首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
北京市大气中挥发性有机物的组成特征   总被引:34,自引:0,他引:34  
采用预浓缩—GC-MS方法分析了北京市大气中挥发性有机物(VOCs)的组成,共检测出108种,其主要成分是饱和烷烃(33%)、芳香烃(21%)、烯烃(16%)、卤代烷烃(20%)、卤代烯烃(9%)和卤代芳香烃(1%),总VOCs平均质量浓度为(163 7±39 0)μg m3。更重要的是,在检出物中有54种是有毒有害的物质,主要成分是苯系物和卤代烃,其中苯,甲苯,丙烯,1,3-丁二烯,氯乙烯和1,2-二氯乙烷是含量最高的组分。   相似文献   

2.
老工业区大气中挥发性有机物的分布和组成特征   总被引:1,自引:0,他引:1  
以老工业区大气中有机污染物为研究对象,采用预浓缩-GC/MS方法分析了老工业区大气中挥发性有机物(VOCs)的分布和组成特征。结果表明,老工业区内工业行业的复杂性和规划的不合理性,导致有机物分布和组成的差异。混杂区和工业集中区VOCs的浓度大于居住区和对照区,并且有机物的浓度存在垂直分布规律。卤代烃是老工业区大气中含量最高的挥发性有机物,占TVOC的27%,其次是饱和烷烃和芳烃,分别占TVOC的21%和20%。  相似文献   

3.
北京市BTEX的污染现状及变化规律分析   总被引:4,自引:1,他引:4  
孙杰  王跃思  吴方堃 《环境科学》2011,32(12):3531-3536
2008年10~2009年10月,利用前级浓缩-气相色谱/质谱法,对北京市大气中5种苯系物BTEX(苯、甲苯、乙苯、间、对二甲苯、邻二甲苯)的组成及浓度变化进行了采样分析研究.结果表明,北京市大气BTEX平均浓度为13.9~44.0μg.cm-3,其中甲苯的含量最高,苯次之,邻二甲苯含量最低,与国外城市和地区相比北京大气中BTEX浓度较低,研究发现北京市BTEX主要来自机动车排放,城市燃煤和工业溶剂挥发也是BTEX的重要来源.一年的观测结果表明,BTEX春、夏季节浓度较高,秋季浓度较低,季节性排放源的变化是BTEX季节变化的主要原因,同时也不能忽视温度和大风等天气因素对BTEX浓度的影响.受交通排放和边界层高度的影响,BTEX类化合物的日变化形式为夜晚高于白天,呈双峰形,日最低浓度出现在14:00前后.  相似文献   

4.
沈阳市夏秋季节大气细颗粒物元素浓度及分布特征   总被引:3,自引:0,他引:3       下载免费PDF全文
为获得沈阳市不同功能区细颗粒物元素的浓度和分布特征,于2007年8月21~9月6日,用安德森分级撞击式采样器在沈阳市4个采样点进行大气颗粒物分级采样,并用电感耦合等离子体质谱仪(ICP-MS)对PM1中50种元素进行分析.通过富集因子和经验正交函数分析,讨论了沈阳市夏秋季节细颗粒物中元素的组成及来源.结果表明,沈阳市夏秋季节PM1浓度明显比冬季低,且低于广州、北京等国内城市的浓度,但比青藏高原冰川区的浓度高1个量级以上,也高于意大利热那亚和佛罗伦萨等城市.沈阳市不同功能区PM1的污染程度为铁西工业区>气象局商业居民区>科研所交通餐饮区>棋盘山风景区;富集因子和经验正交函数分析表明,除自然源外,各功能区污染来源有所不同,交通运输、道路扬尘、餐饮业和工业的排放均对PM1有重要贡献.  相似文献   

5.
对全市不同功能区大气中COx进行了全年的监测。结果表明:各功能区浓度水平为交通区>工业区>居民区>清洁区,季节变化为秋季>冬季>春季>夏季。  相似文献   

6.
唐山市大气颗粒物OC/EC浓度谱分布观测研究   总被引:3,自引:2,他引:1  
华北重工业城市唐山大气颗粒物污染严重,2009~2011年PM1.1、PM2.1、PM9.0及TSP年均值分别为(75±43)、(106±63)、(221±100)和(272±113)μg.m-3;碳质气溶胶在各粒径段均占较大比重,其中,元素碳(EC)在PM1.1、PM2.1、PM9.0及TSP各粒径段的年均比重分别约为9%、9%、6%和4%,有机碳(OC)年均比重分别为25%、24%、16%和14%.颗粒物浓度谱分布及碳质气溶胶富集量呈显著季节变化,秋冬季节细颗粒物中EC和OC浓度可高达(9±4)、(11±5)和(19±7)、(28±10)μg.m-3,分别占PM2.1的11%、10%和26%、25%;春夏季节EC和OC在粗细粒子中的富集量基本相当,分别为(5±2)、(5±1)和(15±3)、(15±1)μg.m-3,分别约占颗粒物总量的7%、6%和26%、18%.  相似文献   

