首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
本文介绍了表面活性剂及其在有机污染土壤化学淋洗吸附技术中的应用,具体阐述了从表面活性剂淋洗废水中回收表面活性剂淋洗液的常用方法,并对主要方法进行了评价和比较,显示有机膨润土吸附法为经济有效的回收表面活性剂的方法,并简述了膨润土吸附表面活性剂的机理。  相似文献   

2.
生物表面活性剂在土壤修复及堆肥中应用现状展望   总被引:7,自引:0,他引:7  
对国内外关于生物表面活性剂在土壤中有机污染物和重金属污染物去除方面的应用现状进行了较全面的综述,分析了生物表面活性剂提高污染物去除效率的作用机理,并且对其在堆肥中的应用前景进行了展望。  相似文献   

3.
阴-阳离子有机膨润土吸附水中苯胺、苯酚的性能   总被引:48,自引:3,他引:45  
首次用阴、阳离子表面活性剂改性膨润土 ,制得一系列阴 -阳离子有机膨润土 ,表征了有机膨润土的结构特征 ;研究了阴 -阳离子有机膨润土吸附水中苯酚、苯胺等有机物的性能及影响因素 ,并初步探讨了其吸附机理 .结果表明 ,阴 -阳离子有机膨润土的层间距和有机碳含量与改性时阴、阳离子表面活性剂的组成和配比有关 ;阴 -阳离子表面活性剂在有机膨润土中形成了增溶 (分配 )作用较强的有机相 ,从而对水中的有机污染物产生协同去除效应 .  相似文献   

4.
阴离子表面活性剂是环境中分布广泛且具有代表性的一类有机污染物。采用分置式膜生物反应器(MBR)进行去除模拟废水中阴离子表面活性剂(LSS)的实验.结果表明:MBR对阴离子表面活性剂的去除率高于90%。同时考察了阴离子表面活性剂生物降解的影响因素,确定其适宜降解蒂件为:气体流量为0.3m^3/h、活性污泥浓度为6948mg/L。初步探计了降解动力学和降解机理,研究表明对阴离子表面活性剂的去除符合拟一级反应动力学过程,且生物降解对其去除起主要作用。  相似文献   

5.
为了解决高浓度氯酚土壤污染问题,提出了一种表面活性剂淋洗与投菌法相结合的土壤修复方法。该方法采用表面活性剂淋洗污染土壤,使高浓度氯酚得到大部分去除后再加入微生物降解菌,从而实现低浓度氯酚的持续降解。通过2,4,6-三氯苯酚(2,4,6-TCP)的增溶实验、吸附实验以及表面活性剂的酶抑制实验,对蔗糖酯(SE)、鼠李糖脂(RL)、茶皂素(TS)、脂肪醇聚氧乙烯醚(AEO-9)4种表面活性剂进行了筛选。结果表明,SE增溶、解吸的综合效果较好,且具备良好的生物相容性,适用于淋洗有机污染土壤。淋洗-投菌联合实验表明,以0.5wt%蔗糖酯水溶液作为淋洗剂淋洗土壤并投菌降解,25 d内土壤中的2,4,6-三氯苯酚从190.4降至3.1 mg/kg,去除率达到98.4%。  相似文献   

6.
异位土壤淋洗修复技术应用进展分析   总被引:5,自引:0,他引:5  
阐述了异位土壤淋洗法的流程、优势和局限性,分析了影响修复效果和费用的因素。并按淋洗方法和淋洗剂对土壤淋洗法进行了分类,在此基础上对近年来土壤淋洗在重金属和有机污染物污染土壤修复的应用进行了回顾和评价,列举了典型的研究和应用实例。土壤淋洗法在我国的研究和应用还有较大不足,今后需要在淋洗技术、淋洗装置与设备、新型淋洗剂,特别是生物表面活性剂和天然螯合剂等方面加强研究,并通过与其他土壤修复技术的联用,提高土壤异位淋洗技术的实用性,使其得以进一步改进和推广。  相似文献   

7.
基于表面活性剂的重金属去除技术   总被引:4,自引:0,他引:4  
表面活性剂因具有亲水亲脂的两亲性,已被广泛用来治理环境污染。介绍了表面活性剂在去除环境重金属中的应用,重点探讨了基于表面活性剂的液膜分离技术、胶团强化超滤技术、液泡吸收技术、改性吸附技术、异位淋洗技术、植物萃取技术等,并指出表面活性剂的应用前景是研究开发环境友好性的生物表面活性剂。  相似文献   

