首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
India has good reasons to be concerned about climate change as it could adversely affect the achievement of vital national development goals related to socio‐economic development, human welfare, health, energy availability and use, and infrastructure. The paper attempts to develop a framework for integrated impact assessment and adaptation responses, using a recently built railroad coastal infrastructure asset in India as an example. The framework links climate change variables — temperature, rainfall, sea level rise, extreme events, and other secondary variables — and sustainable development variables — technology, institutions, economic, and other policies. The study indicates that sustainable development variables generally reduce the adverse impacts on the system due to climate change alone, except when they are inadequately applied. The paper concludes that development is a vital variable for integrated impact assessment. Well crafted developmental policies could result in a less‐GHG intensive future, enhanced adaptive capacities of communities and systems, and lower impacts due to climate change.  相似文献   

2.
Securing sustainable livelihood conditions and reducing the risk of outmigration in savanna ecosystems hosted in the tropical semiarid regions is of fundamental importance for the future of humanity in general. Although precipitation in tropical drylands, or savannas, is generally more significant than one might expect, these regions are subject to considerable rainfall variability which causes frequent periods of water deficiency. This paper addresses the twin problems of “drought and desertification” from a water perspective, focusing on the soil moisture (green water) and plant water uptake deficiencies. It makes a clear distinction between long‐term climate change, meteorological drought, and agricultural droughts and dry spells caused by rainfall variability and land degradation. It then formulates recommendations to better cope with and to build resilience to droughts and dry spells. Coping with desertification requires a new conceptual framework based on green‐blue water resources to identify hydrological opportunities in a sea of constraints. This paper proposes an integrated land/water approach to desertification where ecosystem management supports agricultural development to build social‐ecological resilience to droughts and dry spells. This approach is based on the premise that to combat desertification, focus should shift from reducing trends of land degradation in agricultural systems to water resource management in savannas and to landscape‐wide ecosystem management.  相似文献   

3.
Nishat, Bushra and S.M. Mahbubur Rahman, 2009. Water Resources Modeling of the Ganges‐Brahmaputra‐Meghna River Basins Using Satellite Remote Sensing Data. Journal of the American Water Resources Association (JAWRA) 45(6):1313‐1327. Abstract: Large‐scale water resources modeling can provide useful insights on future water availability scenarios for downstream nations in anticipation of proposed upstream water resources projects in large international river basins (IRBs). However, model set up can be challenging due to the large amounts of data requirement on both static states (soils, vegetation, topography, drainage network, etc.) and dynamic variables (rainfall, streamflow, soil moisture, evapotranspiration, etc.) over the basin from multiple nations and data collection agencies. Under such circumstances, satellite remote sensing provides a more pragmatic and convenient alternative because of the vantage of space and easy availability from a single data platform. In this paper, we demonstrate a modeling effort to set up a water resources management model, MIKE BASIN, over the Ganges, Brahmaputra, and Meghna (GBM) river basins. The model is set up with the objective of providing Bangladesh, the lowermost riparian nation in the GBM basins, a framework for assessing proposed water diversion scenarios in the upstream transboundary regions of India and deriving quantitative impacts on water availability. Using an array of satellite remote sensing data on topography, vegetation, and rainfall from the transboundary regions, we demonstrate that it is possible to calibrate MIKE BASIN to a satisfactory level and predict streamflow in the Ganges and Brahmaputra rivers at the entry points of Bangladesh at relevant scales of water resources management. Simulated runoff for the Ganges and Brahmaputra rivers follow the trends in the rated discharge for the calibration period. However, monthly flow volume differs from the actual rated flow by (?) 8% to (+) 20% in the Ganges basin, by (?) 15 to (+) 12% in the Brahmaputra basin, and by (?) 15 to (+) 19% in the Meghna basin. Our large‐scale modeling initiative is generic enough for other downstream nations in IRBs to adopt for their own modeling needs.  相似文献   