7.
魏雅  林长城  胡清华  吴水平 《环境科学》2017,38(10):4077-4083
于2011年3月~2012年1月期间在福建德化县九仙山气象站采集大气PM_(10)样品,分析了九仙山大气PM_(10)中水溶性离子及二元羧酸,对其季节分布与来源进行了探讨.结果表明,九仙山大气PM_(10)、水溶性无机离子和有机二元羧酸的季节分布规律较为接近,都表现为春季的浓度显著高于其它季节,但9种二元羧酸对PM_(10)的贡献(0.51%±0.41%)显著低于水溶性离子(18.07%±8.73%).其中,水溶性离子组成以NO_3~-和SO_4~(2-)的浓度为最高,其次为Na~+和NH_4~+;阴离子与阳离子当量浓度、NH_4~+与SO_4~(2-)当量浓度,以及NH_4~+与NO_3~-当量浓度之间都存在显著正相关关系.有机二元羧酸的组成以乙二酸的浓度为最高,占测量二元羧酸总量的75%左右,且随碳数增加呈逐渐递减趋势;来源特征比值(丙二酸/丁二酸、己二酸/壬二酸)、MODIS火点图及后向轨迹图显示,有机二元羧酸主要来自大气二次化学反应过程,生物质燃烧的直接贡献很小.  相似文献   

8.
吴方堃  孙杰  余晔  唐贵谦  王跃思 《环境科学》2016,37(9):3308-3314
挥发性有机物(VOCs)是臭氧和二次有机气溶胶的重要前体物.为研究中国东北背景地区大气中VOCs浓度和变化特征,应用苏码罐采样技术、三步冷冻浓缩和GC/MS联用技术测定了长白山大气本底站中的VOCs组成、浓度及季节变化,并利用PCA(principal component analysis)受体模型初步解析了白山大气中VOCs来源.结果表明,长白山地区TVOCs年平均浓度(体积分数)为10.7×10~(-9)±6.2×10~(-9),其中卤代烃所占比例最高,占VOCs总浓度的37%,其次是烷烃33%、芳香烃15%、烯烃15%.长白山地区TVOCs呈现明显的季节变化,变化特征为春季﹥秋季﹥夏季﹥冬季,春季大气中的TVOCs浓度显著(P﹤0.05)高于其他季节.利用主成分分析VOCs物种,提取出5个因子,分别归纳为交通源、液化石油气(LPG)、生物源、燃烧源和区域工业输送.结合HYSPLIT-4.0后向轨迹模型,分析周边区域传输对VOCs物种浓度的影响,发现来自西南向气团传输是长白山VOCs物种浓度增加的主要原因.  相似文献   

9.
张蕊  孙雪松  王裕  王飞  罗志云 《环境科学》2023,44(4):1954-1961
为深入了解臭氧(O3)污染高发季节大气挥发性有机物(VOCs)对O3生成的影响,基于北京市2019年夏季VOCs和O3高时间分辨率在线监测数据,开展VOCs变化规律、组成特征和臭氧生成潜势(OFP)研究.结果表明,大气φ(VOCs)平均值为(25.12±10.11)×10-9,其中,烷烃是体积分数最大的组分,占总VOCs的40.41%,其次是含氧有机物(OVOCs)和烯/炔烃,分别占总VOCs的25.28%和12.90%. VOCs体积分数日变化呈双峰型,早高峰出现在06:00~08:00,烯/炔烃占比明显增加,表明机动车排放对VOCs贡献显著,而午后VOCs体积分数降低,期间OVOCs占比呈现上升趋势,下午的光化学反应和气象要素对VOCs体积分数和组成影响较大.北京市城区夏季OFP为154.64μg·m-3,贡献率较高的组分是芳香烃、 OVOCs和烯/炔烃,正己醛、乙烯和间/对-二甲苯等是关键活性物种,削减机动车、溶剂使用和餐饮源排放是北京市城区夏季控制O3  相似文献   

