首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polycyclic aromatic hydrocarbon (PAH) content was determined in the inner tissue of various vegetable species and their growing environment (soil and atmosphere) in the greater industrial area of Thessaloniki, northern Greece. The lower molecular weight compounds dominated in both vegetable leaves and roots. Statistical analysis of variance showed that species and season are the factors that significantly affect PAH concentrations in inner vegetable tissue and soil, respectively. Principal component analysis indicated that the mixture of PAHs in inner vegetable tissue was very similar to that in air vapour thus suggesting gaseous deposition as the principal pathway for the accumulation of PAHs. Soil-to-vegetation and air-to-vegetation bioconcentration factors were calculated and their relationships with PAHs' physicochemical properties were investigated. Solubility and the octanol-water partition coefficient, as well as vapour pressure and the octanol-air partition coefficient were proved to be good predictors for the accumulation of PAHs in inner root and leaf tissue, respectively.  相似文献   

2.
Total suspended particle (TSP) concentrations were determined in the Eordea basin (western Macedonia, Greece), an area with intensive lignite burning for power generation. The study was conducted over a one-year period (November 2000–November 2001) at 10 sites located at variable distances from the power plants. Ambient TSP samples were analyzed for 27 major, minor and trace elements. Annual means of TSP concentrations ranged between 47 ± 33 μg m−3 and 110 ± 50 μg m−3 at 9 out of the 10 sites. Only the site closest to the power stations and the lignite conveyor belts exhibited annual TSP levels (210 ± 97 μg m−3) exceeding the European standard (150 μg m−3, 80/779/EEC). Concentrations of TSP and almost all elemental components exhibited significant spatial variations; however, the elemental profiles of TSP were quite similar among all sites suggesting that they are affected by similar source types. At all sites, statistical analysis indicated insignificant (P < 0.05) seasonal variation for TSP concentrations. Some elements (Cl, As, Pb, Br, Se, S, Cd) exhibited significantly higher concentrations at certain sites during the cold period suggesting more intense emissions from traffic, domestic heating and other combustion sources. On the contrary, concentrations significantly higher in the warm period were found at other sites mainly for crustal elements (Ti, Mn, K, P, Cr, etc.) suggesting stronger influence from soil resuspension and/or fly ash in the warm months. The most enriched elements against local soil or road dust were S, Cl, Cu, As, Se, Br, Cd and Pb, whereas negligible enrichment was found for Ti, Mn, Mg, Al, Si, P, Cr. At most sites, highest concentrations of TSP and elemental components were associated with low- to moderate-speed winds favoring accumulation of emissions from local sources. Influences from the power generation were likely at those sites located closest to the power plants and mining activities.  相似文献   

3.
Trace metal uptake was measured for tropical and temperate leafy vegetables grown on soil from an urban sewage disposal farm in the UK. Twenty-four leafy vegetables from East Africa and the UK were assessed and the five vegetable types that showed the greatest Cd concentrations were grown on eight soils differing in the severity of contamination, pH and other physico-chemical properties. The range of Cd concentrations in the edible shoots was greater for tropical vegetables than for temperate types. Metal uptake was modelled as a function of (i) total soil metal concentration, (ii) CaCl2-soluble metal, (iii) soil solution concentration and (iv) the activity of metal ions in soil pore water. Tropical vegetables were not satisfactorily modelled as a single generic ‘green vegetable’, suggesting that more sophisticated approaches to risk assessment may be required to assess hazard from peri-urban agriculture in developing countries.  相似文献   

