共查询到20条相似文献,搜索用时 109 毫秒
1.
为阐明喀斯特小流域土壤有机碳含量分布格局及其主要影响因素,采用野外布点采样、实验室测定相结合的方法,利用后寨河流域2755个详细调查的剖面信息,定量研究了土壤有机碳含量的分布特征,并利用主成分分析法分析了影响后寨河流域土壤有机碳含量的主要因子。结果表明,流域内土壤有机碳含量高、变异性强。流域表层土壤有机碳平均含量为25.07g/kg,变幅为1.61~119.11g/kg。全流域整个剖面土壤有机碳平均含量为20.71g/kg,土壤有机碳含量变异系数变幅为52.68%~75.28%,呈中等强度变异;流域土壤有机碳含量处于较高的水平,91.7%的样点表层土壤有机碳含量高于11.6g/kg;石砾含量与土壤有机碳含量性关系不显著,土壤有机碳含量与坡度、海拔、岩石裸露率均呈极显著正相关关系,与容重呈显著负相关关系;主成分分析结果表明,海拔、坡度、土壤类型是影响后寨河流域土壤有机碳分布的主导因子,在土壤有机碳储量估算时必须高度重视。 相似文献
2.
喀斯特小流域土壤有机碳密度空间异质性及影响因素 总被引:2,自引:0,他引:2
论文为阐明喀斯特小流域土壤有机碳密度分布格局及其主要影响因素,运用野外布点采样、实验室测定和地统计学分析相结合的方法,采用2 755个详细调查的剖面样地,共计23 536个土壤样品,定量研究了土壤有机碳密度的空间异质性及分布特征,并利用典范分析法分析了影响土壤有机碳密度的主要环境因子。结果表明:后寨河流域各层土壤有机碳密度随土壤深度的增加而逐渐降低,最大值为12.47 kg/m2,最小值为0.11 kg/m2,100 cm土壤深度有机碳密度平均值为12.11 kg/m2,高于全国100 cm土壤深度有机碳平均密度。流域土壤有机碳密度最佳拟合模型为高斯模型,呈中等强度空间相关,Kriging插值显示土壤碳密度高值区在东部区域,低值区在南部区域,表现为中部低、四周高的趋势。后寨河100 cm深度下土壤碳密度在不同植被类型、土地利用方式、土壤类型下表现出一定差异。土壤厚度与有机碳密度呈正相关,石砾含量、坡向、坡度、土壤容重、岩石裸露率与有机碳密度呈负相关。土壤厚度、岩石裸露率、石砾含量是影响后寨河流域土壤有机碳密度的主要因子,其中以土壤厚度影响最大。 相似文献
3.
地形和土地利用决定的土壤水分和土壤有机碳(Soil Organic Carbon,SOC)的空间分布格局为研究水碳关系提供了重要的线索,但土壤水分的强变异性和SOC的相对稳定性对土壤水碳关系的研究提出了挑战。研究基于陆地水量平衡角度,选择雨季后土壤水分恢复期在晋西黄土丘陵小流域尺度进行了重复采样,按照3种地貌类型(沟底、 沟坡、 峁坡)和3种土地利用方式(农地、 林地、 草地)共布置37个样点,采集0~100 cm土壤样品测定土壤水分和SOC,探讨土壤水分与SOC分布特征及其相互关系。结果表明:同一土地利用方式下,土壤水分和SOC总体上沟底>沟坡>峁坡;同一地貌类型下,土壤水分农地>草地>林地,SOC农地<草地<林地。SOC与土壤水分呈现正相关关系,二者符合指数增长(y=y0+log a×ax,y为SOC,x为土壤水分)关系,因地貌部位和土地利用方式的不同决定系数在7%~37%之间变化。这一结果为基于土壤水分变化预测SOC积累和分布提供了参考。 相似文献
4.
