首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examine carbon (C) reference and mitigation scenarios for the Mexicanforest sector between the year 2000 and 2030. Estimates are presentedseparately for the period 2008–2012.Future C emissions and capture are estimated using a simulation modelthat: a) allocates the country land use/land cover classes among differentfuture uses and categories using demand-based scenarios for forestryproducts; b) estimates the total C densities associated to each land usecategory, and c) determines the net carbon implications of the process ofland use/cover change according to the different scenarios.The options analyzed include both afforestation/reforestation, such ascommercial, bionenergy and restoration plantations, and agroforestrysystems, and forest conservation, through the sustainable management ofnative forests and forest protection.The total mitigation potential, estimated as the difference between the totallong-term carbon stock in the reference and the mitigation scenario reaches300 × 106 Mg C in the year 2012 and increases to 1,382 × 106 Mg C in 2030. The average net sequestration in the 30 year period is 46 × 106 Mg C yr-1, or 12.5 × 106 Mg C yr-1 within the period 2008 to 2012. The costs of selected mitigation options range from 0.7–3.5 Mg C-1 to 35 Mg C-1. Some options are cost effective.  相似文献   

2.
The forest sector in the Philippines has the potential to be amajor sink for carbon (C). The present study was conducted to evaluatepotential forestry mitigation options in the Philippines using the Comprehensive Mitigation Assessment Process (COMAP)model. The baseline scenario (BAU) assumes that current trends continue upto the year 2030 (`business-as-usual'). Two mitigation scenarios wereevaluated: high scenario (HS) and low scenario (LS). The former ispatterned largely from the government's forest master plan while thelatter assumes a 50% lower success rate of the master plan.The results of the analyses show that by 2030, the total C stock of thePhilippine forest sector in the baseline scenario decreases to 814× 106 Mg C,down by 37% compared to the 1990 level. The C stocks of the HS andLS mitigation scenarios were 22% and 18% higher than the BAU,respectively. Of the mitigation options assessed, long rotation plantationsand forest protection activities produce the greatest C gain (199 and 104× 106 Mg, respectively under HS). The not present value (NPV)of benefits is highest in the bioenergyoption with $24.48 per Mg C (excluding opportunity costs) at a realdiscount rate of 12%. However, the investment and life cycle costs arealso highest using bioenergy.The study also estimated potential investments needed under the mitigationscenarios. The investment requirement for the LS amounts to $263× 106 while for the HS it is $748 × 106. Finally, policy issues anddecisions that may be useful for the Philippines to evaluate LULUCFmitigation options under the UNFCCC Kyoto Protocol, are identified anddiscussed.  相似文献   

3.
Land use, land-use change and forestry (LULUCF) projects may becomeeligible under Article 12 of the United Nations Framework Convention onClimate Change (UNFCCC) Kyoto Protocol's Clean DevelopmentMechanism (CDM). Some of the issues, which need to be addressed,include identifying the types of greenhouse gas (GHG) mitigation activitiesin LULUCF, which could be undertaken as CDM projects. Other issuesinvolve evaluating the mitigation potential and cost effectiveness of theactivities, as well as their likely socio-economic impacts and their influenceon the national carbon (C) stock. Three broad categories of mitigationactivities in LULUCF analyzed in this study include managing Cstorage, C conservation and carbon substitution. The C intensityof the activities was estimated to range from 37 to 218 Mg C per ha. The highest is in reforested land with slow growing species and the lowestin short-rotation plantations. At a real discount rate of 10%, investmentcosts required to implement the mitigation activities ranged from US$0.07 to 0.88 per Mg C, with life cycle costs ranging from US$ 0.07to 3.87 per Mg C, and benefits ranging from US$ –0.81 to 6.57 perMg C. Mitigation options with negative benefits are forest protection,reforestation, reduced impact logging and enhanced natural regeneration,while those with positive benefits are short rotation timber plantation, andbio-energy. Reforestation gave negative benefit since no revenue fromwood as trees are left in the forest for conservation, while Reduced ImpactLogging (RIL) and Enhanced Natural Regeneration (ENR)gave negative benefits because additional cost required to implement theoptions could not be compensated by the increase in round-hardwoodyield. Other factor is that the local price of round-hardwood is very low,i.e. US$ 160 per m3, while FOB price is between 250–400 US$ per m3. Total area available for implementing mitigationoptions (planting trees) in 1997 was 31 million hectares (× 106ha) (about 40% are critical lands, 35% grasslands and 25%unproductive lands).Total area being considered for implementing the options under baseline,government-plans and mitigation scenarios in the period 2000–2030 is12.6, 16.3 and 23.6 × 106 ha respectively. Furthermore, total area of production forest being considered for implementing reduced impactlogging and enrichment planting under the tree scenarios is 9, 26 and 16 × 106 ha respectively, and that for forest protection is 2.1, 3.7, 3.1× 106 ha respectively. The cumulative investment for implementingall mitigation activities in the three scenarios was estimated at 595, 892and 1026 million US$ respectively. National C stock under thebaseline scenario will continuously decline through 2030, while undergovernment-plans and mitigation scenarios the carbon stock increases. In2030, national C stock of the government and mitigation scenarios isalmost the same, 13% higher than that of baseline. However, the increasein national carbon stock in both scenarios could not offset carbon emissionsdue to deforestation.  相似文献   

