首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The burning rate of a slick of oil on a water bed is characterized by three distinct processes, ignition, flame spread and burning rate. Although all three processes are important, ignition and burning rate are critical. The former, because it defines the potential to burn and the latter because of the inherent possibility of boilover. Burning rate is calculated by a simple expression derived from a one-dimensional heat conduction equation. Heat feedback from the flame to the surface is assumed to be a constant fraction of the total energy released by the combustion reaction. The constant fraction (χ) is named the burning efficiency and represents an important tool in assessing the potential of in situ burning as a counter-measure to an oil spill. By matching the characteristic thermal penetration length scale for the fuel/water system and an equivalent single layer system, a combined thermal diffusivity can be calculated and used to obtain an analytical solution for the burning rate. Theoretical expressions were correlated with crude oil and heating oil, for a number of pool diameters and initial fuel layer thickness. Experiments were also conducted with emulsified and weathered crude oil. The simple analytical expression describes well the effects of pool diameter and initial fuel layer thickness permitting a better observation of the effects of weathering, emulsification and net heat feedback to the fuel surface. Experiments showed that only a small fraction of the heat released by the flame is retained by the fuel layer and water bed (of the order of 1%). Ignition has been studied to provide a tool that will serve to assess a fuels ease to ignite under conditions that are representative of oil spills. Two different techniques are used, piloted ignition when the fuel is exposed to a radiant heat flux and flash point as measured by the ASTM D56 Tag Closed Cup Test. Two different crude oils were used for these experiments, ANS and Cook Inlet. Crude oils were tested in their natural state and at different levels of weathering, showing that piloted ignition and flash point are strong functions of weathering level.  相似文献   

2.
The objective of this paper is to evaluate the combustion process of municipal solid waste combustion in a grate furnace both experimentally and numerically by using data of a reference experiment with over-stoichiometric primary air supply. Measurements were carried out inside the combustion chamber of a pilot plant by monitoring temperatures and sampling gaseous combustion products along the bed surface. The data were assessed using elemental and energy balances. Experimental data of the axial temperature profiles of the flue gas, the fuel bed and the grate bars, as well as local gas flows and the flue gas composition measured above the fuel bed along the grate were used to describe the conversion process, including drying and carbon burnout. These data served as input to model the thermo- and fluid dynamic processes of the gas phase above the bed inside the combustion chamber. For this purpose the commercial code FLUENT was employed to carry out the simulations. Thus, the turbulent temperature, flow and species distributions in the combustion chamber of the pilot waste incinerator TAMARA were predicted. The results of the FLUENT modeling showed that under the prevailing conditions the flue gas burnout is almost completed before entering the first flue due to high temperatures, effective mixing and sufficient residence times of the flue gas inside the combustion chamber. This agrees well with the experimental results inside the first flue. On the basis of the above mentioned results, design and parametric studies can be carried out in a more efficient way by saving cost and time.  相似文献   

3.
分别将纳米SiO_2及其改性物纳米聚乙烯吡咯烷酮接枝SiO_2(PVP-g-SiO_2)作为添加剂对聚氯乙烯(PVC)/聚苯砜(PPSU)共混超滤膜进行亲水化改性,并对其改性效果进行了对比研究。实验结果表明:添加纳米SiO_2使PVC/PPSU共混膜的纯水通量大幅增加,而添加纳米PVP-g-SiO_2质量分数达3%以上时纯水通量也增加;添加纳米SiO_2及PVP-g-SiO_2使PVC/PPSU共混膜的截留率、亲水性、耐污染性能及废水通量均得到较大程度的提高;与纳米SiO_2相比,纳米PVP-g-SiO_2对PVC/PPSU共混膜的亲水化改性效果更好。  相似文献   