黄土塬区小流域深层土壤有机碳变化的影响因素 总被引:2,自引:1,他引:2
以黄土高原沟壑区王东沟小流域为对象,研究了地形(塬面、塬坡和沟道)、土地利用(自然草地、人工草地、人工林地、农地和果园)对0~200cm土层内土壤有机碳(soil organic carbon,SOC)垂直分布特征的影响,以揭示黄土高原小流域深层SOC储量及其影响因素.结果表明,SOC含量除表层(0~20cm)沟道(10.0g·kg-1)大于塬面(7.8g·kg-1)和塬坡(8.2g·kg-1)外,塬面底层SOC均显著高于塬坡和沟道;塬坡和沟道SOC含量随深度增加而降低,而塬面上呈现SOC随深度增加降低-升高-降低的变化趋势.塬面上,SOC含量呈现人工草地(5.4g·kg-1)农田(5.2g·kg-1)和果园(5.1g·kg-1)的趋势,影响深度为表层40cm;塬坡上,呈现自然草地(4.3g·kg-1)人工林地(3.8g·kg-1)人工草地(3.3g·kg-1)和果园(3.3g·kg-1)的趋势,影响深度达到100cm;而沟道内,林草地利用方式对整个垂直剖面分布的差异无显著影响.20~100cm土层SOC储量占0~100cm储量的67.6%;100~200cm土层SOC储量占0~200cm储量的37.3%,相当于0~100cm的63.8%.研究结果表明地形、土地利用显著(p0.05)影响SOC垂直分布特征;黄土高原沟壑区深层SOC储量巨大,不容忽视. 相似文献
5.
花江小流域石漠化过程中的土壤有机碳氮的变化 总被引:10,自引:1,他引:10
以花江峡谷区1.2 km2小流域为研究对象,通过设置不同喀斯特石漠化强度的样地,研究不同等级石漠化样地的土壤有机碳、全氮含量在石漠化过程中的变化。结果表明,喀斯特生境中土壤具有高度异质性,人为干扰方式对土壤有机碳、全氮含量变异性的影响很大;樵采石漠化样地小生境土壤有机碳、全氮含量维持在较高水平,开垦石漠化样地小生境土壤有机碳、全氮含量较低;随着石漠化程度的加剧,樵采和开垦系列样地土壤有机碳、全氮含量呈现不断降低的趋势,这在一定程度上体现了石漠化过程的土壤退化本质。小流域内石漠化成因类型的划分对揭示石漠化过程中的土壤退化是必须的。 相似文献
6.
桂林会仙喀斯特湿地水位梯度下不同植物群落土壤有机碳及其组分特征 总被引:5,自引:0,他引:5
选择桂林会仙喀斯特湿地不同水位梯度下9种植物群落的土壤为研究对象,通过研究0~30 cm不同深度的土壤理化性质、土壤有机碳(SOC)、轻组有机碳(LFOC)、重组有机碳(HFOC)、易氧化有机碳(EOC)、可溶性有机碳(DOC)、颗粒有机碳(POC)、微生物生物量碳(MBC)含量等变化趋势,以揭示水位梯度下不同植物群落土壤有机碳组分的分布特征及其影响因子.结果表明:①会仙湿地土壤0~30cm LFOC、HFOC占SOC的质量分数分别为11. 10%,88. 90%,土壤轻组分分配比相对较低,重组分分配比较高;②各群落土壤DOC,EOC; POC和MBC(除铺地黍群落外)含量均随土层深度的增加而减少;与SOC含量变化趋势基本一致,各群落DOC、EOC、POC占SOC的比例随土层变化均呈减小趋势;③华克拉莎群落的SOC、LFOC、HFOC、MBC、DOC、EOC、POC含量在各土层中均为最高,且显著高于其它植物群落;④SOC、全氮(TN)与土壤有机碳各组分含量显著正相关(P 0. 01),土壤pH与LFOC、HFOC、DOC和POC显著正相关,土壤容重与LFOC、HFOC、DOC、EOC和POC显著负相关(P 0. 01),黏粒含量与LFOC、HFOC、DOC、POC和MBC显著负相关;⑤土壤全氮、砂粒含量、pH和土壤含水量对HFOC含量的主要贡献均表现为通过影响其它因子而产生的间接作用效应;土壤TN对EOC、DOC和POC含量具有较强的直接正作用效应;土壤含水量对MBC含量的直接负作用最大.土壤理化特征因子之间的相互作用共同影响着LFOC、HFOC及有机碳各组分含量的变化. 相似文献
7.
种植花椒对喀斯特石漠化地区土壤有机碳矿化及活性有机碳的影响 总被引:3,自引:0,他引:3
以贵州西南部典型石漠化治理示范区内5年、17年、30年生花椒林和乔木林(约60年)土壤为对象,采用室内模拟培养方法研究了0~15、15~30、30~50 cm这3个剖面土壤有机碳的矿化特征及活性有机碳的含量变化.结果表明,30年生花椒林土壤有机碳累计矿化量在各层土壤中均高于对应的乔木林土壤,而5年、17年生花椒林地各层土壤则均低于对应的乔木林土壤,3种花椒林土壤有机碳累计矿化量分配比在各层均高于对应的乔木林土壤.长期种植花椒增加了土壤有机碳的矿化量,降低了土壤有机碳的稳定性.乔木林土壤易氧化有机碳和颗粒有机碳在各层均显著高于对应的3种花椒林土壤(P0.05).随花椒种植年限增加,土壤易氧化有机碳和颗粒有机碳含量在0~15 cm和15~30 cm土层先增加后减少,在30~50cm土层则为先减少后增加.短期花椒种植有利于土壤活性有机碳的增加,长期则降低了0~15 cm和15~30 cm层土壤活性有机碳含量,花椒种植有利于深层(30~50 cm)土壤活性有机碳的积累. 相似文献
8.