4.
In this paper, forest protection, short- and long-rotation plantations, forestregeneration, agroforestry and other activities for carbon (C) sequestration wereevaluated. China may be divided into five sub-regions, of which three fallin the main forested areas of China, i.e., the northeast, the southeast andthe southwest regions. The forestry mitigation potential in these threeregions is the subject of this paper. The Comprehensive Mitigation AssessmentProcess (COMAP) model is used to calculatethe potential for carbon mitigation and the cost-effectiveness of eachmitigation option, assuming that 60 percent of the goals of long-termforestry plans of the Chinese government could be realized. The resultsshow that the total sequestered C by the mitigation scenario between2000 and 2030 for the three regions of China will be 2093 × 106 Mg C, ofwhich 281 × 106 Mg C will occur between 2008 and 2012. The total netbiomass sequestration (difference of mitigation and baseline scenarios) from2000 to 2030 and from 2008 to 2012 is 496 × 106 Mg C and 59 × 106 Mg Crespectively. The C sequestration potential could be higher if othertwo regions are included since the forest area of the two regions amount to26.5% of total forested area, in particular, the land area suitable forforestation in the northwest accounts for 45% of the total. The activitywith least investment cost per unit of C is forest regeneration, followedby long-rotation plantation and forest conservation. The mostinvestment-intensive activity is bioenergy. The total investment for all themitigation activities is US $12.7 billion. The above figures between2008–2012 provide an upper bound on the potential for early startprojects that might be eligible for the Clean Development Mechanism(CDM). The authors would like to note that the mitigation potential andcost-effectiveness of agroforestry and bioenergy projects need to be furtherstudied.  相似文献   

5.
Sathaye  J.A.  Makundi  W.R.  Andrasko  K.  Boer  R.  Ravindranath  N.H.  Sudha  P.  Rao  S.  Lasco  R.  Pulhin  F.  Masera  O.  Ceron  A.  Ordonez  J.  Deying  X.  Zhang  X.  Zuomin  S. 《Mitigation and Adaptation Strategies for Global Change》2001,6(3-4):185-211
This paper summarizes studies of carbon (C) mitigation potential and costs of about 40 forestry options in seven developing countries. Each study uses the same methodological approach – Comprehensive Mitigation Assessment Process (COMAP) – to estimate the above parameters between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios. Coupled with data on a per ha basis on C sequestration or avoidance, and costs and benefits, it allows the estimation of monetary benefit per Mg C, and the total costs and carbon potential. The results show that about half (3.0 Pg C) the cumulative mitigation potential of 6.2 Petagram (Pg) C between 2000 and 2030 in the seven countries (about 200× 106 Mg C yr-1) could be achieved at a negative cost and the remainder at costs ranging up to $100 Mg C-1. About 5 Pg C could be achieved, at a cost less than $20 per Mg C. Negative cost potential indicates that non-carbon revenue is sufficient to offset direct costs of these options. The achievable potential is likely to be smaller, however, due to market, institutional, and sociocultural barriers that can delay or prevent the implementation of the analyzed options.  相似文献   