4.
Smoldering combustion, commercially available as the Self‐sustaining Treatment for Active Remediation (STAR) technology, is an innovative technique that has shown promise for the remediation of contaminant source zones. Smoldering combustion is an exothermic reaction (net energy producing) converting carbon compounds and an oxidant (e.g., oxygen in air) to carbon dioxide, water, and energy. Thus, following ignition, the smoldering combustion reaction can continue in a self‐sustaining manner (i.e., no external energy or added fuel input following ignition) as the heat generated by the reacting contaminants is used to preheat and initiate combustion of contaminants in adjacent areas, propagating a combustion front through the contaminated zone provided a sufficient flux of air is supplied. The STAR technology has applicability across a wide‐range of hydrocarbons in a variety of hydrogeologic settings; however, there are limitations to its use. Impacted soils must be permeable enough to allow a sufficient flux of air to the combustion front and there exists a minimum required concentration of contaminants such that the soils contain sufficient fuel for the reaction to proceed in a self‐sustaining manner. Further limitations, as well as lessons learned and methods to mitigate these limitations, are presented through a series of case studies. In summary, the successful implementation of STAR will result in >99 percent reduction in contaminant concentrations in treated areas, limited residual contaminant mass, reduced groundwater contaminant mass flux which can be addressed through monitored natural attenuation; and an enhanced site exit strategy, reduced lifecycle costs, and reduced risk. ©2016 Wiley Periodicals, Inc.  相似文献   

5.
渗透汽化复合膜分离废水中的低浓度甲醇   总被引:3,自引:1,他引:2  
采用两种商品化渗透汽化复合膜--GKSS-GS膜和PDMS-P膜分离模拟低浓度甲醇废水,考察了操作温度、甲醇质量分数、废水流量对膜渗透汽化性能的影响.实验结果表明:随温度升高、废水中甲醇质量分数的增大,两种膜的渗透通量都呈增加趋势;GKSS-GS膜的分离系数变化较明显,而PDMS-P膜的分离系数变化较小;废水流量对渗透通量和分离系数的影响均较小.在最佳条件下,GKSS-GS膜的渗透通量为914.6 g/(m~2·h),分离系数为5.6;PDMS-P膜的渗透通量为1 887.2 g/(m~2·h),分离系数为4.8.  相似文献   

6.
A mathematical model was presented in this paper for the combustion of municipal solid waste in a novel two-stage reciprocating grate furnace. Numerical simulations were performed to predict the temperature, the flow and the species distributions in the furnace, with practical operational conditions taken into account. The calculated results agree well with the test data, and the burning behavior of municipal solid waste in the novel two-stage reciprocating incinerator can be demonstrated well. The thickness of waste bed, the initial moisture content, the excessive air coefficient and the secondary air are the major factors that influence the combustion process. If the initial moisture content of waste is high, both the heat value of waste and the temperature inside incinerator are low, and less oxygen is necessary for combustion. The air supply rate and the primary air distribution along the grate should be adjusted according to the initial moisture content of the waste. A reasonable bed thickness and an adequate excessive air coefficient can keep a higher temperature, promote the burnout of combustibles, and consequently reduce the emission of dioxin pollutants. When the total air supply is constant, reducing primary air and introducing secondary air properly can enhance turbulence and mixing, prolong the residence time of flue gas, and promote the complete combustion of combustibles. This study provides an important reference for optimizing the design and operation of municipal solid wastes furnace.  相似文献   

7.
Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignition occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism.MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T > 220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion.Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1 m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of the primary air speed, fuel moisture and inert content on the combustion characteristics (ignition rate, combustion rate, ignition front speed and temperature of the reaction zone) is evaluated.The upward combustion concept decouples the drying, devolatilization and burnout phase. In this way the moisture and inert content of the waste have almost no influence on the combustion process. In this paper an experimental comparison between conventional and reversed combustion is presented.  相似文献   

8.
刘昭  赵东风  孙慧  李石  韩丰磊 《化工环保》2015,35(5):531-535
采用美国国家环保局推荐的储罐挥发性有机物(VOCs)排放量定量计算方法,以北京某石化企业轻柴油固定顶储罐为案例对象,计算了固定顶储罐的总损失。通过对不同参数进行调节,比较分析了各变量对损失量的影响程度,得出了影响固定顶储罐静置储藏损失和工作损失的关键参数和次要参数。并在此基础上,提出了降低固定顶储罐VOCs排放量的对应措施。实验结果表明:影响固定顶储罐静置储藏损失的关键参数为油品蒸气相对分子质量、日平均液体表面温度和液体存储高度,次要参数为日环境温差和罐漆太阳能吸收率;影响工作损失的关键参数为油品蒸气相对分子质量、日平均液体表面温度和年净周转量。  相似文献   

