首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: A system in which taxonomic information is recorded in a form that can be directly utilized by computer is described. How such a system can greatly facilitate the acquisition and analysis of data is also discussed.  相似文献   

2.
ABSTRACT: Electronic instruments are increasingly being used to gather water quality data. Quality assurance protocols are needed which provide adequate documentation of the procedures followed in calibration, collection, and validation of electronically acquired data. The level of precision of many data loggers exceeds the technology which is commonly used to make field measurements. Overcoming this problem involves using laboratory quality equipment in the field or enhanced quality control at the time of instrument servicing. Time control procedures for data loggers are needed to allow direct comparisons of data between instruments. Electronic instruments provide a mechanism to study transient events in great detail, but, without time controls, multiple loggers produce data which contain artifacts due to timing errors. Individual sensors deployed with data loggers are subject to different degrees of drift over time. Certain measurements can be measured with defined precision and accuracy for long periods of time, while other sensors are subject to loss of both precision and accuracy with increasing time of use. Adequate quality assurance requires the levels of precision and accuracy be documented, particularly those which vary with increasing time deployment.  相似文献   

3.
ABSTRACT: According to a concept known as partial area hydrology, watershed areas are separated into hydrologically active and passive subareas. The literature relating to the development of the partial area concept is reviewed briefly and the relationship of partial area hydrology to geology, soils, and micrometeorology is illustrated. The potential application of partial area hydrology is discussed with respect to present hydrologic techniques, future hydrologic models, urban hydrology, water quality, and water management. Suggestions for identifying and delineating the contributing areas are discussed.  相似文献   

4.
ABSTRACT: After 25 years of operation on ephemeral streams in the semiarid Southwest, this supercritical flume has provided more than 350 station-years of reliable streamflow data, even under freezethaw conditions experienced at elevations of 1,500 to 2,100 m, in Arizona. The flume has also provided streamflow data during flood periods produced by high intensity summer thunderstorm conditions, where considerable sediment and other debris was moved downstream.  相似文献   

5.
The Sierra Nevada produces over 50 percent of California's water. Improvement of water yields from the Sierra Nevada through watershed management has long been suggested as a means of augmenting the state's water supply. Vegetation and snowpack management can increase runoff from small watersheds by reducing losses due to evapotranspiration, snow interception by canopy, and snow evaporation. Small clearcuts or group selection cuts creating openings less than half a hectare, with the narrow dimension from south to north, appear to be ideal for both increasing and delaying water delivery in the red fir-lodgepole pine and mixed-conifer types of the Sierra west slope. Such openings can have up to 40 percent more snow-water equivalent than does uncut forest. However, the water yield increase drops to 1/2-2 percent of current yield for an entire management unit, due to the small number of openings that can be cut at one time, physical and management constraints, and multiple use/sustained yield guidelines. As a rough forecast, water production from National Forest land in the Sierra Nevada can probably be increased by about 1 percent (0.6 cm) under intensive forest watershed management. Given the state of reservoir storage and water use in California, delaying streamflow is perhaps the greatest contribution watershed management can make to meeting future water demands.  相似文献   

6.
ABSTRACT: Information regarding long term hydrological variability is critical for the effective management of surface water resources. In the Canadian Prairie region, growing dependence on major river systems for irrigation and other consumptive uses has resulted in an increasing vulnerability to hydrological drought and growing interprovincial tension. This study presents the first dendrochronological records of streamflow for Canadian Prairie rivers. We present 1,113‐year, 522‐year, and 325‐year reconstructions of total water year (October to September) streamflow for the North Saskatchewan, South Saskatchewan, and Saskatchewan Rivers, respectively. The reconstructions indicate relatively high flows during the 20th Century and provide evidence of past prolonged droughts. Low flows during the 1840s correspond with aridity that extended over much of the western United States. Similarly, an exceptional period of prolonged low flow conditions, approximately 900 A.D. to 1300 A.D., is coincident with evidence of sustained drought across central and western North America. The 16th Century megadrought of the western United States and Mexico, however, does not appear to have had a major impact on the Canadian rivers. The dendrohydrological records illustrate the risks involved if future water policy and infrastructure development in the Canadian Prairies are based solely on records of streamflow variability over the historical record.  相似文献   

7.
ABSTRACT: An analysis of four streamflow generation schemes for the use in the estimation of the required conservation storage for a single reservoir is presented. The comparison of the generating schemes should aid in the selection of an appropriate model type for the reservoir sizing problem. The streamflow generation models are compared using two criteria. The first comparison is between the statistics of the generated streamflow sequences and the corresponding statistics from the historical record. The second evaluation compares the median reservoir size determined by each model with the required storage based on the historical flow sequence. The results of a comparative analysis for monthly streamflow data for the Rzav River in Yugoslavia are presented and discussed. The results indicate that both evaluation criteria are required to discriminate between the various options.  相似文献   