6.
Several management practices are available to conserve and sequester C in the agricultural sector of the former Soviet Union (FSU). The highest rate of C accumulation would result from the implementation of a no-till management option which will only continue during the first ten years until new C equilibrium is reached. Agroforestry management options provide a longer period for C accumulation, but at a lower rate. It is possible that the longest period of C conservation may be achieved by increasing the area under perennial grasses in the crop rotation. During the first decade of implementation of the management practices, the amount of C conserved or sequestered would be approximately equal to the current rate of net C sequestration in FSU forest sector. At present, agricultural soils and vegetation of the FSU store approximately 120 Pg C; the accumulation of soil organic matter is 0.032 Pg C yr-1. The annual C loss in the FSU agricultural sector was estimated at 0.21 Pg C yr-1.  相似文献   

7.
A dynamic growth model (CO2FIX) was used for estimating the carbon sequestration potential of sal (Shorea Robusta Gaertn. f.), Eucalyptus (Eucalyptus Tereticornis Sm.), poplar (Populus Deltoides Marsh), and teak (Tectona Grandis Linn. f.) forests in India. The results indicate that long-term total carbon storage ranges from 101 to 156 Mg C?ha?1, with the largest carbon stock in the living biomass of long rotation sal forests (82 Mg C?ha?1). The net annual carbon sequestration rates were achieved for fast growing short rotation poplar (8 Mg C?ha?1?yr?1) and Eucalyptus (6 Mg C?ha?1?yr?1) plantations followed by moderate growing teak forests (2 Mg C?ha?1?yr?1) and slow growing long rotation sal forests (1 Mg C?ha?1?yr?1). Due to fast growth rate and adaptability to a range of environments, short rotation plantations, in addition to carbon storage rapidly produce biomass for energy and contribute to reduced greenhouse gas emissions. We also used the model to evaluate the effect of changing rotation length and thinning regime on carbon stocks of forest ecosystem (trees?+?soil) and wood products, respectively for sal and teak forests. The carbon stock in soil and products was less sensitive than carbon stock of trees to the change in rotation length. Extending rotation length from the recommended 120 to 150 years increased the average carbon stock of forest ecosystem (trees?+?soil) by 12%. The net primary productivity was highest (3.7 Mg ha?1?yr?1) when a 60-year rotation length was applied but decreased with increasing rotation length (e.g., 1.7 Mg ha?1?yr?1) at 150 years. Goal of maximum carbon storage and production of more valuable saw logs can be achieved from longer rotation lengths. ‘No thinning’ has the largest biomass, but from an economical perspective, there will be no wood available from thinning operations to replace fossil fuel for bioenergy and to the pulp industry and such patches have high risks of forest fires, insects etc. Extended rotation lengths and reduced thinning intensity could enhance the long-term capacity of forest ecosystems to sequester carbon. While accounting for effects of climate change, a combination of bioenergy and carbon sequestration will be best to mitigation of CO2 emission in the long term.  相似文献   

8.
A sustainable forestry scenario aimed at meeting the projected biomassdemands, halting deforestation and regenerating degraded forests wasdeveloped and analyzed for additionality of mitigation and cost-effectivenessfor India. Similarly, mitigation potential of a commercial forestry scenarioaimed at meeting the biomass demands from forestry activities on privateland was assessed. India has a significant scale baseline scenario afforestationand effective forest conservation activities. India is afforesting at an averagegross rate of 1.55 × 106 ha yr-1 over the past 10 years, while the gross deforestation rate was 0.272 × 106 ha yr-1 during the same period. The sustainable forestry scenario could lead to an additional carbon (C) stock of 237 × 106 Mg C during 2000 to 2012, while the commercial forestry scenario apart from meeting all the incremental biomass demands (estimated for 2000 to 2015) could potentially lead to an additional carbon stock of 78 × 106Mg C during 2000 to 2012. Short- and Long-rotation forestry activities arecommercially viable. With appropriate policies and financial incentives allthe industrial wood, sawnwood and commercial fuelwood requirementcould be met through commercial forestry, so that government funds couldbe dedicated for conserving state owned forests and meeting subsistencebiomass demands. The commercial forestry activities could receive financialsupport under greenhouse gas (GHG) abatement programmes. The government, however, needs to develop institutions and guidelines to process, evaluate, approve and monitor forestry sector mitigation projects.  相似文献   