9.
Estimates of ozone concentration and deposition flux to coniferous and deciduous forest in the Czech Republic on a 1 × 1 km grid during growing season (April–September) of the year 2001 are presented. Ozone deposition flux was derived from ozone concentrations in the atmosphere and from its deposition velocities. To quantify the spatial pattern in surface concentrations at 1 km resolution incorporating topography, empirical methods are used. The procedure maps ozone concentrations from the period of the day when measurements are representative for the forest areas of countryside. The effects of boundary layer stability are quantified using the observed relationship between the diurnal variability of surface ozone concentration and altitude. Ozone deposition velocities were calculated according to a multiple resistance model incorporating aerodynamic resistance (R a ), laminar layer resistance (R b ) and surface resistance (R c ). Surface resistance (R c ) comprises stomatal resistance (R sto ). R sto was calculated with respect to global radiation, surface air temperature and land cover. Modelled total and stomatal ozone fluxes are compared with the maps describing equivalent values of AOT40 (accumulated exposure over threshold of 40 ppb). For forests, the critical level (9,000 ppbh May–July daylight hours) is exceeded over 50% of forested territory. This indicates the potential for effects on large areas of forest. There is significiant correspondence between the exposure index AOT40 and the total ozone flux, but the relation between the total ozone flux and AOT40 exposure index is not clear in all parts of the forest territory.  相似文献   

10.
Recent developments in national recycling and re-use programmes for municipal waste have led to segregation of an increasing proportion of waste to enhance material recovery. Several of the segregated streams contain materials that can not viably be re-used or recycled but can be used for energy recovery. In this study, the combustion of cardboard and waste wood was investigated in a small-scale packed bed reactor in order to provide fundamental data for the design/operation of moving bed furnaces. Key parameters of combustion including the ignition and burning rates were evaluated for various air flowrates and compared to the modelling results. Two successive stages of combustion were identified for both samples: the propagation of ignition front into the bed and combustion of the fuel above the ignition front. The burning rate of cardboard reached a peak of about 300 kg/m(2)h at the air flowrate of 936 kg/m(2)h and decreased at higher air flowrates. For waste wood, both the ignition and burning rates increased in the tested range of the air flowrate up to 702 kg/m(2)h, of which the values were very close to those for the cardboard. The model prediction was in good agreement with the test results for waste wood. However, the burning rate for cardboard was under-predicted due to strongly irregular shapes of the fuel.  相似文献   

11.
An upflow biofilter system was operated on a passively vented landfill for the treatment of residual landfill methane. Biofilter methane emissions as a basis for determining methane removal rates were assessed by manual and automated chamber measurements, by measuring methane concentrations in the top layer gaseous phase in combination with gas flow rates, and by evaluating the methane load in the reverse gas flow following the change of landfill gas flux direction as governed by the course of barometric pressure. Methane removal rates were very high with maximum values of 80 g h(-1) m(-3). For the observed cases, the limit of biofilter methane oxidation capacity was not reached and absolute removal rates were thus linearly correlated to the amount of methane entering the filter. The analysis of methane loads flowing back from the biofilter following phases of longer, continuous and non-oscillating landfill gas emission, however, revealed that in these situations biofilter performance is restricted by deficient oxygen supply. At the oxygen-restricted capacity limit, removal rates are influenced by temperature (positively), methane influx (negatively) and flow rate (negatively) as a measure for the displacement of oxygen. These situations, however, account for only 12% of all emission phases. The investigated biofilter capacity, as derived from laboratory analyses of methanotrophic activities, is sufficient to oxidise 62% of the methane load emitted annually. Field and laboratory data provide a stable basis for the dimensioning of filters in future applications.  相似文献   