4.
Water management is changing its paradigm. The millennia of economic indoctrination are to be replaced by the logic of ecology. The economic sector satisfying the demands for water and water‐related services guided until now by its own ideology and institutions, is gradually becoming an integral part of environmental protection and eco‐economy. Within the great diversity of national water policies, efforts towards sustainability are a dominant common objective. Discussions of the World Water Fora and other initiatives indicate that ecologically oriented water management is the emerging new challenge for achieving this objective. Ecological orientation emphasizes the unified system of the world water balance processes as transmitters of various human impacts leading to economic externalities. Water management is becoming a component of the processes of globalization primarily through its externalities requiring a comprehensive informational infrastructure as well as adequate institutional competence for their management. The paper analyzes fundamental features of the conceptual models incorporating such informational and institutional arrangements. The outlook of water is inseparably tied to the world order of the future, and water management in the world of globalization can either promote a genuine worldwide collaboration or can become a source of dangerous international tensions and conflicts.  相似文献   

5.
Global human progress occurs in a complex web of interactions between society, technology and the environment as driven by governance and infrastructure management capacity among nations. In our globalizing world, this complex web of interactions over the last 200 years has resulted in the chronic widening of economic and political gaps between the haves and the have-nots with consequential global cultural and ecosystem challenges. At the bottom of these challenges is the issue of resource limitations on our finite planet with increasing population. The problem is further compounded by pleasure-driven and poverty-driven ecological depletion and pollution by the haves and the have-nots respectively. These challenges are explored in this paper as global sustainable development (SD) quantitatively; in order to assess the gaps that need to be bridged.Although there has been significant rhetoric on SD with very many qualitative definitions offered, very few quantitative definitions of SD exist. The few that do exist tend to measure SD in terms of social, energy, economic and environmental dimensions. In our research, we used several human survival, development, and progress variables to create an aggregate SD parameter that describes the capacity of nations in three dimensions: social sustainability, environmental sustainability and technological sustainability. Using our proposed quantitative definition of SD and data from relatively reputable secondary sources, 132 nations were ranked and compared.Our comparisons indicate a global hierarchy of needs among nations similar to Maslow's at the individual level. As in Maslow's hierarchy of needs, nations that are struggling to survive are less concerned with environmental sustainability than advanced and stable nations. Nations such as the United States, Canada, Finland, Norway and others have higher SD capacity, and thus, are higher on their hierarchy of needs than nations such as Nigeria, Vietnam, Mexico and other developing nations. To bridge such gaps, we suggest that global public policy for local to global governance and infrastructure management may be necessary. Such global public policy requires holistic development strategies in contrast to the very simplistic north–south, developed–developing nations dichotomies.  相似文献   

6.
El Niño‐Southern Oscillation (ENSO), which occurs in the Equatorial Pacific Ocean, has been identified to have significant influence on rainfall variability throughout the world, especially in the tropics. Such variability in rainfall has implications for agrarian economies, such as that in Ghana. This study therefore sought to demonstrate the effect of ENSO‐induced variability in annual and seasonal rainfall on the development of sustainable agriculture in the Ho Municipality of Ghana. Using 61 years of monthly rainfall data (1955–2015) for the Ho Municipality and ENSO indices, this study showed that 15% of the variability in total annual rainfall is explained by the ENSO phenomena. Mean annual rainfall and rainfall in the major rainy season decreased for El Niño years, in addition to a more variable rainfall compared to that received in La Niña years. The major growing season was observed to be longer in La Niña years and shorter in El Niño years. This means that the potential for crop cultivation will be severely hampered in an El Niño year. Farmers within the municipality are therefore encouraged to harness other complementary water sources for farming activities and also employ water management strategies during El Niño years.  相似文献   