8.
ABSTRACT: For a set of 81 catchments in southeast Victoria, Australia, predictive equations were developed by least squares regression of the mean and coefficient of variation of annual Streamflow against a variety of rainfall and physiographic parameters. The data were also divided into subsets according to catchment size, subregion, or record length of investigate if the relationships differed significantly between subsets. Only the catchment area and some rainfall statistical parameters were found to be significant. Streamflow parameters predicted by the regression equations were used to estimate storage requirements in ungauged catchments. The influence of errors in the Streamflow parameters on the storage error was examined.  相似文献   

9.
ABSTRACT: Regression and time-series techniques have been used to synthesize and predict the stream flow at the Foresta Bridge gage from information at the upstream Pohono Bridge gage on the Merced River near Yosemite National Park. Using the available data from two time periods (calendar year 1979 and water year 1986), we evaluated the two techniques in their ability to model the variation in the observed flows and in their ability to predict stream flow at the Foresta Bridge gage for the 1979 time period with data from the 1986 time period. Both techniques produced reasonably good estimates and forecasts of the flow at the downstream gage. However, the regression model was found to have a significant amount of autocorrelation in the residuals, which the time-series model was able to eliminate. The time-series technique presented can be of great assistance in arriving at reasonable estimates of flow in data sets that have large missing portions of data.  相似文献   

10.
ABSTRACT: Recent developments in water quality monitoring have generated interest in combining non-probability and probability data to improve water quality assessment. The Interagency Task Force on Water Quality Monitoring has taken the lead in exploring data combination possibilities. In this paper we take a developed statistical algorithm for combining the two data types and present an efficient process for implementing the desired data augmentation. In a case study simulated Environmental Protection Agency (EPA) Environmental Monitoring and Assessment Program (EMAP) probability data are combined with auxiliary monitoring station data. Auxiliary stations were identified on the STORET water quality database. The sampling frame is constructed using ARC/INFO and EPA's Reach File-3 (RF3) hydrography data. The procedures for locating auxiliary stations, constructing an EMAP-SWS sampling frame, simulating pollutant exposure, and combining EMAP and auxiliary stations were developed as a decision support system (DSS). In the case study with EMAP, the DSS was used to quantify the expected increases in estimate precision. The benefit of using auxiliary stations in EMAP estimates was measured as the decrease in standard error of the estimate.  相似文献   

11.
12.
ABSTRACT: As part of the Gulf Coast Regional Aquifer System Analysis (GC RASA) study, data from 184 geophysical well logs were used to define the geohydrologic framework of the Mississippi embayment aquifer system in Mississippi for flow model simulation. Five major aquifers of Eocene and Paleocene age were defined within this aquifer system in Mississippi. A computer data storage system was established to assimilate the information obtained from the geophysical logs. Computer programs were developed to manipulate the data to construct geologic sections and structure maps. Data from the storage system will be input to a five-layer, three-dimensional, finite-difference digital computer model that is used to simulate the flow dynamics in the five major aquifers of the Mississippi embayment aquifer system.  相似文献   

13.
ABSTRACT: To quantify and model the natural ground water recharge process, six sites located in the midwest and eastern United States where previous water balance observations had been made were compared to computerized techniques to estimate: (1) base flow and (2) ground water recharge. Results from an existing automated digital filter technique for separating baseflow from daily streamflow records were compared to baseflow estimates made in the six water balance studies. Previous validation of automated baseflow separation techniques consisted only of comparisons with manual techniques. In this study, the automated digital filter technique was found to compare well with measured field estimates yielding a monthly coefficient of determination of 0.86. The recharge algorithm developed in this study is an automated derivation of the Rorabaugh hydrograph recession curve displacement method that utilizes daily streamflow. Comparison of annual recharge from field water balance measurements to those computed with the automated recession curve displacement method had coefficients of determination of 0.76 and predictive efficiencies of 71 percent. Monthly estimates showed more variation and are not advocated for use with this method. These techniques appear to be fast, reproducible methods for estimating baseflow and annual recharge and should be useful in regional modeling efforts and as a quick check on mass balance techniques for shallow water table aquifers.  相似文献   

14.
ABSTRACT: Water resource planning is based primarily on 20th century instrumental records of climate and streamflow. These records are limited in length to approximately 100 years, in the best cases, and can reflect only a portion of the range of natural variability. The instrumental record neither can be used to gage the unusualness of 20th Century extreme low flow events, nor does it allow the detection of low‐frequency variability that may underlie short‐term variations in flow. In this study, tree rings are used to reconstruct mean annual streamflow for Middle Boulder Creek in the Colorado Front Range, a semi‐arid region of rapid growth and development. The reconstruction is based on a stepwise regression equation that accounts for 70 percent of the variance in the instrumental record, and extends from 1703–1987. The reconstruction suggests that the instrumental record of streamflow for Middle Boulder Creek is not representative of flow in past centuries and that several low flow events in the 19th century were more persistent than any in the 20th century. The 1840s to early 1850s period of low flow is a particularly notable event and may have coincided with a period of low flow in the Upper Colorado River Basin.  相似文献   