9.
Thinning, as a forest management strategy, may contribute towards mitigating climate change, depending on its net effect on forest carbon (C) stocks. Although thinning provides off-site C storage (in the form of wood products) it is still not clear whether it results in an increase, a reduction or no change in on-site C storage. In this study we analyze the effect of thinning on C stocks in a long-term experiment. Different thinning intensities (moderate, heavy and unthinned) have been applied over the last 30 years in a Scots pine (Pinus sylvestris L.) stand, with a thinning rotation period of 10 years. The main C compartments were analyzed: above and belowground tree biomass, deadwood, forest floor and upper 30-cm of the mineral soil and tree biomass removed in thinning treatments. The results revealed that unthinned stands had the highest C stocks with 315 Mg C ha?1, moderate thinning presented 304 Mg C ha?1 and heavy thinning 296 Mg C ha?1, with significant differences between unthinned and heavily thinned stands. These differences were mainly due to C stock in live biomass, which decreased with thinning intensity. However, soil C stocks, forest floor and mineral soil, were not influenced by thinning, all of the stands displaying very similar values 102–107 Mg C ha?1 for total soil; 15–19 Mg C ha?1 for forest floor; 87–88 Mg C ha?1 for mineral soil). These results highlight the sustainability of thinning treatments in terms of C stocks in this pinewood afforestation, and provide valuable information for forest management aimed at mitigating climate change.  相似文献   

10.
长白山自然保护区生态系统碳平衡研究   总被引:24,自引:0,他引:24  
运用已建立的EPPML生物地球化学循环模型,对1995年长白山自然保护区生态系统的碳平衡状况进行了模拟.模拟结果表明,该保护区植被的年净初级生产力[NPP(碳量)]为1.332×106t·a-1,以阔叶红松林和云冷杉林最高,分别为0.540×106t·a-1和0.428×106t·a-1.这2种林型是长白山面积最大、生产力最高的林型,其生产力的模拟结果对整个保护区的碳循环和碳平衡影响最大,前者的准确性决定了后者的可靠性.总的来说,模拟值不仅在整个保护区不同植被带和气候带的相对比较中是符合常规的,而且在与相当分散的实测数据的绝对比较中也是比较准确的.该保护区的植被具有明显的碳汇功能,主要表现为植被碳量的增长,每年增长约1.058×106t·a-1.阔叶红松林的年碳量增长最大(0.452 × 106t·a-1),云冷杉林其次(0.339×106t·a-1)这2种林型对整个保护区的碳汇功能起着至关重要的决定性作用.其它依次为:长白落叶松林、阔叶林、草甸、灌丛、高山苔原、岳桦林和高山流砾滩草类.1995年该保护区土壤有机质的分解碳量比凋落物碳量高0.169×106t·a-1,除草灌土壤出现有机质的积累,高山苔原和高山流砾滩土壤有机质的分解与积累处于近似平衡状态外,乔木林下土壤有机质的分解量均为凋落物量的1.5~2.0倍.  相似文献   

11.
Tropical peat swamp forests, which are predominantly located in Southeast Asia (SEA) and play a prominent role as a global carbon store, are being intensively degraded and converted to agricultural lands and tree plantations. For national inventories, updated estimates of peat emissions of greenhouse gases (GHG) from land use (LU) and land-use change in the tropics are required. In this context, we reviewed the scientific literature and calculated emission factors of peat net emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in seven representative LU categories for SEA i.e. intact peat swamp forest, degraded forest (logged, drained and affected by fire), mixed croplands and shrublands, rice fields, oil palm, Acacia crassicarpa and sago palm plantations. Peat net CO2 uptake from or emissions to the atmosphere were assessed using a mass balance approach. The balance included main peat C inputs through litterfall and root mortality and outputs via organic matter mineralization and dissolved organic carbon. Peat net CO2 loss rate from degraded forest, croplands and shrublands, rice fields, oil palm, A. crassicarpa and sago palm plantations amounted to 19.4?±?9.4, 41.0?±?6.7, 25.6?±?11.5, 29.9?±?10.6, 71.8?±?12.7 and 5.2?±?5.1 Mg CO2 ha?1 y?1, respectively. Total peat GHG losses amounted to 20.9?±?9.4, 43.8?±?6.8, 36.1?±?12.9, 30.4?±?10.6, 72?±?12.8 and 8.6?±?5.3 Mg CO2-equivalent ha?1 y?1 in the same LU categories, respectively. A single land-clearing fire would result in additional emissions of 493.6?±?156.0 Mg CO2-equivalent ha?1.  相似文献   

