying with nutrients. Organic carbon content of the soil was restored to original level after 180 d incubation. These results indicated that the sunflower oil had a great capacity to remove PAHs from contaminated soils, and sunflower oil solubilization can be an alternative technique for remediation of PAH contaminated soils.  相似文献   

7.
The removal of polycyclic aromatic hydrocarbons (PAHs) from soil using water as flushing agent is relatively ineffective due to their low aqueous solubility. However, addition of cyclodextrin (CD) in washing solutions has been shown to increase the removal efficiency several times. Herein are investigated the effectiveness of cyclodextrin to remove PAH occurring in industrially aged-contaminated soil. Beta-cyclodextrin (BCD), hydroxypropyl-beta-cyclodextrin (HPCD) and methyl-beta-cyclodextrin (MCD) solutions were used for soil flushing in column test to evaluate some influent parameters that can significantly increase the removal efficiency. The process parameters chosen were CD concentration, ratio of washing solution volume to soil weight, and temperature of washing solution. These parameters were found to have a significant and almost linear effect on PAH removal from the contaminated soil, except the temperature where no significant enhancement in PAH extraction was observed for temperature range from 5 to 35 degrees C. The PAHs extraction enhancement factor compared to water was about 200.  相似文献   

8.
《Chemosphere》2013,91(4):558-562
This paper presents a study on the chemical safety of the secondary effluent for reuse purposes and the requirement of advanced treatment. Water quality analysis was conducted regarding conventional chemical items, hazardous metals, trace organics and endocrine disrupting chemicals (EDCs). Generally speaking, the turbidity, COD, BOD, TN and TP of the secondary effluent can meet the Chinese standards for urban miscellaneous water reuse but higher colour is a problem. Further removal of BOD and TP may still be required if the water is reused for landscape and environmental purposes especially relating to recreation. In addition, Hazardous metals, trace organics and endocrine disrupting chemicals (EDCs) are not the main problems for water reuse. At the same time, several tertiary treatment processes were evaluated. The coagulation–filtration process is effective process for further improvement of the conventional water quality items and removal of hazardous metals but less effective in dealing with dissolved organic matter. The ultrafiltration (UF) can achieve almost complete removal of turbid matter while its ability to remove dissolved substances is limited. The ozone–biofiltration is the most effective for colour and organic removal but it can hardly remove the residual hazardous metals. Therefore, the selection of suitable process for different water quality is important for water use.  相似文献   

9.
通过动态法测试水吸收型空气净化器A和活性炭过滤吸附型净化器B对甲醛的去除性能,探索更为合理的方法以评价空气净化器对气态污染物的去除性能.对净化器A去除甲醛的短期测试结果表明,净化器对甲醛浓度为0.3、0.5、0.8和1 mg/m3的连续空气流均有明显的净化效果,对甲醛的去除速率在0.91~2.78 mg/h之间.对净化...  相似文献   

10.
The ultra high-lime with aluminum process (UHLA) has the ability to remove sulfate and chloride in addition to other scale-forming materials from recycled cooling water. Laboratory experiments have demonstrated that the UHLA process can achieve high chloride removal from recycled cooling water, and an equilibrium model was developed to describe chemical behavior during chloride removal. This paper describes the influence of pH, temperature, and initial chloride concentration on chloride removal by UHLA and identifies the precipitated solids formed during treatment. The optimum pH for maximum chloride removal efficiency was found to be 12 +/- 0.2. Chloride removal efficiency was higher at a high initial chloride concentration than at a low initial chloride concentration with the chemical doses used. Solids formed during UHLA treatment were identified by x-ray diffraction as calcium chloroaluminate, tricalcium hydroxyaluminate, and tetracalcium hydroxyaluminate. This supports the assumption of the equilibrium model that these compounds are present and form a solid solution.  相似文献   