10.
青藏高原背景站大气VOCs浓度变化特征及来源分析   总被引:2,自引:1,他引:2  
白阳  白志鹏  李伟 《环境科学学报》2016,36(6):2180-2186
采用大气预浓缩与气象色谱/质谱联用法,对2013-09-13到2013-10-14期间在国家大气背景站青海门源站所采集的大气样品进行分析.结果显示,本次研究共检测出38种挥发性有机物(VOCs),其中烷烃16种,烯烃11种,芳香烃9种,卤代烃2种.从组成成分来看,烷烃所占比例最大,达58.6%,烯烃和芳香烃分别占29%和10.5%,卤代烃所占比例最小,仅为1.7%.观测期间大多数VOCs物种呈现白天浓度低、夜晚浓度高的变化趋势,具有明显的高原站点特性,但异戊烷、异戊二烯、甲苯则呈现相反趋势.采用臭氧生成潜势(OFP)对VOCs各组分活性进行分析,各类VOCs中烯烃对OFP贡献最大.利用主成分分析VOCs物种,提取出4个因子,分别归类于燃烧源、天然气和液化石油气的泄露、工业源、生物源.结合HYSPLIT 4.0后向轨迹模型,进一步确定气团的来源与运输途径,发现来自南向的污染源贡献是门源地区VOCs物种浓度增加的主要原因.  相似文献   

11.
成都双流夏秋季环境空气中VOCs污染特征   总被引:1,自引:4,他引:1  
邓媛元  李晶  李亚琦  吴蓉蓉  谢绍东 《环境科学》2018,39(12):5323-5333
为了解成都市大气污染重点防治区域——双流地区的环境大气中挥发性有机物(VOCs)的污染特征和来源,2016年8月30日~2016年10月7日,VOCs外场观测在成都市双流区展开.结果表明,在线观测期间,采样站点总的大气挥发性有机物(TVOCs)的平均体积分数为(45. 15±43. 74)×10-9,其中烷烃的贡献最大(29%),其次是芳香烃(22%)、卤代烃(17%)、含氧挥发性有机物(OVOCs,15%)、烯烃(9%)、乙炔(7%)、乙腈(1%);优势物种为丙酮、二氯甲烷、乙炔、乙烯、苯、甲苯、间/对-二甲苯、丙烷、1,2-二氯乙烷以及丁酮.通过比较VOCs的化学反应消耗速率发现,反应活性最大的为芳香烃,其次是烯烃;反应活性最强的物种为苯乙烯、间/对-二甲苯、异戊二烯、乙烯等.整个观测期间,有两次明显的生物质燃烧活动.国庆假日期间,TVOCs浓度相比之前明显上升,平均体积分数达57. 65×10-9,其中,短链烯烃、卤代烃以及OVOCs浓度上升最为显著.分析某些关键的非甲烷总烃(NMHCs)和OVOCs的日变化特征发现,其变化规律反映了双流地区不同源排放特点.双流区环境空气中VOCs受本地工业源排放影响较大.  相似文献   

12.
南京北郊秋季VOCs及其光化学特征观测研究   总被引:6,自引:21,他引:6  
采用GC5000挥发性有机物在线监测系统和EMS系统,于2011年11月在南京北郊开展了为期一个月的连续观测,分别测量了大气中56种VOCs组分和反应性气体(NOx、CO和O3).结果表明,南京北郊的VOCs小时平均体积分数大约在48.17×10-9,日变化呈明显双峰型特征,受机动车影响比较显著,极小值出现在下午16:00,白天与O3浓度曲线呈负相关;VOCs的平均OH消耗速率常数约为3.26×10-12cm3.(molecule.s)-1,最大增量反应活性约为3.26 mol·mol-1;烯烃对OH消耗速率(LOH)和臭氧生成潜势(OFP)贡献率最大,芳香烃次之,而烷烃在大气中含量最为丰富,却并不是LOH和OFP主要贡献者;VOCs关键活性组分是乙烯、丙烯、1-丁烯、间,对-二甲苯及异戊二烯等物质;臭氧生成过程处于VOCs控制区.  相似文献   