12.
Climate change is one of the most pressing environmental problems humanity is facing today. Forest ecosystems serve as a source or sink of greenhouse gases, primarily CO2. With support from the Canadian Climate Change Fund, the Community-based Natural Resource Management for Carbon Sequestration project in East Timor (CBNRM-ET) was implemented to “maintain carbon (C) stocks and increase C sequestration through the development of community-based resource management systems that will simultaneously improve livelihood security”. Project sites were in the Laclubar and Remexio Sub-districts of the Laclo watershed. The objective of this study was to quantify baseline C stocks and sequestration benefits of project components (reforestation with fast-growing species, primarily Casuarina equisetifolia, and agroforestry involving integration of Paraserianthes falcataria). Field measurements show that mature stands (≥30 years) of P. falcataria and C. equisetifolia contain up to 200 Mg C ha−1 in above ground biomass, indicating the vast potential of project sites to sequester carbon. Baseline C stocks in above ground biomass were very low in both Laclubar (6.2 Mg C ha−1 for reforestation sites and 5.2 Mg C ha−1 for agroforestry sites and Remexio (3.0 Mg C ha−1 for reforestation and 2.5 Mg C ha−1 for agroforestry). Baseline soil organic C levels were much higher reaching up to 160 Mg C ha−1 in Laclubar and 70 Mg C ha−1 in Remexio. For the next 25 years, it is projected that 137 671 Mg C and 84 621 Mg C will be sequestered under high- and low C stock scenarios, respectively.  相似文献   

13.
This paper provides a methodology for generating forest management plans, which explicitly maximize carbon (C) sequestration at the forest-landscape level. This paper takes advantage of concepts first presented in a paper by Meng et al. (2003; Mitigation Adaptation Strategies Global Change 8:371–403) by integrating C-sequestration objective functions in existing wood supply models. Carbon-stock calculations performed in WoodstockTM (RemSoft Inc.) are based on C yields generated from volume table data obtained from local Forest Development Survey plots and a series of wood volume-to-C content conversion factors specified in von Mirbach (2000). The approach is used to investigate the impact of three demonstration forest-management scenarios on the C budget in a 110,000 ha forest in south-central New Brunswick, Canada. Explicit demonstration scenarios addressed include (1) maximizing timber extraction either by clearcut or selection harvesting for greatest revenue generation, (2) maximizing total C storage in the forest landscape and in wood products generated from harvesting, and (3) maximizing C storage together with revenue generation. The level of clearcut harvesting was greatest for scenario 1 (≥15 × 104 m3 of wood and ≥943 ha of land per harvesting period), and least for scenario 2 (=0 m3 per harvesting period) where selection harvesting dominated. Because softwood saw logs were worth more than pulpwood ($60 m−3 vs. $40 m−3) and were strategic to the long-term storage of C, the production of softwood saw logs exceeded the production of pulpwood in all scenarios. Selection harvesting was generally the preferred harvesting method across scenarios. Only in scenario 1 did levels of clearcut harvesting occasionally exceed those of selection harvesting, mainly in the removal of old, dilapidated stands early in the simulation (i.e., during periods 1 through 3). Scenario 2 provided the greatest total C-storage increase over 80 years (i.e., 14 × 106 Mg C, or roughly 264 Mg ha−1) at a cost of $111 per Mg C due to lost revenues. Scenarios 3 and 1 produced reduced storage rates of roughly 9 × 106 Mg C and 3 × 106 Mg C, respectively; about 64% and 22% of the total, 80-year C storage calculated in scenario 2. The bulk of the C in scenario 2 was stored in the forest, amounting to about 76% of the total C sequestered.  相似文献   