南长山岛不同土地利用方式下的土壤有机碳密度 总被引:1,自引:0,他引:1
土壤有机碳库是陆地生态系统中重要的碳库之一,以往对海岛生态系统土壤有机碳储量估算及其影响因素的研究较少.因此,本研究在南长山岛实测了不同土地利用方式下表层土壤的有机碳密度,比较了相互之间的差别,分析了与土壤理化性质的相关性.结果表明,南长山岛不同土地利用方式土壤有机碳密度差异显著(p0.01),表现为:针阔混交林刺槐黑松侧柏农田水库沿岸草地果园;森林土壤有机碳密度高于其他类型土壤.森林土壤有机碳密度与坡度(r=-0.459,p=0.085)、海拔相关性不显著.在土壤理化性质中,土壤全氮(r=0.763,p0.01)、有机质(r=0.833,p0.01)含量与森林土壤有机碳密度呈显著正相关. 相似文献
9.
陕北黄土丘陵区不同土地利用方式下土壤碳剖面分布特征 总被引:9,自引:7,他引:9
黄土高原土层深厚,土壤剖面碳存储受土地利用方式影响明显.为探讨不同土地利用方式对深层土壤碳分布的影响,研究了人工经济林地(陕北米脂)、退耕还林地(神木)和防风固沙林地(榆林榆阳区)0~20.0 m土壤有机碳(SOC)和无机碳(SIC)的分布特征和差异.结果表明,在不同土地利用方式下SOC含量:矮化枣树(2.00 g·kg~(-1))未矮化枣树(1.54 g·kg~(-1))柠条林(0.97 g·kg~(-1))退化人工草地(0.81 g·kg~(-1))樟子松林(0.70 g·kg~(-1))荒草地(0.45 g·kg~(-1)),且各剖面之间SOC含量存在显著性差异(P0.05).在不同土地利用方式下SIC含量:矮化枣树(11.66 g·kg~(-1))≥未矮化枣树(11.59g·kg~(-1))柠条林(9.62 g·kg~(-1))退化人工草地(8.07 g·kg~(-1))樟子松林(4.32 g·kg~(-1))荒草地(0.47 g·kg~(-1));人工经济林和退耕还林(草)样地内所有土壤剖面之间SIC含量无显著性差异;人工经济林、退耕还林(草)剖面和防风固沙林地剖面SIC含量存在显著性差异(P0.05).矮化枣树、未矮化枣树、柠条林、退化人工草地、樟子松林和荒草地土壤剖面无机碳密度分别是有机碳密度的6.19、7.71、10.80、10.78、5.91和1.03倍.综上可见,不同土地利用方式之间土壤碳储量存在明显差异,无机碳的含量远高于有机碳. 相似文献
10.
红壤丘陵区土壤有机碳组分对土地利用方式的响应特征 总被引:2,自引:0,他引:2
土地利用方式影响土壤有机碳(SOC)及其组分,进而决定了碳库的稳定性.以林地为参照,分析我国红壤丘陵区农田(水田和旱地)SOC及其活性组分[可溶性有机碳(DOC)、微生物生物量碳(MBC)和颗粒有机碳(POC)]和惰性组分[矿物结合态有机碳(MAOC)]含量,探讨土壤有机碳组分对土地利用方式的响应特征.结果表明,与旱地和林地相比,水田SOC、 MBC、 POC和MAOC含量均为最高.DOC含量以林地显著高于旱地和水田(P<0.001).SOC各组分占SOC的比例,即DOC/SOC、 MBC/SOC、 POC/SOC和MAOC/SOC范围分别为0.22%~0.93%、 1.62%~2.70%、 31.08%~40.00%和43.22%~56.82%.活性组分(MBC和POC)含量与占比趋势一致,均以水田>林地>旱地.MAOC含量以水田最高、旱地最低,MAOC/SOC则以旱地最高、水田最低.相关分析表明,水田、旱地和林地中MBC、 POC和MAOC分别与SOC呈极显著正相关(P<0.001),而DOC与SOC及其它组分均无显著相关性(P>0.05);旱地、林地... 相似文献
11.