13.
唐山夏秋季大气质量观测与分析   总被引:5,自引:4,他引:5  
为了研究唐山市大气污染状况和其在奥运期间对北京及周边地区的影响,于2007年、2008年夏秋季节,使用全自动在线观测仪器对唐山市大气质量进行连续观测研究.结果表明,唐山大气细粒子PM2.5夏季平均浓度为105.1μg.m-3±46.5μg.m-3,秋季为108.1μg.m-3±61.8μg.m-3;O3小时浓度最大值夏季平均为153.9μg.m-3±50.9μg.m-3,秋季为114.6μg.m-3±56.5μg.m-3;NO2的夏、秋季节平均浓度分别为39.2μg.m-3±10.0μg.m-3与42.7μg.m-3±11.6μg.m-3;SO2夏、秋季节平均浓度分别为44.8μg.m-3±31.1μg.m-3、52.2μg.m-3±25.2μg.m-3;大气氧化性Ox(O3+NO2)夏季平均为111.9μg.m-3±27.0μg.m-3,秋季为87.2μg.m-3±27.8μg.m-3.唐山市大气细粒子污染严重,是京津冀地区细粒子的主要源之一;SO2、NO2浓度比周边地区高,但并未超过国家二级标准,NO2主要源于汽车尾气排放,长期变化小;O3浓度相对周边地区较低,但当地O3前体物(NOx)相对高排放对区域内臭氧生成的影响尚不清楚.北京奥运期间,受减排措施影响唐山大气污染物浓度均有不同程度的下降,其中SO2、PM2.5下降最为显著.奥运减排措施可以作为改善唐山大气质量的有效手段.  相似文献   

14.
利用在线监测仪器获取了武汉市2019年6~7月环境大气中102种挥发性有机物(VOCs)小时浓度数据.观测期间ρ(VOCs)范围为24.9~254μg·m-3,平均值为(67.7±32.2)μg·m-3.依据臭氧浓度标准,将观测期间划分为清洁日和污染日,对比分析清洁日和污染日气象条件、 VOCs浓度、组成、臭氧生成潜势和来源差异.污染日NOx、 CO和VOCs的平均值分别超出清洁日34.9%、 25.0%和27.8%.污染日烷烃、烯烃、芳香烃和含氧VOCs分别比清洁日高40.7%、 39.5%、 26.9%和21.5%.污染日总臭氧生成潜势为(102±69.6)μg·m-3,超出清洁天33.5%.污染日液化石油气燃烧、工业排放、机动车排放、天然源和溶剂使用的平均贡献率分别比清洁日低3.4%、 2.5%、 0.2%、 1.3%和1.4%,油气挥发源平均贡献率比清洁日高8.8%.机动车排放源和油气挥发源的日变化均呈现早晚高、午后低的特征,与早晚高峰排放有关;LPG燃烧的日变化与餐饮油烟排放变化一致.浓度...  相似文献   

15.
2018年夏季和秋季对连云港城区不同功能区开展大气VOCs采样,利用预浓缩系统和气相色谱质谱联用技术分析定量了107种VOCs物种,并利用最大增量反应活性(MIR)估算了大气VOCs的臭氧生成潜势(OFP).结果表明,连云港市城区大气VOCs平均体积分数为(22. 1±13. 1)×10-9,C2~C4的烷烃和烯烃、丙酮及乙酸乙酯是主要的VOCs物种,占TVOCs含量的59. 8%~75. 8%.不同功能区VOCs浓度排序为工业区[(28. 4±13. 5)×10-9]>风景区[(21. 7±4. 4)×10-9]>交通居民混合区[(20. 8±7. 2)×10-9].秋季VOCs浓度显著高于夏季,秋季工业区浓度最高(35. 4×10-9),夏季风景区VOCs浓度最高(21. 5×10-9).烷烃、含氧硫化合物和卤代烃是最主要的VOCs组分,分别占TVOCs浓度的35. 3%、26. 9%和15. 6%,受工业排放影响工业区含氧硫化合物含量显著...  相似文献   

16.
济南市夏季环境空气VOCs污染特征研究   总被引:4,自引:5,他引:4  
刘泽常  张帆  侯鲁健  刘玉堂  吕波 《环境科学》2012,33(10):3656-3661
对济南市2010年夏季环境空气中56种挥发性有机物进行在线气相色谱监测,分析其污染特征及其与气象条件的关系.结果表明,济南市环境空气监测的56种VOCs中主要为烷烃、芳香烃和烯烃,占总监测挥发性有机物的98.2%;6、7月济南市环境空气VOCs浓度整体稳定,8月中下旬浓度明显偏高,且夏季VOCs成分质量百分比随温度有一定变化;VOCs浓度日变化规律曲线在晴天都有明显的双峰特征,分别出现在每天车流量高峰时段,降雨时无明显双峰特征且浓度偏大;济南市环境空气夏季VOCs浓度与风速、日照时间成负相关性,大气稳定度较高时,污染物不易扩散,VOCs浓度呈增长趋势.济南市VOCs的排放源主要是工业排放和机动车排放、汽油的挥发和泄漏等.  相似文献   