4.
This study describes the spatial and the seasonal variation of flux and concentration of 11 metals (Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Zn), organic matter and C and N in settling particulate matter collected with sediment traps during seven interconnective, continuous periods totalling 15 months. Ten sediment traps were placed out along the metropolis-affected fresh water outflow of Lake M?laren, out through a non-tidal estuarine-like region with a low salt content, through the Stockholm archipelago to the Baltic. The metal concentrations of the particles were analysed with AAS using the flame technique and the amounts of C and N were determined with elemental analysis (CHN). The flux of particulate matter and of all metals decreased rapidly outwards in a gradient from the innermost stations. The distribution and composition of the particles were dominated by variations in the runoff from Lake M?laren and by the seasonal dependence on primary production. However, they were also influenced locally by the supply of nutrients via water treatment plant effluents and probably by the special sedimentation conditions in the mixing zones and by resuspension. The concentrations of Cu, Hg, Pb and Cd in the interior of the area under investigation were the most elevated of the elements and decreased markedly further out in the archipelago, indicating local anthropogenic input. Zn, Cr and Fe also showed signs of supply from the urbanized environment. The flux of most of the metals studied displayed both spatial and seasonal correlation with the weight (TPM) of the material, whereas seasonal variation of Cd was correlated to its volume (TPV) and concentration of organic matter (POM, PC and PN).  相似文献   

5.
Nguyen HT  Kim KH  Kim MY  Kang CH  Shim SG 《Chemosphere》2008,71(11):2017-2029
The concentrations of total gaseous mercury (TGM) and its relevant environmental parameters were measured at a highly industrialized area in the Ban Wall industrial complex (BWIC) in An San city, Korea from March to May 2005. The mean concentrations of Hg measured during the entire study period were computed to be 6.32 ± 8.56 ng m−3 (range of 2.32–181 ng m−3; N = 1160). Due to the effects of strong man-made activities, the significantly high Hg concentration levels (e.g., at or above 10 ng m−3) comprised about 7.5% of all data with the mean of 21.8 ± 26.3 ng m−3 (N = 87). By separating the data into daytime and nighttime periods, the Hg values exhibited a notable daytime enhancement possibly due to strong man-made activities during working hours. The results of the correlation analysis indicated the possible relationship between the Hg concentration and the temperature as well as several pollutant species (e.g., NO2 and NOx). Evaluation of the Hg data in relation with the air mass transport pattern confirms that the Hg concentration levels in this industrial area are affected most eminently by local, rather than distant, pollution sources.  相似文献   

6.
To understand the metal distribution characteristics in a rapidly urbanized area, we collected and analyzed particulate matter (PM) samples for the metal concentrations. Using our measurement data for various metal species, we examined both the extent of metal pollution in the study area and the seasonality in their distribution characteristics. Results showed that each metal exhibited their occurrences in diverse concentration ranges over several orders of magnitude such as the mean values ranging from minimum value of 0.07 (Be) to maximum value of 1633 ng m(-3) (Fe). In addition, the extent of metal pollution in the study area was in general comparable with those typically observed from a strongly polluted urban area, if comparison was made with the results of previous studies. Examinations of their temporal distribution patterns indicated that most of metals tend to exhibit seasonal peaks during winter (or spring) seasons, similarly to the observed pattern for PMs. Moreover to explain the factors regulating their mobilization properties, the data were analyzed through the application of correlation analysis. Results of our correlation analysis showed that most metals can exhibit strong positive correlations each other, while they tend to be inversely correlated with most of important meteorological parameters (including air temperature and precipitation). Based on the overall results of our study, we conclude that the site may be strongly impacted by man-made sources but that many characteristics of their cycling are not significantly different from those generally observed from natural environments.  相似文献   