8.
应用表面活性剂治理包气带石油污染的研究   总被引:6,自引:0,他引:6  
为了探讨地下水石油污染的治理方法,应用灌注表面活性剂溶液法去除地下不系统中包气带石油类物质污染的实验研究。从市售9种非离子型表面活性剂中优选出AEO-9和SA-202种脂肪醇聚氧乙烯醚类表面活性剂,确定了实验条件下的最佳去油浓度,1次改造清洗效率最高达94%,土柱淋洗与块状石灰岩柱淋洗也取得较满意的结果。  相似文献   

9.
开关表面活性剂在环境中主要应用于处理土壤及地下水系统中疏水性有机污染物,污染物多环芳烃(PAHs)是目前其应用研究的热点. 本文详细阐述了开关表面活性剂对土壤及地下水中PAHs污染的可逆增效机理,增效机理基于开关表面活性剂胶束形态的改变;汇总了常用于土壤及地下水PAHs污染修复的三类开关型表面活性剂,通过比较光开关型、CO2/N2开关型和氧化还原开关型在开关前后的表面活性理化指标来解释其微观调控特征,认为微观调控基于其响应基团发生化学反应;重点总结了这三类开关表面活性剂在改变表面张力的可逆性与对PAHs增溶的可逆性上具备的优缺点;阐述了开关表面活性剂在实际应用中可能受很多外界因素的影响,并重点关注温度、pH、无机离子和土壤矿物对其的影响. 今后需通过一定规模的野外场地试验,探究多种环境因素动态耦合对开关表面活性剂增溶PAHs的影响机制,厘清在环境因素动态耦合下不同调控方式与分离效率之间的关系,为筛选适合不同环境的开关表面活性剂提供理论数据支撑.   相似文献   

10.
PDADMAC强化絮凝去除腐殖质类天然有机污染物的研究   总被引:6,自引:0,他引:6  
以不同来源的腐殖质为典型有机污染物,进行了聚二甲基二烯丙基氯化铵(PDADMAC)强化絮凝去除溶解性腐殖质的研究和机理讨论.结果表明,复合PDADMAC使絮凝剂投量减少了60%以上,出水DOC和色度的去除率分别增加了60%和90%左右.不同来源腐殖质的负电性对PDADMAC强化絮凝去除腐殖质的影响强于其疏水性的影响.有机阳离子絮凝剂PDADMAC 强化絮凝去除溶解性腐殖质的絮凝机理主要表现为专属吸附作用,即在无机高分子絮凝剂PAC水解絮凝的过程中,高正电性的PDADMAC吸附于PAC水解产物的表面上,增强了其吸附电中和与专属吸附作用,从而提高了其对溶解性腐殖质的去除率.  相似文献   

11.
Foam flushing is an in situ soil remediation technology based on the traditional surfactant flushing method. The contribution of mobility control to contaminant removal by foam is helpful for improving this technology. Foam flushing of polychlorinated biphenyl (PCB)-contaminated unconsolidated media was performed to evaluate the effect of the partition coefficient (PC) and sweep efficiency (SE) on PCB removal. Column flushing with surfactant solution and foam with different types and concentrations of surfactant was carried out for PCB removal. Two types of quartz sand were investigated to evaluate the Jamin effect on the SE value of the washing agent. The results demonstrate that a small PC value and large SE value are necessary to achieve high PCB removal for foam flushing. Compared with solution flushing, the introduction of foam can effectively control the mobility of the washing agent. Similar to solution flushing, solubilization is a key factor which dominates the removal of PCBs in foam flushing. In addition, the SE value and PCB removal by foam flushing is less affected by particle size. Therefore, foam flushing was proved to be more effective in porous media with low hydraulic conductivity and high porosity. An integrated flushing with water, surfactant solution and foam was performed and the results prove that this technology successfully combines the advantages of solution solubilization and mobility control by foam, and thus further increases the remediation efficiency of PCBs to 94.7% for coarse sand.  相似文献   

12.
选择四氯乙烯(PCE)作为特征污染物,通过二维砂箱实验探究3种介质情景中,污染源区结构特征对Tween 80冲洗去除PCE的影响.采用透射光法监测PCE的运移及去除过程,定量测定PCE的饱和度.进而采用不连续的离散状与连续的池状PCE体积比(GTP)定量表征污染源区结构特征.结果表明,PCE在含透镜体介质中运移时,运移路径延长,离散状PCE增多.离散状PCE与Tween 80溶液的有效接触面积较大,被优先溶解去除,而细砂层上部的污染池的比表面积和接触面积较小,溶解能力有限,远比运移路径上的PCE难以去除.此外,初始离散状PCE较多,GTP较大,有利于池状PCE溶解转变为离散状PCE,PCE去除率增大.因此对于实际污染场地,需要详细分析DNAPLs污染源区结构特征,以助于评估表面活性剂冲洗技术的修复效率及试剂消耗.  相似文献   