11.
Phenolic compounds present in the drainage from several industries are harmful pollutants and represent a potential danger to human health. In this work we have studied the removal of phenol from water using Brassica napus hairy roots as a source of enzymes, such as peroxidases, which were able to oxidise phenol. These hairy roots were investigated for their tolerance to highly toxic concentrations of phenol and for the involvement of their peroxidase isoenzymes in the removal of phenol. Roots grew normally in medium containing phenol in concentrations not exceeding 100 mg l(-1), without the addition of H(2)O(2). However, roots were able to remove phenol concentrations up to 500 mg l(-1), in the presence of H(2)O(2), reaching high removal efficiency, within 1h of treatment and over a wide range of pH (4-9). Hairy roots could be re-used, at least, for three to four consecutive cycles. Peroxidase activity gradually decreased to approximately 20% of the control, at the fifth cycle. Basic and near neutral isoenzymes (BNP) decreased along time of recycling while acidic isoenzymes (AP) remained without changes. Although both group of isoenzymes would be involved in phenol removal, AP showed higher affinity and catalytic efficiency for phenol as substrate than BNP. In addition, AP retained more activity than BNP after phenol treatment. Thus, AP appears to be a promising isoenzyme for phenol removal and for application in continuous treatments. Furthermore, enzyme isolation might not be necessary and the entire hairy roots, might constitute less expensive enzymatic systems for decontamination processes.  相似文献   

12.
A laboratory study demonstrated that ferrate pretreatment significantly enhanced lead and cadmium removal in alum coagulation, under the conditions of natural surface water. The enhancement of lead removal was approximately 21 to 37% by ferrate pretreatment at a dosage of 1 to 5 mg/L. The enhanced removal of cadmium by ferrate pretreatment at a dosage of 1 to 5 mg/L exceeded the removal by alum coagulation alone 2-to 12-fold. Cadmium is much more difficult to remove than lead in alum coagulation. The performance of ferrate in enhancing the removal of lead and cadmium in alum coagulation was better than that of ferric chloride. The removal of lead and cadmium was highly pH-dependent, following the general trend of higher pH being related to higher removal. Satisfactory removal of cadmium could be expected by ferrate pretreatment combined with adjusting the pH of the water.  相似文献   

13.
14.
以向地表水中投加的隐孢子虫微球和贾第鞭毛虫微球为对象,研究通过对给水混凝工艺对其的去除效果进行比较,着重考察了不同混凝剂种类、投加量及水样pH值对去除效果的影响.结果表明,混凝工艺可较为有效地去除地表水中的两虫微球,去除率最高可达4 lg.相比常规的金属盐类混凝剂,高分子的PAC、PAFC混凝剂对两虫微球的混凝去除率更...  相似文献   

15.
Chong AM  Wong YS  Tam NF 《Chemosphere》2000,41(1-2):251-257
A series of batch experiments was conducted to compare the ability of 11 microalgal species of the same cell density in removing nickel (Ni) and zinc (Zn) from synthetic wastewater. These included Chlorella vulgaris (commercially available), Chlorella sorokiniana and Scenedesmus quadricauda (isolates from polluted water of Wuhan, China), and eight different isolates from Hong Kong. The Wuhan isolate of Scenedesmus removed most Ni, probably due to its large biomass. Nickel concentration was reduced from an initial 30 to 0.9 mg/l after 5 min (97% Ni removal), and further declined to 0.4 mg/l after 90 min of treatment. In wastewater containing 30 mg/l Ni and 30 mg/l Zn, more than 98%, Ni and Zn were removed simultaneously at the end of 5 min treatment, indicating that the presence of Zn in wastewater did not affect Ni removal by this Scenedesmus isolate. The second most effective species for Ni removal was an isolate, tentatively identified as Chlorella miniata, Ni concentration was reduced to 10 mg/l after 90 min, and was only slightly interfered by the presence of Zn. In terms of metal removal per unit biomass or unit surface area of algal cells, C. miniata was the best species in removing Ni and Zn. At the other extreme, one Hong Kong isolate (Synechocystis sp.) did not remove any Ni and only achieved 40% Zn removal. Performance of the other isolates was comparable with the commercial C. vulgaris, less than 50% Ni was removed after 5 h of treatment and Ni removal was significantly reduced by the presence of Zn. All algae tested were found to be viable, showing these 11 species could tolerate a mixture of 30 mg/l Ni and 30 mg/l Zn in wastewater.  相似文献   

16.
原核小球藻USTB-01去除化肥厂废水中总氮的研究   总被引:1,自引:0,他引:1  
采用1株异养原核小球藻USTB-01对化肥厂废水中总氮的去除进行了研究。结果表明,添加一定量的磷酸盐和碳酸钠特别是葡萄糖分别作为磷、无机碳和有机碳源,不仅可以明显促进原核小球藻USTB-01的生长,而且可以大幅度提高废水的总氮去除效率。在4 d时间内原核小球藻USTB-01的生长从OD680 nm0.5增加到3.6,提高到7倍,而废水中总氮的浓度从125 mg/L降低到10.3 mg/L,去除率达到了93.1%,处理后的废水可以达标排放。不仅在高含氮废水的处理,而且在利用废水中的氮培养原核小球藻USTB-01的废水资源化利用方面均具有重要的意义。  相似文献   