7.
Concentrations of the elements aluminium, arsenic, cadmium, chromium, cobalt, copper, lead, mercury, nickel, selenium and zinc in liver, and of nickel in kidneys, were studied in reindeer, moose and sheep from South Varanger in eastern Finnmark and comparable districts in western Finnmark, Norway. The study included samples from 31 reindeer, 10 moose and 10 sheep from Jarfjord (South Varanger); 31 reindeer, 27 moose and 15 sheep from Pasvik (South Varanger); and 40 reindeer, 16 moose and 15 sheep from western Finnmark. Levels of arsenic, copper, nickel and selenium were much higher in reindeer from one or both areas in South Varanger than in reindeer from western Finnmark. Levels of chromium, cobalt and zinc were also significantly higher in South Varanger reindeer than in reindeer from the reference area. Within South Varanger the highest levels of these elements were invariably found in the Jarfjord area. For the other elements studied hepatic levels in South Varanger were similar to or lower than in western Finnmark. Also in moose, higher levels of nickel and of selenium (Jarfjord only) were found in the South Varanger samples than in samples from western Finnmark. In sheep, on the other hand, levels in South Varanger samples were similar to levels in western Finnmark for all the elements studied. Comparing the results with reports on pollution of air and vegetation, it was concluded that for all the elements showing higher levels in reindeer and moose from South Varanger compared to the reference areas, the effect most probably was a result of atmospheric transport of industrial pollution from the nearby Russian towns Nikel and Zapoljarnij. The geographical and interspecies differences within the South Varanger samples support this conclusion.  相似文献   

8.
Airborne particulate matter was collected by filtration in an urbanized area at Delft (The Netherlands) during 1981. The samples were extracted by means of cyclohexane and analysed by GC/MS. Differences were observed between summer and winter samples. Besides a different n-alkane pattern, the summer samples contained large quantities of long-chain polar aliphatic compounds. The identification of these compounds was carried out by means of electron impact, chemical ionization and high resolution mass spectrometry. These compounds are known plant was constituents. The contribution of the plant wax constituents to the total amount of analysed compounds in the cyclohexane extracts was estimated at about 40 % in the summer.  相似文献   

9.
A detailed physical and chemical characterization of coarse particulate matter (PM10) and fine particulate matter (PM2.5) in the city of Huelva (in Southwestern Spain) was carried out during 2001 and 2002. To identify the major emission sources with a significant influence on PM10 and PM2.5, a methodology was developed based on the combination of: (1) real-time measurements of levels of PM10, PM2.5, and very fine particulate matter (PM1); (2) chemical characterization and source apportionment analysis of PM10 and PM2.5; and (3) intensive measurements in field campaigns to characterize the emission plumes of several point sources. Annual means of 37, 19, and 16 microg/m3 were obtained for the study period for PM10, PM2.5, and PM1, respectively. High PM episodes, characterized by a very fine grain size distribution, are frequently detected in Huelva mainly in the winter as the result of the impact of the industrial emission plumes on the city. Chemical analysis showed that PM at Huelva is characterized by high PO4(3-) and As levels, as expected from the industrial activities. Source apportionment analyses identified a crustal source (36% of PM10 and 31% of PM2.5); a traffic-related source (33% of PM10 and 29% of PM2.5), and a marine aerosol contribution (only in PM10, 4%). In addition, two industrial emission sources were identified in PM10 and PM2.5: (1) a petrochemical source, 13% in PM10 and 8% in PM2.5; and (2) a mixed metallurgical-phosphate source, which accounts for 11-12% of PM10 and PM2.5. In PM2.5 a secondary source has been also identified, which contributed to 17% of the mass. A complete characterization of industrial emission plumes during their impact on the ground allowed for the identification of tracer species for specific point sources, such as petrochemical, metallurgic, and fertilizer and phosphate production industries.  相似文献   