7.
Many reports have recognized the need for a national water census for the United States and have called upon the U.S. Geological Survey to undertake this challenge. For example, the National Science and Technology Council stated: “The United States has a strong need for an ongoing census of water that describes the status of our Nation's water resource at any point in time and identifies trends over time.” Responding to the need for this information, the U.S. Congress established the SECURE Water Act. The directives are to provide a more accurate assessment of the status of the water resources of the United States; determine the quantity of water available for beneficial uses; identify long‐term trends in water availability; assist in determination of the quality of the water resources; and develop the basis for an improved ability to forecast the availability of water for future economic, energy production, and environmental uses. This article provides summary and new information on the process and progress on work to estimate water budget components nationwide, involvement of stakeholder interests, efforts to examine water‐use characteristics throughout the Nation, studies of water availability in geographically focused areas and the initiation of methods to provide open access to existing and new water resources information contributing to Open Water Data Initiative (OWDI) efforts and objectives.  相似文献   

8.
Costa Rica is a nation with a vast wealth of water resources; however, recently the country has faced water conflicts (WC) due to social, economic, legal, and political impediments in response to limited water availability during El Niño events and inefficient use of its water resources. This study presents a spatial distribution and temporal analysis of WC in Costa Rica from 2005 to 2015. In total, 719 WC were analyzed of which 54% were among private individuals and government. The largest urban areas and the Grande de Tárcoles Basin were identified as the main “hot spot” for the conflicts. WC were mainly caused by spills of wastewater, water pollution, water shortage, infrastructure damage, and flooding, and can be predicted using a multiple linear model including the population size and the number of hydro‐meteorological events (HME) (R2 = 0.77). The identified HME also coevolved significantly with the changes in precipitation regimes (r = 0.67, = 0.021). Our results suggest that there is a need to recognize that water infrastructure longevity across the country concatenates and amplifies WC, mainly in the most populated area located in the Central Valley. Implications of our findings include the need for truly integrated water resources management plans that include, for example, WC as indicators of hydro‐climatic changing conditions and water supply and sanitation infrastructure status.  相似文献   

9.
Emerging approaches to water resources development and management typically highlight equity and productivity as two main objectives. In the context of integrated water resources management within a river basin, managers and stakeholders often need a comparative assessment of different options for water augmentation and/or allocation. Pitting such options against predefined objectives, such as equity and productivity, requires an assessment of the effects that available options will have on these objectives. Available documentation indicates that not only does the interpretation of such objectives vary widely, but also the available methods for assessing equity and productivity run into significant limitations in the availability of adequate data. This limitation has largely kept decision makers from gaining a comprehensive overview of equity and productivity scenarios, whether within or across sectors, that could facilitate better‐informed decisions. To address this methodological gap, this article scrutinizes different notions associated with equity and water productivity, and limitations in prevalent assessment methods with the view to develop and demonstrate pragmatic methodologies for assessing equity and productivity in data‐scarce contexts. The discussion and findings are based on a review of relevant literature and empirical and consultative research work in the Olifants River basin in South Africa. The demonstrated methodologies for assessing equity and productivity, besides being useful in data‐scarce contexts, are insightful for initiating several policy measures and also for exploring the relationship between equity and water productivity.  相似文献   

10.
Using the development of the building stock and physical infrastructure as an example, this article highlights the difficulties in combining continuous economic growth in wealthy countries with the requirements of environmentally sustainable development. There are clear limits as to how far we can get by means of ‘eco-efficiency’, and the effect of a transition to less environmentally harmful types of consumption is not sufficient if the consumption volume keeps on increasing. This is particularly evident for societal processes such as the construction of buildings and the development of physical infrastructure. Increased consumption is both a result of and a precondition for economic growth. The development of the building stock and physical infrastructure in cities is a case showing that economic growth—at any rate, in the longer term—can hardly be consistent with the preservation of species, ecosystems and food-production resources. The growth in the building stock also makes it increasingly difficult to limit energy use and reduce carbon–dioxide emissions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Climate change is increasing the variability of rainfall, and thus the availability of water supplies in many areas of the world. These impacts are already being felt in the state of Victoria, Australia where a 12 year drought period was recently experienced. Restrictions to water use have been implemented, as one component of a broad policy approach to manage the drought. While anecdotal evidence suggests that the substitution of centralised water supplies is occurring, this has not been proven empirically. This paper reports results from a survey of households in Victoria regarding their use of alternative water sources. The study found that substitution is occurring. Garden watering is the purpose which has the highest rate of alternative water source use. In total 41.6% of respondents always, and 33.2% sometimes use an alternative water source for garden watering. The most commonly used alternative source of water for garden watering is water previously used in the laundry (30.7%). The alternative source of water used was found to vary depending on the purpose of the water use. High levels of satisfaction were found for all alternative water sources used. Several barriers were found to the use of alternative water sources, the main of which were: inflexibility of existing infrastructure, cost, policy, and housing status. The results have implications for water retailers, policy makers and governments in locations facing water shortage.  相似文献   