14.
The paper estimates and compares the level of Reducing Emissions from Deforestation and Degradation (REDD+) payments required to compensate for the opportunity costs (OCs) of stopping the conversion of montane forest and miombo woodlands into cropland in two agro-ecological zones in Morogoro Region in Tanzania. Data collected from 250 households were used for OC estimation. REDD+ payment was estimated as the net present value (NPV) of agricultural rent and forest rent during land clearing, minus net returns from sustainable wood harvest, divided by the corresponding reduction in carbon stock. The median compensation required to protect the current carbon stock in the two vegetation types ranged from USD 1 tCO2e?1 for the montane forest to USD 39 tCO2e?1 for the degraded miombo woodlands, of which up to 70 % and 16 %, respectively, were for compensating OCs from forest rent during land clearing. The figures were significantly higher when the cost of farmers’ own labor was not taken into account in NPV calculations. The results also highlighted that incentives in the form of sustainable harvests could offset up to 55 % of the total median OC to protect the montane forest and up to 45 % to protect the miombo woodlands, depending on the wage rates. The findings suggest that given the possible factors that can potentially affect estimates of REDD+ payments, avoiding deforestation of the montane forest would be feasible under the REDD+ scheme. However, implementation of the policy in villages around the miombo area would require very high compensation levels.  相似文献   

15.
Carbon (C) conservation and sequestration in many developing countries needs to be accompanied by socio-economic improvements. Tree crop plantations can be a potential path for coupling climate change mitigation and economic development by providing C sequestration and supplying wood and non-wood products to meet domestic and international market requirements at the same time. Financial compensation for such plantations could potentially be covered by the Clean Development Mechanism under the United Nations Framework Convention on Climate Change (FCCC) Kyoto Protocol, but its suitability has also been suggested for integration into REDD?+?(reducing emissions from deforestation, forest degradation and enhancement of forest C stocks) currently being negotiated under the United Nations FCCC. We assess the aboveground C sequestration potential of four major plantation crops – cocoa (Theobroma cacao), oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and orange (Citrus sinesis) – cultivated in the tropics. Measurements were conducted in Ghana and allometric equations were applied to estimate biomass. The largest C potential was found in the rubber plantations (214 tC/ha). Cocoa (65 tC/ha) and orange (76 tC/ha) plantations have a much lower C content, and oil palm (45 tC/ha) has the lowest C potential, assuming that the yield is not used as biofuel. There is considerable C sequestration potential in plantations if they are established on land with modest C content such as degraded forest or agricultural land, and not on land with old-growth forest. We also show that simple C assessment methods can give reliable results, which makes it easier for developing countries to partake in REDD?+ or other payment schemes.  相似文献   

16.
采用丝网印刷技术和滴涂法制备了一种可抛型的多壁碳纳米管修饰丝网印刷电极,并将其用于水中的对苯二酚、 邻苯二酚和间苯二酚等苯二酚异构体的同时检测.苯二酚在此修饰电极上的循环伏安行为考察显示,该电极可较好地区分3种异构体的氧化峰,对其氧化还原反应有明显的电催化作用;以差示脉冲伏安法检测对苯二酚、 邻苯二酚和间苯二酚的混合水样,其峰电流与浓度分别在8.20×10-6~1.00×10-3、 8.20×10-6~1.00×10-3和1.64×10-5~1.16×10-3 mol·L-1范围内呈良好的线性关系,检出限分别达4.34×10-6、 3.42×10-6和6.70×10-6 mol·L-1;对污染水样进行测定,加标回收率为96.2%~104.9%.研究结果表明,多壁碳纳米管修饰的丝网印刷电极可用于苯二酚异构体污染水样的现场快速检测.  相似文献   