10.
Source contributions to fine particulate matter in an urban atmosphere   总被引:10,自引:0,他引:10  
Park SS  Kim YJ 《Chemosphere》2005,59(2):217-226
This paper proposes a practical method for estimating source attribution by using a three-step methodology. The main objective of this study is to explore the use of the three-step methodology for quantifying the source impacts of 24-h PM2.5 particles at an urban site in Seoul, Korea. 12-h PM2.5 samples were collected and analyzed for their elemental composition by ICP-AES/ICP-MS/AAS to generate the source composition profiles. In order to assess the daily average PM2.5 source impacts, 24-h PM2.5 and polycyclic aromatic hydrocarbons (PAH) ambient samples were simultaneously collected at the same site. The PM2.5 particle samples were then analyzed for trace elements. Ionic and carbonaceous species concentrations were measured by ICP-AES/ICP-MS/AAS, IC, and a selective thermal MnO2 oxidation method. The 12-h PM2.5 chemical data was used to estimate possible source signatures using the principal component analysis (PCA) and the absolute principal component scores method followed by the multiple linear regression analysis. The 24-h PM2.5 source categories were extracted with a combination of PM2.5 and some PAH chemical data using the PCA, and their quantitative source contributions were estimated by chemical mass balance (CMB) receptor model using the estimated source profiles and those in the literature. The results of PM2.5 source apportionment using the 12-h derived source composition profiles show that the CMB performance indices; chi2, R2, and percent of mass accounted for are 2.3%, 0.97%, and 100.7%, which are within the target range specified. According to the average PM2.5 source contribution estimate results, motor vehicle exhaust was the major contributor at the sampling site, contributing 26% on average of measured PM2.5 mass (41.8 microg m-3), followed by secondary sulfate (23%) and nitrate (16%), refuse incineration (15%), soil dust (13%), field burning (4%), oil combustion (2.7%), and marine aerosol (1.3%). It can be concluded that quantitative source attribution to PM2.5 in an urban area where source profiles have not been developed can be estimated using the proposed three-step methodology approach.  相似文献   

11.
室内空气中颗粒物污染特征研究   总被引:1,自引:0,他引:1  
为获得室内空气颗粒物污染特征,2009年8月18~24日在某单位工作及生活区选取4个室内点和1个室外点进行颗粒物采样和成分分析.结果表明,室内粗颗粒(PM10)符合<室内空气质量标准>(GB/T 18883-2002),而细粒子(PM2.5)的浓度水平较高,表明室内PM2.5的污染较重;室内与室外PM2.5比值显示,P...  相似文献   

12.
Time-series of daily mortality data from May 1992 to September 1995 for various portions of the seven-county Philadelphia, PA, metropolitan area were analyzed in relation to weather and a variety of ambient air quality parameters. The air quality data included measurements of size-classified PM, SO4(2-), and H+ that had been collected by the Harvard School of Public Health, as well as routine air pollution monitoring data. Because the various pollutants of interest were measured at different locations within the metropolitan area, it was necessary to test for spatial sensitivity by comparing results for different combinations of locations. Estimates are presented for single pollutants and for multiple-pollutant models, including gaseous pollutants and mutually exclusive components of PM (PM2.5 and coarse particles, SO4(2-) and non-SO4(2-) portions of total suspended particulate [TSP] and PM10), measured on the day of death and the previous day. We concluded that associations between air quality and mortality were not limited to data collected in the same part of the metropolitan area; that is, mortality for one part may be associated with air quality data from another, not necessarily neighboring, part. Significant associations were found for a wide variety of gaseous and particulate pollutants, especially for peak O3. Using joint regressions on peak O3 with various other pollutants, we found that the combined responses were insensitive to the specific other pollutant selected. We saw no systematic differences according to particle size or chemistry. In general, the associations between daily mortality and air pollution depended on the pollutant or the PM metric, the type of collection filter used, and the location of sampling. Although peak O3 seemed to exhibit the most consistent mortality responses, this finding should be confirmed by analyzing separate seasons and other time periods.  相似文献   

13.
This study attempts to characterize and predict coarse particulate matter (PM10) concentration in ambient air using the concepts of nonlinear dynamical theory. PM10 data observed daily from 1999 to 2002 at a site in Mumbai, India, was used to study the applicability of the chaos theory. First, the autocorrelation function and Fourier power spectrum were used to analyze the behavior of the time-series. The dynamics of the time-series was additionally studied through correlation integral analysis and phase space reconstruction. The nonlinear predictions were then obtained using local polynomial approximation based on the reconstructed phase space. The results were then compared with the autoregressive model. The results of nonlinear analysis indicated the presence of chaotic character in the PM10 time-series. It was also observed that the nonlinear local approximation outperforms the autoregressive model, because the observed relative error of prediction for the autoregressive model was greater than the local approximation model. The invariant measures of nonlinear dynamics computed for the predicted time-series using the two models also supported the same findings.  相似文献   