12.
This paper seeks to identify some promising policy options which could be part of a strategic and holistic effort to address India's future water challenges. Significant increases in agricultural water productivity would be a major factor in reducing the need for developing new water sources. Crop diversification, appropriately targeted to account for the present agricultural systems and available water resources, will increase productivity. Furthermore, much more emphasis needs to be placed on effective management of the groundwater resources through renewed efforts to enhance artificial recharge and conservation. Also, efforts should be revived to improve the existing surface irrigation systems. In particular, systems could be reconfigured to provide a more reliable water supply and allow effective community level management, where appropriate. Finally, while some of the increasing demands from domestic and industrial users will be met by the development of groundwater and reallocation of water from the agricultural sector, this will not be sufficient. Given that such conditions are emerging in states with high economic growth and relatively water scarce basins, this will require the further development of water resources. In some cases, these conditions along with the demand for reliable water for high value crops, will be part of the justification for inter‐basin transfers.  相似文献   

13.
We analyzed the effects of changes in land cover on the water balance in Spain’s Marina Baixa County, on the Mediterranean coast. To reveal how different land management strategies have affected the area’s environment, four municipalities within the same catchment were studied: Benidorm, Callosa d’en Sarrià, Beniardà, and Guadalest. In the municipalities of Callosa and Benidorm, the proportion of the area covered by woodland declined by 4.2% and 30.2%, respectively, and woodland was replaced by agriculture and urban development. The abandonment of farmland produced a 17% increase in the proportion of the area covered by vegetation in Guadalest and Beniardá, where frequent forest fires have exacerbated a decrease in the area of pine woodland. Tourism development in Benidorm has been accompanied by an increase in the transportation infrastructure and by an expansion of areas with an impermeable surface, with the lowest level of infiltration into the aquifer system. These changes have generated a net water deficit in Callosa and Benidorm of more than 6 Mm3/year, creating a high demand for water imported from other municipalities (Guadalest and Beniardá) or from outside of the county to maintain the sustainability of the current water management strategies. The Marina Baixa case study is representative of many of the world’s coastal areas that are undergoing rapid urban development based on an inappropriate understanding of human progress based mainly on economic development and thus provides insights into water management in other areas.  相似文献   

14.
The aim of this study is to identify temporal and spatial variability patterns of annual and seasonal rainfall in Mexico. A set of 769 weather stations located in Mexico was examined. The country was divided into 12 homogeneous rainfall regions via principal component analysis. A Pettitt test was conducted to perform a homogeneity analysis for detecting abrupt changes in mean rainfall levels, and a Mann‐Kendall test was conducted to examine the presence of monotonically increasing/decreasing patterns in the data. In total, 14.4% of the annual series was deemed nonstationary. Fourteen percent of the samples were nonstationary in the winter and summer, and 9% were nonstationary in the spring and autumn. According to the results, the nonstationarity of some seasonal rainfall series may be associated with the presence of atmospheric phenomena (e.g., El Niño/Southern Oscillation, Pacific Decadal Oscillation, Atlantic Multidecadal Oscillation, and North Atlantic Oscillation). A rainfall frequency analysis was performed for the nonstationary annual series, and significant differences in the return levels can be expected for the scenarios analyzed. The identification of areas that are more susceptible to changes in rainfall levels will improve water resource management plans in the country, and it is expected that these plans will take into account nonstationary theory.  相似文献   