15.
ABSTRACT The use of satellite telemetry is playing a major role in the collection of hydrologic data. Advancing technology and availability of government satellites have permitted many agencies to take advantage of new procedures for acquiring data from automated remote data collection stations. Experiments with Earth satellite technology started in the 1960's and 1970's, with the polar-orbiting National Aeronautics and Space Administration Nimbus and Landsat satellites. Subsequent advancements took place through the development phase to operational systems using the Geostationary Operational Environmental Satellite (GOES) of the National Oceanic and Atmospheric Administration. This satellite system supports more than 2,500 active telemetry sites, of which approximately 1,200 are Geological Survey stream-gaging stations for the collection of hydrologic data. A satellite data collection system is made up of three primary components; a small battery-operated radio, and Earth-orbiting satellite, and an Earth receive and data processing station. The data relay satellites' vast aerial view of the Earth's surface gives satellite telemetry a large advantage over ground-based systems for the collection of real-time hydrologic data for flood warning, reservoir management, irrigation water control, hydropower generation, and the operation of hydrologic stations.  相似文献   

16.
ABSTRACT: To measure crop evapotranspiration, a large double tank, electronic weighting lysimeter system was designed and installed at the Shahid Bahonar University farm, Kerman, Iran. The system was installed in a 50 m2 underground building. It includes two tanks of 3.00 m in diameter and 1.75 m deep. The weighing mechanism for each tank is a set of three compression strain gage load cells, which are fixed on 1.20 m height column above the floor. According to the specification of the load cells, the maximum possible weighing error may be about 0.01 percent of total mass, which is equivalent to 0.28 mm of water, but the measured error was equal to 1 kg mass, which is equivalent to 0.14 mm of water. The load cell data from each tank and the on‐site environmental data (temperature, humidity, and wind velocity and direction) are automatically recorded and saved in a personal computer hard disk for further use and analysis.  相似文献   

17.
ABSTRACT: Simulation and analytical results show that ignoring serial dependence can have serious effects on the performance of the t, sign, and Wilcoxen tests. In particular, the true significance levels of these tests are altered significantly from the intended nominal levels. Modifications for these tests are given and shown to have the correct significance levels. Furthermore, an estimate of serial correlation is suggested for binary data and evaluated by simulation. An application to the toxic contaminants data from the Niagara River concludes the paper.  相似文献   

18.
ABSTRACT: The U.S. Geological Survey is now (1975) conducting an intensive river-quality assessment of the Willamette River basin, Oregon. The objectives are to (1) define a practical framework for conducting comprehensive river-quality assessments, (2) develop and document methods for evaluating basin-development alternatives in terms of potential impacts on river quality, (3) determine the kinds and amounts of data required to adequately assess various types of river-quality problems, and (4) apply the framework, data, and methods to assess the existing or potential river-quality problems of the Willamette River basin. This paper covers objectives 2, 3, and 4 by examining the rationales behind the selection and application of methods and the design of data programs for assessing specific river-quality problems. The rationales are those developed for assessing (1) the effect of population and industrial growth and resulting waste discharges on river-dissolved oxygen, (2) the potentially harmful effects on land and river quality of accelerated erosion resulting from intensive land-use development, and (3) the potential for nuisance algal growth. The goal of the assessment program and, thus, the context of the rationales is to provide technically sound information that is appropriate and adequate for resource planning and management.  相似文献   

19.
ABSTRACT: The visualization of water quality data in lakes was achieved by integrating the U.S. Environmental Protection Agency's (EPA) STORET water quality database, lake shoreline polygons from EPA's Reach File (version 3), and the UNIMAP 2-D and 3-D interactive mapping and modeling software. Based on lake name (and state abbreviation), a lake shoreline polygon can be accessed from the Reach File. The coordinates of the polygon are portrayed by the U.S. Geological Survey (USGS) 1:100,000 scale Digital Line Graph (DLG) hydrography layer. This polygon is passed, in turn, to the STORET water quality file. Monitoring stations located within the polygon boundary are extracted along with the complete sampling survey. Specific parameters, such as total phosphorus, pH, ammonia, and optional time and depth restrictions can be selected to build a file of x, y, z1, z1…, zn data which is imported to UNIMAP. Up to four parameters, including depth, can be selected at a time. Within UNIMAP, the data is gridded and then displayed as a 2-D color contour map, 3-D perspective contour map, or 2-D projected time or depth slices. This system operates on the EPA ES9000 mainframe computer located in Research Triangle Park (RIP), North Carolina. LAKEMAP is the culmination of an effort to bridge the gap between the vast array of environmental data collected by the EPA and the complex analytical and display software resident on the mainframe.  相似文献   

20.
ABSTRACT A synthetic storm rainfall hyetograph for a one-year design frequency is derived from the one-year intensity-duration curve developed for Cincinnati, Ohio. Detailed rainfall data for a three-year period were collected from three raingages triangulating the Bloody Run Sewer Watershed, an urban drainage areas of 2380 acres'in Cincinnati, Ohio. The advancement of the synthetic storm pattern is obtained from an analysis of the antecedent precipitation immediately preceding the maximum period of three selected durations. Rains which produced excessive runoff at least for some duration were considered only. The same approach can be used for other design frequencies. The purpose of this study is to provide synthetic storm hyetographs to be used as input in deterministic mathematical models simulating urban storm water runoff for the design, analysis and possible surcharge prediction of sewer systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号