14.
为了研究光散射颗粒物监测仪在环境空气监测中的适应性,参照《环境空气颗粒物(PM10和PM2.5)连续自动检测技术要求及检测方法》(HJ 653-2013),在北京秋季使用PQ200(滤膜采样器)对DustTrak8530、LD-6S、HBKLW-2共3种光散射仪器进行比对测试.结果表明,3种光散射仪器的平行性都达标;在监测PM10时,3种仪器与PQ200的线性相关系数都达标,斜率只有HBKLW-2达标,截距除HBKLW-2略微超标外都与标准相差较远;在监测PM2.5时,3种仪器与PQ200的线性相关系数都达标且优于PM10,斜率只有HBKLW-2和LD-6S达标,截距绝对值相比PM10有所减小,但只有HBKLW-2达标;经校正因子修正后,3种仪器与PQ200的线性回归斜率达标、相关系数不变、监测PM2.5的截距相比PM10更加接近标准值,故光散射仪器更加适用于环境空气PM2.5监测.  相似文献   

15.
Livestock housing is an important source of emissions of particulate matter (PM). High concentrations of PM can threaten the environment, as well as the health and welfare of humans and animals. Particulate matter in livestock houses is mainly coarse, primary in origin, and organic; it can adsorb and contain gases, odorous compounds, and micro-organisms, which can enhance its biological effect. Levels of PM in livestock houses are high, influenced by kind of housing and feeding, animal type, and environmental factors. Improved knowledge on particle morphology, primarily size, composition, levels, and the factors influencing these can be useful to identify and quantify sources of PM more accurately, to evaluate their effects, and to propose adequate abatement strategies in livestock houses. This paper reviews the state-of-the-art of PM in and from livestock production systems. Future research to characterize and control PM in livestock houses is discussed.  相似文献   

16.
Environmental Science and Pollution Research - Exposure to air pollution during physical exercise is a health issue because fine particulate matter (dimension &lt; 10 μm; PM10) includes...  相似文献   

17.
To assess the impact of past, current and proposed air quality regulations on coarse particulate matter (CPM), the concentrations of CPM mass and its chemical constituents were examined in the Los Angeles Basin from 1986 to 2009 using PM data acquired from peer-reviewed journals and regulatory agency database. PM10 mass levels decreased by approximately half from 1988 to 2009 at the three sampling sites examined- located in downtown Los Angeles, Long Beach and Riverside. Annual CPM mass concentrations were calculated from the difference between daily PM10 and PM2.5 from 1999 to 2009. High CPM episodes driven by high wind speed/stagnant condition caused year-to-year fluctuations in the 99th/98th percentile CPM levels. The reductions of average CPM levels were lower than those of PM10 in the same period, therefore the decrease of PM10 level was mainly driven by reductions in the emission levels of PM2.5 (or fine) particles, as demonstrated by the higher annual reduction of average PM2.5 (0.92 microg/m3) compared with CPM (0.39 microg/m3) from 1999 to 2009 in downtown Los Angeles despite their comparable concentrations. This is further confirmed by the significant decrease of Ni, Cr, V and EC in the coarse fraction after 1995. On the other hand, the levels of several inorganic ions (sulfate, chloride and to a lesser extent nitrate) remained comparable. From 1995 to 2008, levels of Cu, a tracer of brake wear, either remained similar or decreased at a smaller rate compared with elements of combustion origins. This differential reduction of CPM components suggests that past and current regulations may have been more effective in reducing fugitive dust (Al, Fe and Si) and combustion emissions (Ni, Cr, V, and EC) rather than CPM from vehicular abrasion (Cu) and inorganic ions (NO3(-), SO4(2-) and Cl(-)) in urban areas. Implications: Limited information is currently available to provide the scientific basis for understanding the sources and physical and chemical variations of CPM, and their relations to air quality regulations and adverse health effects. This study investigates the historical trends of CPM mass and its chemical components in the Los Angeles Basin to advance our understanding on the impact of past and current air quality regulations on the coarse fraction of PM. The results of this study will aid policy makers to design more targeted regulations to control CPM sources to ensure substantial protection of public health from CPM exposure. Supplemental Materials: Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for (1) details of the sampling sites and (2) the daily concentrations of high CPM/PM10 episodes.  相似文献   