干热河谷不同利用方式下土壤活性有机碳含量及其分配特征 总被引:6,自引:3,他引:6
对比研究了干热河谷新银合欢林地、大叶相思林地、旱耕地和荒地土壤有机碳(SOC)、易氧化有机碳(ROC)、微生物生物量碳(MBC)和可溶性有机碳(DOC)含量及其分配比例.结果表明,4类利用方式下SOC含量在4.22~5.19g·kg-1之间,其差异不显著.新银合欢(2.14g·kg-1)和大叶相思林地ROC含量(2.03g·kg-1)显著高于旱耕地(1.38g·kg-1)和荒地(1.34g·kg-1);4类利用方式下,旱耕地MBC和DOC含量均最高,荒地最低.林地ROC分配比例是荒地和旱耕地的1.3~1.6倍;旱耕地MBC和DOC的分配比例均高于其他3类利用方式,林地和荒地MBC、DOC分配比例接近.植被凋落量和管理措施是不同利用方式下ROC含量差异的主要原因,而土壤含水量和植被凋落性质是4类利用方式下MBC、DOC含量变异的主要影响因素.干热河谷ROC含量变化可以敏感地指示SOC动态,但MBC、DOC含量变化则不能反映SOC动态. 相似文献
12.
黄土台塬不同土地利用土壤有机碳与颗粒有机碳 总被引:9,自引:2,他引:9
为了探讨土地利用方式对土壤有机碳固定的影响,论文以乔木、灌木、草地和农田等不同植被类型,纯林和混交两种栽培模式的黄土台塬为研究对象,进行了土壤有机碳(SOC)和颗粒有机碳(POC)分析。结果表明:不同土地利用方式土壤SOC和POC在0~100 cm土体中均存在差异,尤以0~40 cm深度突出,其中灌木林地和天然草地在整个剖面上可积累更多的SOC和POC;不同土地利用方式土壤细颗粒有机碳(FPOC)含量、分配比例及其在剖面上的分布变化均小于粗颗粒有机碳(CPOC),在0~100 cm土体中,CPOC敏感性指标分别为SOC、FPOC和POC总量的2.66~13.56、3.75~5.99和2.58~4.17倍;不同土地利用方式土壤SOC与POC极显著相关,耕地SOC与POC相关性相对较小,乔灌混交林地和乔木林地最大。因此,CPOC和FPOC均可作为衡量土地利用方式转变对于土壤影响的评价指标之一。 相似文献
13.
土壤有机碳作为最大陆地碳库,其空间分布特征和影响因素对于全球碳循环过程具有重要影响.基于土壤有机碳密度数据,结合环境因子,使用多尺度地理加权回归(MGWR)模型预测了黄河流域土壤有机碳密度(SOCD)和影响因素.结果表明:①黄河流域0~20 cm和0~100 cm的SOCD范围分别为0~14.82 kg ·m-2和0~32.39kg ·m-2,均值分别为3.48 kg ·m-2和8.07kg ·m-2,储量则分别为2.76 Pg和6.48 Pg;②各生态系统类型中,0~20 cm的SOCD从大到小依次为:森林>水体与湿地>其他>草地>农田>聚落>荒漠,0~100 cm的SOCD从大到小依次为:水体与湿地>森林>其他>草地>农田>聚落>荒漠,SOCR从大到小皆为:草地>农田>森林>荒漠>水体与湿地>聚落>其他;③黄河流域SOCD的分布主要受常数项、剖面曲率、NDVI和降水的影响,曲率和粉砂对深层的SOCD的分布也具有重要影响;此外,降水、NDVI和常数项(除森林外)是影响各生态系统的主要因素,曲率和粉砂则仅对荒漠和其他生态系统具有重要影响.研究结果得出了黄河流域SOCD的空间分布和影响因素,可为黄河流域碳平衡、土壤质量评价和生态治理恢复与巩固提升提供科学依据. 相似文献
14.