13.
赵寒  董军  夏添  梁雪  李文德 《中国环境科学》2021,41(4):1634-1641
利用氨基酸双子表面活性剂N,N'-双月桂酰基乙二胺二丙酸钠(DLMC)及其复配体系来提高四氯乙烯(PCE)在地下水中的溶解性,强化去除效果.测定了DLMC的初级生物降解性并将其与短链醇(异丙醇IPA,乙醇)和传统表面活性剂十二烷基硫酸钠(SDS),辛基苯基聚氧乙烯醚(TX-100)和聚氧乙烯脱水山梨醇单油酸酯(Tween80)复配.结果表明,DLMC的生物降解度超过99%,具备良好的生物降解性;筛选出DLMC-IPA (1:4)和DLMC-Tween80(1:1)两个PCE污染柱冲洗剂配方,40g/L作用浓度下其增溶浓度分别为18329,16906mg/L;DLMC-Tween80(1:1)对PCE污染柱的冲洗效果最好,冲洗效率为9.87(g PCE/L冲洗液),较DLMC单体系提升16%.  相似文献   

14.
利用表面活性剂胶态微泡沫冲洗技术来提高四氯乙烯(PCE)在地下水的溶解性和流动性,提高污染物迁移通量,强化去除效果.主要工艺参数和影响因素对泡沫稳定性的影响,结果表明4000r/min的搅拌转数即可产生稳定的胶态微泡沫,泡沫稳定性随表面活性剂浓度增大有小幅度提高,PCE对泡沫稳定性有不利影响;胶态微泡沫在含水层的迁移规律表明,泡沫前端迁移时不断破裂并气液分离,形成气体在上部,液体在下部,后续泡沫稳定向前推流的迁移模式,泡沫在含水层中受到地下水的静水压力,与在土壤迁移相比其体系压力更大,泡沫破裂更严重、迁移速率更慢;和液体冲洗相比,泡沫冲洗对PCE增溶增流效果明显,介质粒径为0.1~0.25mm、0.25~0.5mm和0.5~1mm时,PCE去除率分别达到83.7%、90.8%和98.2%,介质粒径越大,去除效果越明显.  相似文献   

15.
选取了国内两个典型垃圾焚烧厂飞灰,在对飞灰基本理化特性进行分析的基础上,对比了水洗、加气水洗(通CO2)、加气水洗+加碳酸盐水洗3种预处理方法的脱氯效果.结果表明,2种飞灰中氯含量均较高,分别达16.95%和20.52%.水洗预处理后氯的最高去除率分别达87.54%和90.12%.升高水洗温度对氯的去除贡献不明显.加气水洗可显著提高氯的去除率,2种飞灰氯的去除率分别达93.69%和99.19%,脱氯效果明显高于水洗脱氯.加气水洗虽提高了氯盐的去除率,但液相中依然残留有高浓度钙离子.在加气水洗的基础上,向反应体系中加入碳酸盐,可有效降低溶解性钙离子含量.通过对预处理飞灰进行XRD矿物相分析,发现加气碳酸化水洗较纯水洗过程去除了更多的难溶性氯盐,且处理后飞灰组分以碳酸钙和硫酸钙为主.采用《水泥化学分析方法(GB/T176-2017)》对加气水洗后飞灰进行测定,其氯含量低于1%,满足《生活垃圾焚烧飞灰污染控制技术规范(HJ1134-2020)》中资源化利用标准.  相似文献   

16.
利用透明复制裂隙模型,选择两种典型LNAPL(轻非水相液体)-邻二甲苯和十二烷残留体,开展一系列水流驱替冲刷和SDS(十二烷基磺酸钠)表面活性剂增强驱替实验,直接获取了裂隙内部LNAPL残留体几何形状与分布情况,结果表明:水流驱替冲刷和SDS驱替裂隙内残留体的去除率分别为8.3%~12.3%和65.9%~82.1%.残留体累积去除率随着驱替流体雷诺数的增加而增加.水流驱替冲刷条件下,残留体离散为小液滴,数量比初始残留状态增加1.3~2.2倍.SDS表面活性剂降低了"LNAPL-水"间的界面张力,能够有效去除裂隙内较大残留体,驱替后仅残余单个面积为1mm2左右的微小液滴.由于粗糙裂隙的非均质性,水流冲刷易导致系统内的"LNAPL-水"有效界面面积增加,对LNAPL污染修复不利,表面活性剂增强修复是一种更有效的方法.  相似文献   