18.
The purpose of the study was to quantify the impact of traffic conditions, such as free flow and congestion, on local air quality. The Borman Expressway (I-80/94) in Northwest Indiana is considered a test bed for this research because of the high volume of class 9 truck traffic traveling on it, as well as the existing and continuing installation of the Intelligent Transportation System (ITS) to improve traffic management along the highway stretch. An empirical traffic air quality (TAQ) model was developed to estimate the fine particulate matter (PM2.5) emission factors (grams per kilometer) based solely on the measured traffic parameters, namely, average speed, average acceleration, and class 9 truck density. The TAQ model has shown better predictions that matched the measured emission factor values more than the U.S. Environmental Protection Agency (EPA)-PART5 model. During congestion (defined as flow-speeds < 50 km/hr [30 mi/hr]), the TAQ model, on average, overpredicted the measured values only by a factor of 1.2, in comparison to a fourfold underprediction using the EPA-PART5 model. On the other hand, during free flow (defined as flow-speeds > 80 km/hr [50 mi/hr]), the TAQ model was conservative in that it overpredicted the measured values by 1.5-fold.  相似文献   

19.
The aims of this study were to determine the particulate matter with aerodynamic diameters > or = 2.5 microm (PM2.5) and 2.5-10 microm (PM10-2.5) exposure levels of drivers and to analyze the proportion of elemental carbon (EC) and organic carbon (OC) in PM2.5 in Bangkok, Thailand. Four bus routes were selected. Measurements were conducted over 10 days in August (rainy season) 2008 and 8 days in January (dry season) 2009. The mean PM2.5 exposure level of the Tuk-tuk drivers was 86 microg/m3 in August and 198 microg/m3 in January. The mean for the non-air-conditioned bus drivers was 63 microg/m3 in August and 125 microg/m3 in January. The PM2.5 and PM10-2.5 exposure levels of the drivers in January were approximately twice as high as those in August. The proportion of total carbon (TC) in PM2.5 to the PM2.5 level in August (0.97 +/- 0.28 microg/m3) was higher than in January (0.65 +/- 0.13 microg/m3). The proportion of OC in the TC of the PM2.5 in August (0.51 +/- 0.08 microg/m3) was similar to that in January (0.65 +/- 0.07 microg/m3). The TC exposure by PM25 in January (81 +/- 30 microg/m3) remained higher than in August (56-21 microg/m3). The mean level of OC in the PM2.5 was 29 +/- 13 microg/m3 in August and 50 +/- 24 microg/m3 in January. In conclusion, the PM exposure level in Bangkok drivers was higher than that in the general environment, which was already high, and it varied with the seasons and vehicle type. This study also demonstrated that the major component of the PM was carbon, likely derived from vehicles.  相似文献   

20.
通过现场勘测以及走访调研的形式,获得桂林地区2011至2013年工业生产情况统计,参照国内外相关文献资料确定排放因子,并通过数据处理得到桂林地区工业排放源清单。结果表明,近三年桂林地区工业污染源年均向大气排放细颗粒物(PM2.5)10 751.01 t,其中以兴安县贡献量最大,达到5 024.92 t;永福县次之,为2 924.31 t。在企业类型中,以火力发电企业、水泥及砖瓦厂对桂林地区大气排放细颗粒物的贡献量较大,分别为2 540.81、6 544.51和555.13 t。同时,桂林地区以煤炭作为主要燃料,其对大气排放细颗粒物的年均贡献量达到2 672.17 t。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号