12.
Polyvinylchloride (PVC) was successfully recycled through the solvent extraction from waste pipe with an extraction yield of ca. 86%. The extracted PVC was pyrolyzed by a two-stage process (260 and 410 degrees C) to obtain free-chlorine PVC based pitch through an effective removal of chlorine from PVC during the heat-treatment. As-prepared pitch (softening point: 220 degrees C) was spun, stabilized, carbonized into carbon fibers (CFs), and further activated into activated carbon fibers (ACFs) in a flow of CO2. As-prepared CFs show comparable mechanical properties to commercial CFs, whose maximum tensile strength and modulus are 862 MPa and 62 GPa, respectively. The resultant ACFs exhibit a high surface area of 1200 m2/g, narrow pore size distribution and a low oxygen content of 3%. The study provides an effective insight to recycle PVC from waste PVC and develop a carbon precursor for high performance carbon materials such as CFs and ACFs.  相似文献   

13.
Conventional methods to estimate groundwater velocity that rely on Darcy's Law and average hydrogeologic parameter values are insensitive to local‐scale heterogeneities and anisotropy that control advective flow velocity and direction. Furthermore, at sites that are tidally influenced or have extraction wells with variable pumping schedules, infrequent water‐level measurements may not adequately characterize the range and significance of transient hydraulic conditions. The point velocity probe (PVP) is a recently developed instrument capable of directly measuring local‐scale groundwater flow velocity and direction. In particular, PVPs may offer distinct advantages for sites with complex groundwater–surface water interactions and/or with spatially and temporally variable groundwater flow conditions. The PVP utilizes a small volume of saline tracer and inexpensive sensors to directly measure groundwater flow direction and velocity in situ at the centimeter‐scale and discrete times. The probes are installed in conventional direct‐push borings, rather than in wells, thus minimizing the changes and biases in the local flow field caused by well installation and construction. Six PVPs were installed at a tidally influenced site in North Carolina to evaluate their implementability, performance, and potential value as a new site characterization tool. For this study, a new PVP prototype was developed using a rapid prototyping machine (i.e., a “three‐dimensional printer'') and included both horizontally and vertically oriented tracer detectors. A site‐specific testing protocol was developed to account for the spatially and temporally variable hydraulic conditions and groundwater salinity. The PVPs were tested multiple times, and the results were compared to the results of several different groundwater flux and velocity estimation tools and methods, including a heat‐pulse flowmeter, passive flux meters, single‐well tracer tests, and high‐resolution hydraulic gradient analysis. Overall, the results confirmed that the PVP concept is valid and demonstrated that reliable estimates of groundwater velocity and direction can be obtained in simple settings. Also, PVPs can be successfully installed by conventional methods at sites where the formation consists primarily of noncohesive soils and the water table is relatively shallow. Although some PVP tests yielded consistent and reliable results, several tests did not. This is likely due to the highly transient flow conditions and limitations associated with the PVP design and testing procedures. PVPs offer particular advantages over, and can effectively complement, other groundwater flow characterization techniques for certain conditions, and objectives may be useful for characterizing complex flow patterns under steady conditions; however, this study suggests that PVPs are best suited for conditions where the flow hydraulics are not highly transient. For sites where the hydraulic conditions are highly transient, the most reliable approach for understanding groundwater flow behavior and groundwater–surface water interactions would generally involve both a high‐resolution hydraulic gradient analysis and another local‐scale method, such as tracer testing. This study also highlighted some aspects of the current PVP design and testing protocol that can be improved upon, including a more robust connection between the PVP and injection line and further assessment of tracer solution density effects on vertical flow. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
By using observational data and MM5, an observational analysisand numerical study was conducted on the synoptic condition of a severe dust storm that was caused by a Mongolian cyclone whichoccurred from 6 to 8 April 2001. Results illustrated thatthe cyclogenesis was due to the isentropic potential vorticity (IPV) advection in the upper troposphere and the terrain modifiedbaroclinicity in the mid-lower troposphere. The Altai-Sayan complex of mountains blocked the lower level cold air and made the isentropic surface sharply steep. When the air slid down along the isentropic surface the increasing of baroclinicity anddecreasing of stability blew up the vertical vorticity development.The formation of the dust storm was a result of a cyclonic cold front passing across the area. The occurrence of this dust stormwas closely related to the strong surface wind, which was accompanied by a cold front passing, rather than the cyclogenesis, itself. Hence, the reason for the pre-front dust storm formulation was the formation of heating convection. Reasons behind the formation of a black storm (visibilitylower than 50 m), which occurred in the mid-north part ofInner Mongolia, lay in several aspects. Firstly, in thisarea the surface wind was strong, a direct result of thedownward transport in mid-lower troposphere. Secondly,the cold front passed over the effected area near sunsetso the air obtained much more surface heating to form adeeper mixed layer (ML). Thirdly, cooperation between thelower level wind and the terrain made the atmosphere inthis area and acquired the maximum advective contributionnecessary to form a deep post-front ML. The sensitivityexperiment revealed that surface heat flux was important to the frontal lifting. In addition, the forcing of surface heating wasalso seen as the primary forcing mechanism of frontogenesis. Meanwhile, removal of the surface heat flux made the atmosphericstratification became stable and the pre-storm ML very shallow,which weakened the strength of the dust storm.  相似文献   