17.
Tripa is the last remaining peat-swamp forest that harbours a potentially viable Sumatran orangutan (Pongo abelii) sub-population in a formally but not effectively protected area. It appears to be a simple showcase where current efforts to financially support reducing emissions from deforestation and forest degradation (REDD+) converge with biodiversity and social co-benefits. In practice, however, situation is more complex. REDD+ efforts interact with global palm oil trade and regulatory approaches (the moratorium) to achieve national goals for emissions reduction under umbrella of nationally appropriate mitigation actions (NAMA). To contextualize this debate, we assessed (i) land-use history and formal basis of palm-oil companies’ rights; (ii) carbon (C) stocks, historical emission levels and potential emissions that can be avoided; (iii) economic benefits of land-use options and opportunity costs of avoiding emissions; (iv) biodiversity and environmental services; and (v) alternative options for “high C stock development” and employment generation. Natural forest cover declined (54 % in 1995, 18 % in 2009) while oil palm increased 4–39 %. Aboveground C stocks decreased from 148 Mg ha?1 in 1990 to 61 Mg ha?1 in 2009, leading to average annual emissions of 14.5 Mg (carbon dioxide) CO2e ha?1 year?1. While 41 % of these emissions yield less than American Dollar (USD) 5 of current economic benefits per Mg CO2e emitted and might be compensated by REDD+, nearly all new emissions derive from a breach of existing laws, regulations and voluntary palm-oil standards. Substantial investment in alternative employment is needed, rather than carbon payments per se, to support livelihoods in a low carbon emissions economy.  相似文献   

18.

Forests are one of the most cost-effective ways to sequester carbon today. Here, I estimate the world’s land share under forests required to prevent dangerous climate change. For this, I combine newest longitudinal data of FLUXNET on forests’ net ecosystem exchange of carbon (NEE) from 78 forest sites (N?=?607) with countries’ mean temperature and forest area. This straightforward approach indicates that the world’s forests sequester 8.3 GtCO2year?1. For the 2 °C climate target, the current forest land share has to be doubled to 60.0% to sequester an additional 7.8 GtCO2year?1, which demands less red meat consumption. This afforestation/reforestation (AR) challenge is achievable, as the estimated global biophysical potential of AR is 8.0 GtCO2year?1 safeguarding food supply for 10 billion people. Climate-responsible countries have the highest AR potential. For effective climate policies, knowledge on the major drivers of forest area is crucial. Enhancing information here, I analyze forest land share data of 98 countries from 1990 to 2015 applying causal inference (N?=?2494). The results highlight that population growth, industrialization, and increasing temperature reduce forest land share, while more protected forest and economic growth generally increase it. In all, this study confirms the potential of AR for climate change mitigation with a straightforward approach based on the direct measurement of NEE. This might provide a more valid picture given the shortcomings of indirect carbon stock-based inventories. The analysis identifies future regional hotspots for the AR potential and informs the need for fast and forceful action to prevent dangerous climate change.

  相似文献   

19.
DeterminationofenvironmentalpollutantsbythermallensmethodZhangYue;DengGuohong;LiChanglin(EnvironmentalScienceinstitute,FudanU...  相似文献   

20.
Tree/crop systems under agroforestry practice are capable of sequestering carbon (C) in the standing biomass and soil. Although studies have been conducted to understand soil organic C increases in some agroforestry technologies, little is known about C sequestered in simultaneous tree/crop intercropping systems. The main objective of this study was to determine the effect of agroforestry practice on C sequestration and CO2-C efflux in a gliricidia-maize intercropping system. The experiment was conducted at an experimental site located at the Makoka Agricultural Research Station, in Malawi. The studies involved two field plots, 7-year (MZ21) and 10-year (MZ12), two production systems (sole-maize and gliricidia-maize simultaneous intercropping systems). A 7-year-old grass fallow (Grass-F) was also included. Gliricidia prunings were incorporated at each time of tree pruning in the gliricidia-maize. The amount of organic C recycled varied from 0.8 to 4.8 Mg C ha−1 in gliricidia-maize and from 0.4 to 1.0 Mg C ha−1 in sole-maize. In sole-maize, net decreases of soil carbon of 6 Mg C ha−1 at MZ12 and 7 Mg C ha−1 at MZ21 in the topsoil (0–20 cm) relative to the initial soil C were observed. After 10 years of continuous application of tree prunings C was sequestered in the topsoil (0–20 cm) in gliricidia-maize was 1.6 times more than in sole-maize. A total of 123–149 Mg C ha−1 were sequestered in the soil (0–200 cm depth), through root turnover and pruning application in the gliricidia-maize system. Carbon dioxide evolution varied from 10 to 28 kg ha−1 day−1 in sole-maize and 23 to 83 kg ha−1 day−1 in gliricidia-maize. We concluded that gliricidia-maize intercropping system could sequester more C in the soil than sole-maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号