15.
ABSTRACT: Parts of the Raritan River basin in central New Jersey have undergone increasing development over the last several decades. The increasing population relies on the region's ground water and surface water sources for its residential, commercial, and industrial water supply. Urbanization, regionalized wastewater-treatment facilities, stream channel alterations, and interbasin transfers of water can all affect water availability. This pilot study was conducted to determine whether significant trends exist in the base-flow and overland-runoff characteristics of streams in two subbasins with different percentages of urban/built-up land (Anderson et at., 1976). Changes in flow characteristics that could indicate future reductions in safe water yield of the Raritan River basin were examined. Flow and flow variability of the steams draining these two subbasins have increased over time. Many of the flow measures studied experienced pronounced trend shifts about 1960. The cause of these changes cannot be readily determined from the data, nor is it clear whether the increased flow variability lies outside the natural range of flow variability of the streams draining the subbasins.  相似文献   

16.
Runoff water management is among the inherent challenges which face the sustainability of the development of arid urban centers. These areas are particularly at risk from flooding due to rainfall concentration in few heavy showers. On the other hand, they are susceptible to drought. The capital of Sudan (Khartoum) stands as exemplary for these issues. Hence, this research study aims at investigating the potential of applying rainwater harvesting (RWH) in Khartoum City Center as a potential urban runoff management tool. Rapid urbanization coupled with the extension of impervious surfaces has intensified the heat island in Khartoum. Consequently, increased frequency of heat waves and dust storms during the dry summer and streets flooding during the rainy season have led to environmental, economical, and health problems. The study starts with exposing the rainfall behavior in Khartoum by investigating rainfall variability, number of raindays, distribution of rain over the season, probability of daily rainfall, maximum daily rainfall and deficit/surplus of rain through time. The daily rainfall data show that very strong falls of >30 mm occur almost once every wet season. Decreased intra- and inter-annual rainfall surpluses as well as increased rainfall concentration in the month of August have been taking place. The 30-year rainfall variability is calculated at decade interval since 1941. Increasing variability is revealed with 1981–2010 having coefficients of variation of 66.6% for the annual values and 108.8–118.0% for the wettest months (July–September). Under the aforementioned rainfall conditions, this paper then explores the potential of RWH in Khartoum City Center as an option for storm water management since the drainage system covers only 40% of the study area. The potential runoff from the 6.5 km2 center area is computed using the United States Natural Resources Conservation Services method (US-NRCS), where a weighted Curve Number (CN) of 94% is found, confirming dominant imperviousness. Rainfall threshold for runoff generation is found to be 3.3 mm. A 24,000 m3 runoff generated from a 13.1 mm rainfall (with 80% probability and one year return period) equals the drainage system capacity. An extreme rainfall of 30 mm produces a runoff equivalent to fourfold the drainage capacity. It is suggested that the former and latter volumes mentioned above could be harvested by applying the rational method from 18% and 80% rooftops of the commercial and business district area, respectively. Based on the above results, six potential sites can be chosen for RWH with a total roof catchment area of 39,558 m2 and potential rooftop RWH per unit area of 0.033 m3. These results reflect the RWH potential for effective urban runoff management and better water resources utilization. RWH would provide an alternative source of water to tackle the drought phenomenon.  相似文献   

17.
Water is a critical issue in China for a variety of reasons. China is poor of water resources with 2300m(3) of per capita availability, which is less than 13 of the world average. This is exacerbated by regional differences; e.g. North China's water availability is only about 271m(3) of per capita value, which is only 125 of the world's average. Furthermore, pollution contributes to water scarcity and is a major source for diseases, particularly for the poor. The Ministry of Hydrology [1997. China's Regional Water Bullets. Water Resource and Hydro-power Publishing House, Beijing, China] reports that about 65-80% of rivers in North China no longer support any economic activities. Previous studies have emphasized the amount of water withdrawn but rarely take water quality into consideration. The quality of the return flows usually changes; the water quality being lower than the water flows that entered the production process initially. It is especially important to measure the impacts of wastewater to the hydro-ecosystem. Thus, water consumption should not only account for the amount of water inputs but also the amount of water contaminated in the hydro-ecosystem by the discharged wastewater. In this paper we present a new accounting and analytical approach based on economic input-output modelling combined with a mass balanced hydrological model that links interactions in the economic system with interactions in the hydrological system. We thus follow the tradition of integrated economic-ecologic input-output modelling. Our hydro-economic accounting framework and analysis tool allows tracking water consumption on the input side, water pollution leaving the economic system and water flows passing through the hydrological system thus enabling us to deal with water resources of different qualities. Following this method, the results illustrate that North China requires 96% of its annual available water, including both water inputs for the economy and contaminated water that is ineligible for any uses.  相似文献   