17.
不同淋洗剂对镍污染砂土的柱淋洗研究   总被引:1,自引:0,他引:1  
比较了去离子水、阴离子表面活性剂十二烷基硫酸钠(SDS)、盐酸和柠檬酸对模拟污染砂土中镍(Ⅱ)的柱淋洗作用。SDS浓度为500、1000、1750、2500和3250mg/L,盐酸溶液pH值为0.8、1、2和3,柠檬酸溶液浓度为0.01、0.04、0.1和0.4mol/L。结果表明,几种淋洗剂对土柱中镍的淋洗曲线规律相似,即在淋洗液孔隙体积数为0.5时开始有镍淋出,随着累计孔体积数目的增大,淋洗液中镍的浓度逐渐开始增大,迭到峰值时又开始减小。在去离子水淋洗过程中,镍最大淋出浓度为90.8mg/L;五种不同浓度SDS淋洗过程中,镍最大淋出浓度分别为92.4、90.2、94.1、51.0和53.7mg/L;四种不同pH值的盐酸溶液对应的镍最大淋出浓度分别为959.5、753.3、56.3和23.9mg/L;四种不同浓度的柠檬酸对应的镍最大淋出浓度分别为318.6、793.4、930.1和1464.4mg/L。pH=1的盐酸溶液对镍的淋洗去除率最高为87.3%,其次是浓度为0.1mol/L的柠檬酸溶液,去除率为83.2%;SDS的淋洗效率低,与去离子水相当。0.1mol/L的柠檬酸溶液可为污染土壤重金属镍淋洗用试剂。  相似文献   

18.
气水比回流比及冲击负荷对BAF的影响   总被引:11,自引:1,他引:10  
研究气水比、回流比及冲击负荷对BAF前置反硝化工艺的影响。研究结果表明BAF前置反硝化工艺最佳气水比为 3∶1 ,最佳回流比为 2 0 0 %。该工艺具有较强的抗冲击负荷能力 ,COD的最佳去除负荷可达 7.70 4kg/ (m3·d) ,NH3-N的最大去除负荷为 1 .2 85kg/ (m3·d) ;水力负荷对COD的去除影响较小 ,对NH3-N、TN的去除影响较大 ,宜将水力负荷控制在 2 .39m/h以下  相似文献   

19.
Phytoremediation and soil washing are both potentially useful for remediating arsenic(As)-contaminated soils.We evaluated the effectiveness of a combined process coupling phytoremediation and in situ soil flushing for removal of As in contaminated soil through a pilot study.The results showed that growing Pteris vittata L.(P.v.) accompanied by soil flushing of phosphate(P.v./Flushing treatment) could significantly decrease the total As concentration of soil over a 37 day flushing period compared with the single flushing(Flushing treatment).The P.v./Flushing treatment removed 54.04% of soil As from contaminated soil compared to 47.16% in Flushing treatment,suggesting that the growth of P.vittata was beneficial for promoting the removal efficiency.We analyzed the As fractionation in soil and As concentration in soil solution to reveal the mechanism behind this combined process.Results showed that comparing with the control treatment,the percent of labile arsenate fraction significantly increased by 17% under P.v./Flushing treatment.As concentration in soil solution remained a high lever during the middle and later periods(51.26–56.22 mg/L),which was significantly higher than the Flushing treatment.Although soil flushing of phosphate for more than a month,P.vittata still had good accumulation and transfer capacity of As of the soil.The results of the research revealed that combination of phytoremediation and in situ soil flushing is available to remediate As-contaminated soils.  相似文献   

20.
Reversible double water in oil in water (W/O/W) emulsions were developed to contain subsurface hydrocarbon spills during their remediation using surfactant flushing. Double emulsions were prepared by emulsifying CaCl2 solutions in canola oil, and subsequently by emulsifying the W/O emulsions in aqueous sodium alginate solutions. The formation of double emulsions was confirmed with confocal and optical microscopy. The double emulsions reversed and gelled when mixed with the surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CPB). Gels can act as ‘emulsion locks’ to prevent spreading of the hydrocarbon plume from the areas treated with surfactant flushing, as shown in sand column tests. Shear rheology was used to quantify the viscoelastic moduli increase (gelation) upon mixing the double emulsion with SDS and CPB. SDS was more effective than CPB in gelling the double emulsions. CPB and SDS could adsorb at the interface between water and model hydrocarbons (toluene and motor oil), lowering the interfacial tension and rigidifying the interface (as shown with a Langmuir trough). Bottle tests and optical microscopy showed that SDS and CPB produced W/O and O/W emulsions, with either toluene or motor oil and water. The emulsification of motor oil and toluene in water with SDS and CPB facilitated their flow through sand columns and their recovery. Toluene recovery from sand columns was quantitated using Gas-Chromatography Mass-Spectroscopy (GC-MS). The data show that SDS and CPB can be used both for surfactant flushing and to trigger the gelation of ‘emulsion locks’. Ethanol also gelled the emulsions at 100 mL/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号