15.
马蕊  张盼  孙伟  聂国欣  李薇 《化工环保》2012,32(2):133-136
在反渗透非平衡热力学模型的基础上,从膜表面污染层阻力和浓差极化阻力的角度对常见的膜通量模型进行了探讨与改进,推导出了新的反渗透膜污染预测模型,为准确预测膜污染进程提供了理论支持。采用卷式反渗透膜装置对氢氧化铁胶体溶液进行处理,对模型计算值与实测值进行相关性分析,相关系数大于0.95。由此认为,改进的反渗透膜污染预测模型可用于计算运行过程中的膜通量。  相似文献   

16.
17.
某电厂省煤器灰气力输送系统投运初期频繁出现堵管和输灰超时的问题。经过分析及调研后,改用双套管输送,优化输送步序,减少输送耗气量,不仅实现了输送系统平稳顺畅,而且避免了灰管过度磨损的现象。  相似文献   

18.
A high temperature air-blown gasification model for woody biomass is developed based on an air-blown gasification experiment. A high temperature air-blown gasification experiment on woody biomass in an entrained down-flow gasifier is carried out, and then the simple gasification model is developed based on the experimental results. In the experiment, air-blown gasification is conducted to demonstrate the behavior of this process. Pulverized wood is used as the gasification fuel, which is injected directly into the entrained down-flow gasifier by the pulverized wood banner. The pulverized wood is sieved through 60 mesh and supplied at rates of 19 and 27kg/h. The oxygen-carbon molar ratio (O/C) is employed as the operational condition instead of the air ratio. The maximum temperature achievable is over 1400K when the O/C is from 1.26 to 1.84. The results show that the gas composition is followed by the CO-shift reaction equilibrium. Therefore, the air-blown gasification model is developed based on the CO-shift reaction equilibrium. The simple gasification model agrees well with the experimental results. From calculations in large-scale units, the cold gas is able to achieve 80% efficiency in the air-blown gasification, when the woody biomass feedrate is over 1000kg/h and input air temperature is 700K.  相似文献   

19.
Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions. These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, Km, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.  相似文献   

20.
肖骁  肖松文 《化工环保》2006,26(5):362-365
以锌粉为还原剂进行了聚氯乙烯(PVC)的机械化学还原脱氯(简称脱氯)探索研究,考察了球磨转速、球料比(磨球与试样的质量比)、锌粉与PVC质量比等对脱氯率的影响,并对脱氯产物进行了X射线衍射、红外光谱等分析。实验结果表明,最佳工艺条件为球料比33、球磨转速528r/min、锌粉与PVC质量比9;产物中未形成结晶性氯化锌,且锌粉被氧化成ZnO;行星球磨比搅拌球磨对PVC的脱氯效果好,球磨时间超过3h,PVC的脱氯率可接近100%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号