17.
曹梦瑶  林煜棋  章炎麟 《环境科学》2020,41(6):2565-2576
2018年秋季在南京利用大气挥发性有机物(volatile organic compounds, VOCs)吸附浓缩在线监测系统(AC-GCMS 1000)对大气VOCs进行连续观测,以了解其化学特征、臭氧生成潜势和污染来源.结果表明,南京秋季大气VOCs体积分数为(64.3±45.6)×10-9,以烷烃(33.1%)、含氧挥发性有机物(OVOCs)(22.3%)及卤代烃(21.8%)为主.VOCs的昼夜变化呈"双峰型"变化特征,高值主要出现在清晨的06:00~07:00及夜间的18:00~20:00,主要受机动车排放及气象要素的共同影响.秋季南京VOCs的臭氧生成潜势(ozone formation potential, OFP)为267.1μg·m-3,主要贡献物种是芳香烃类化合物(55.2%)和烯烃类化合物(20.8%).PMF受体模型源解析确定5个VOCs来源,分别是交通排放(34%)、工业排放(19%)、LPG排放(17%)、涂料及有机溶剂挥发(16%)以及生物质燃烧和燃煤排放(14%),因此控制南京工业区秋季大气污染应主要着力于交...  相似文献   

18.
某石油化工园区秋季VOCs污染特征及来源解析   总被引:2,自引:4,他引:2  
利用快速连续在线自动监测系统对某典型石油化工园区2014年秋季(9、10、11月)大气中VOCs进行监测,并对其组成、光化学反应活性、时间变化特征和来源进行解析.结果表明:秋季大气中VOCs的混合体积分数明显高于国内外其他城市和工业地区,且烷烃是大气中VOCs的最主要成分.研究区秋季3个月份大气中VOCs的混合体积分数之间差异不显著,但各种烃类的日夜变化特征明显:烷烃、烯烃和芳香烃呈现"单峰单谷"变化趋势,乙炔的变化趋势呈"W"型.PMF受体模型解析结果表明主要来源于天然气交通及溶剂、炼油厂的泄漏或挥发等过程,其次为其他交通来源,沥青对于研究区VOCs来源也有一定的贡献.等效丙烯体积和最大臭氧生成潜势对VOCs的光化学反应活性计算结果表明,烯烃和烷烃分别是各自混合体积分数的最主要的贡献者.  相似文献   

19.
为了解大连市环境空气挥发性有机物(VOCs)污染特征及来源,基于2020年6~8月高时间分辨率VOCs在线观测数据,对大连市大气VOCs的浓度水平、组成特征、反应活性及来源情况进行了分析.结果表明φ(VOCs)的平均值为(10.21±5.71)×10-9,其中烷烃占比为66.35%,烯烃为11.89%,炔烃为7.75%,芳香烃为14.01%.VOCs和NOx呈现夜间高,白天低的特征,而O3变化趋势相反.综合考虑物种活性,确定甲苯、乙烯、间/对-二甲苯、1-己烯、正丁烷、异戊烷、正戊烷和异戊二烯是影响大连市大气VOCs的关键物种,优先控制烯烃和芳香烃类化合物的排放是改善大连市夏季O3污染的关键.PMF源解析结果显示交通源(26.38%)、燃烧源(22.75%)、工业排放源(17.09%)、溶剂使用源(14.59%)、天然源(11.72%)和其他(7.47%)为监测期间VOCs的主要来源,交通源和燃烧源排放是大连市夏季O3防控的重点污染源.  相似文献   

20.
为评估成都市2017年夏季(6-8月)开展的臭氧防治行动措施对空气质量的改善效果,采用在线监测系统对成都市环境空气中VOCs物种进行监测,对比分析VOCs污染特征、OFP(臭氧生成潜势),并利用PMF(正矩阵因子法)模型对VOCs主要来源进行解析.结果表明:2017年8月$φ$(VOCs)平均值为31.85×10-9,比2016年同期下降了32%,其中,$φ$(芳香烃)和$φ$(卤代烃)平均值下降最为明显.$φ$(VOCs)日变化呈双峰型,分别在每日09:00和23:00左右达峰值,臭氧防治行动期间$φ$(VOCs)月均小时值低于2016年同期.VOCs的OFP敏感性物种以烯烃为主,占总VOCs OFP贡献的48%.2017年8月成都市OFP为61.89×10-9,比2016年同期下降44%.VOCs源解析结果发现,2017年8月油气挥发源、有机溶剂使用源、工业源、生物质燃烧源等排放占比均有所下降,而机动车排放源和天然源的排放占比增加.研究显示,成都市2017年夏季臭氧防治行动对成都市大气VOCs排放有明显的控制效果.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号