18.
We conducted synoptic surveys over three seasons in one year to evaluate the variability in water sources and geochemistry of an urban river with complex water infrastructure in the state of Utah. Using stable isotopes of river water (δ18O and δ2H) within a Bayesian mixing model framework and a separate hydrologic mass balance approach, we quantified both the proportional inputs and magnitude of discharge associated with “natural” (lake, groundwater, and tributary inputs) and “engineered” (effluent and canal inflows) sources. The relative importance of these major contributors to streamflow varied both spatially and seasonally. Spatiotemporal patterns of dissolved oxygen, temperature, pH, calcium, chloride, nitrate, and orthophosphate indicated seasonal shifts in dominant sources of river water played an important role in determining water quality. We show although urban rivers are clearly influenced by novel water sources created by water infrastructure, they continue to reflect the imprint of “natural” water sources, including diffuse groundwater. Resource managers thus may need to account for the quantity of both surface waters and also historically overlooked groundwater inputs to address water quality concerns in urban rivers.  相似文献   

19.
Abstract: Storm‐flow transients (i.e., hydrograph rise and fall dynamics) may represent an important aspect of understanding streamflow dynamics. However, little is known about how temporal resolution of transient data and climate variability may color these potential indicators of hydrologic pattern or condition. Warm‐season stream stage and rainfall were monitored continuously (5 min) during the 2002 water year in eight tributaries of the Little Miami River (Ohio), which drain 17‐58 km2 catchments. Rise rates generated using 5‐min data were different than those generated with mean daily data [calculated with the Indicators of Hydrologic Alteration (IHA) software], though fall rates were similar for fine and coarse temporal data. This result suggests that data with low temporal resolution may not be adequate to fully represent the dynamics of storm rise rates. Conversely, fall rates based on daily stage data (via IHA) were similar to those based on the 5‐min data, and so daily mean data may be appropriate for characterizing fall rates. We next analyzed the possible correlations between rainfall variability and storm‐flow stage dynamics. We derived rise and recession rates from storm stage hydrographs by assuming exponential rise and decay of a runoff peak. We found that raw rise rates (Rraw) were correlated with both the maximum rainfall rate and the time to the centroid of a rain event. We subsequently removed the trend based on these rainfall characteristics, which yielded new representations of rise rates abbreviated as Rrate and Rtcent, respectively, and that had lower variability than the uncorrected (raw) data. Fall rates were found to be independent of rainfall characteristics. Due to the predominant influence of stream hydrology upon aquatic biota and nutrient fluxes, our work suggests that these stage data analysis protocols can refine or otherwise reduce variability in these indices by accounting for relevant factors such as rainfall forcing. These protocols for derivation of transient indices should be tested for their potential to improve correlations between stream hydrology and temporally aligned biotic data and dissolved nutrient fluxes in streams.  相似文献   

20.
This article discusses ways in which the South African Government and grassroots organizations envisage and implement democracy achieved since 1994 in the field of water resources management. The focus is on the democratic, political and economic freedom and equality in resource rights for poor black women, who are central to poverty eradication. While the new water policy and law provide an enabling framework for achieving these goals, implementation on the ground encounters both new opportunities and constraints. This is illustrated by several cases of establishing South Africa's new water management institutions: catchment management agencies and water user associations. The important nexus between state‐led democratization of water resources management and bottom‐up grassroots movements is also discussed. The article concludes that the Government's affirmative and targeted intervention is indispensable for redressing gender inequalities and eradicating poverty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号