17.
针对水厂低浊高藻水的处理难题,研究了改性凹凸棒土(改性凹土)联合聚合氯化铝(PAC)强化混凝的除藻除浊效果。设计实验原水条件为叶绿素a(chl-a)浓度为98.58~110.35μg/L,浊度(5.6±0.5)NTU。考察了PAC和改性凹土的复配投加量、混凝沉淀时间、pH、投加顺序、搅拌速率等工艺参数对Chl-a和浊度耦合去除效果的影响。结果表明,"PAC+改性凹土"对Chl-a和浊度的去除效果明显优于单投PAC的效果。当PAC投药量12 mg/L,改性凹土投药量10 mg/L,沉淀时间20 min时,对Chl-a和浊度的去除率可分别达到92.5%和89.2%,可至少减少40%的PAC投量,且形成的矾花密实,沉降速度快,去除效率高。最适pH范围为7~8。投加顺序应为先投加改性凹土,混合搅拌转数宜慢速,可控制为50 r/min。  相似文献   

18.
利用生物曝气滤池修复受污染水源   总被引:1,自引:0,他引:1  
利用生物曝气滤池(BAF)对微污染水源水去除氨氮及有机物进行了试验研究。试验表明,在进水氨氮为6mg/L左右时,BAF可在8m/h的滤速下运行,氨氮去除率大于88%;在氨氮进水为2mg/L时,BAF可在16m/h的滤速下运行,氨氮去除率大于84%。BAF对水中的三氯甲烷前体物去除率较低(16%),对AOC的去除率为58%。BAF中载体上的生物膜主要聚集在表面的凹陷和孔洞处,不能完全覆盖载体表面。  相似文献   

19.
表面活性剂清洗处理重度石油污染土壤   总被引:5,自引:1,他引:4  
为了优化表面活性剂清洗处理重度石油污染土壤的方法和具体洗脱条件参数,采集山东省东营市胜利油田污染土壤,研究了阴离子-非离子混合表面活性剂对该土壤中石油类污染物的去除效果。应用化学热洗原理,主要考查了表面活性剂配比、投加量、清洗温度及清洗助剂对去除效果的影响。实验得到的清洗处理最佳条件为:使用LAS与TX-100质量比为8∶2的组合表面活性剂,总表面活性剂浓度为3 g/L,助剂硅酸钠浓度为5 g/L,75℃条件下搅拌1 h。清洗后土壤含油量从20%下降到4.6%,去除率达到76.9%。废水回用实验表明,清洗处理的废水对土壤中石油烃类物质仍有一定的去除效果。废水回用比从30%到100%时,对土壤中石油烃的去除率都可达到55%以上。对废水进行二次回用时仍能去除18.8%的污染物。  相似文献   

20.

Introduction

Transgenic plant strategies based on peroxidase expression or overexpression would be useful for phenolic compound removal since these enzymes play an important role in phenolic polymerizing reactions.

Material and methods

Thus, double transgenic (DT) plants for basic peroxidases were obtained and characterized in order to compare the tolerance and efficiency for 2,4-dichlorophenol (2,4-DCP) removal with WT and simple transgenic plants expressing TPX1 or TPX2 gene. Several DT plants showed the expression of both transgenes and proteins, as well as increased peroxidase activity.

Results

DT lines showed higher tolerance to 2,4-DCP at early stage of development since their germination index was higher than that of WT seedlings exposed to 25?mg/L of the pollutant. High 2,4-DCP removal efficiencies were found for WT tobacco plants. TPX1 transgenic plants and DT (line d) reached slightly higher removal efficiencies for 10?mg/L of 2,4-DCP than WT plants, while DT plants (line A) showed the highest removal efficiencies (98%). These plants showed an increase of 21% and 14% in 2,4-DCP removal efficiency for solutions containing 10 and 25?mg/L 2,4-DCP, respectively, compared with WT plants. In addition, an almost complete toxicity reduction of postremoval solutions using WT and DT plants was obtained through AMPHITOX test, which indicates that the 2,4-DCP degradation products would be similar for both plants.

Conclusion

These results are relevant in the field of phytoremediation application and, moreover, they highlight the safety of using DT tobacco plants because nontoxic products were formed after an efficient 2,4-DCP removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号