江汉平原农田土壤有机碳分布与变化特点:以潜江市为例 总被引:6,自引:2,他引:6
以地处江汉平原腹地的潜江市农田土壤(水田、旱地)为研究对象,于2011年实地采样分析表层土壤(0~20 cm)有机碳的分布现状,并对比第二次土壤普查(1983年)资料,探讨28 a来江汉平原农田土壤有机碳的分布与变化特点.结果表明,2011年潜江市农田表层土壤有机碳密度为30.50 t·hm-2,碳储量为452.82×104t,与1983年相比有明显下降,下降速率分别为0.10 t·(hm2·a)-1和1.53 t·a-1,碳储量共损失了9%.两个时期水田土壤有机碳密度均明显高于旱地土壤,分别是旱地土壤的1.6倍和1.3倍,但是经过28年的常规耕作管理,水田土壤有机碳密度呈下降趋势,下降速率为0.23 t·(hm2·a)-1,导致的有机碳损失为52.83×104t,损失比例达16%;而旱地土壤有机碳则以0.05 t·(hm2·a)-1的速率缓慢增长,碳储量共增加了8.57×104t,增加比例为5%,远不能抵消水田土壤的有机碳损失.水田土壤碳储量的损失主要来自于低产潜育型水稻土碳密度的大幅下降所致(尽管其所占面积比例较小),其碳损失量占水田碳损失量的比例达80%;其次为占水田面积比例最大的潴育型水稻土,其碳损失量占水田碳损失量的15%.旱地土壤碳储量增长缓慢,完全来自于面积占96%的灰潮土有机碳密度的增长.因此,江汉平原区水田土壤有机碳的变化决定了农田土壤有机碳的整体动向,今后需着力提升有机碳下降迅速的低产水田以及面积较大的土壤类型的有机碳积累和固持能力. 相似文献
15.
土地利用方式对喀斯特山区土壤养分及有机碳活性组分的影响 总被引:1,自引:1,他引:1
通过对喀斯特山区5种土地利用方式(林地、 花椒林、 火龙果林、 退耕草丛和旱地)土壤养分和活性组分含量的比较研究,探讨了土壤质量对土地利用变化的响应。结果表明,林地土壤养分和活性组分含量最高,其中土壤有机碳、 微生物生物量碳、 氮、 磷、 易氧化有机碳和可溶性有机碳含量分别为44.80 g·kg-1、 477.86 mg·kg-1、 102.87 mg·kg-1、 17.54 mg·kg-1、 7.72 g·kg-1和166.43 mg·kg-1,土壤养分和活性组分含量总体按花椒林、 火龙果林、 退耕草丛和旱地依次下降。除旱地与经自然恢复15 a的退耕草丛土壤养分和活性组分含量较为接近,大多未达显著差异水平外,其他土地利用方式间土壤养分和活性组分均存在显著差异。冗余分析表明,土壤有机碳是影响活性组分变化的主要影响因子;花椒林对土壤养分和活性组分的累积效应仅次于林地,且明显高于火龙果林和旱地。研究阐明了喀斯特土壤的自然修复是一个非常缓慢的过程,需辅以必要的造林措施加速其恢复,花椒林可以作为喀斯特山区农业生产或生态恢复过程中优先考虑的植被类型。 相似文献
16.
塔里木盆地北缘绿洲4种土地利用方式土壤有机碳组分分布特征及其与土壤环境因子的关系 总被引:3,自引:0,他引:3
为明确干旱区土壤有机碳各组分分布状况,进而合理地开发与利用,解决土地利用效率低下问题,以塔里木盆地北缘盐碱地、天然林、沙地、30 a棉田这4种不同土地利用方式土壤为研究对象,分析不同土地利用方式土壤有机碳、微生物量碳、可溶性有机碳、易氧化有机碳的分布状况,结合冗余分析探索其与土壤环境因子的关系.结果表明,SOC在天然林表现出最高值(1.92 g·kg~(-1)),在沙地随土层增加而增加,在其他土地利用类型整体呈现下降趋势;MBC在天然林表现出最高水平,且随土层深度增加而降低,在其他土地利用类型无明显变化趋势.DOC含量最高值和最低值分别出现在天然林和30 a棉田的80~100 cm层(分别为143.23 mg·kg~(-1)和30.00 mg·kg~(-1)),在天然林中随土层深度增加而增加,在盐碱地中随土层深度增加而降低且不同土层含量均表现出显著差异(P0.05).EOC含量在不同土地利用类型和不同土层中未表现出明显规律.将各有机碳组分进行敏感性分析得出:MBC对不同土层最为敏感,DOC对土地利用变化最为敏感.通过冗余分析得出各有机碳组分与土壤含水量、全氮、p H呈正相关关系,与土壤容重、电导率呈负相关关系.土壤环境因子对各碳组分含量的重要性排序为:土壤容重含水量电导率土壤氮p H,即容重和含水量为影响干旱区有机碳组分的主要因子. 相似文献
17.
江汉平原不同土地利用方式下土壤团聚体中有机碳的分布与积累特点 总被引:21,自引:0,他引:21
论文探讨了江汉平原果园、旱地、水田、水旱轮作等利用方式下土壤团聚体的组成、有机碳与活性有机碳的分布与积累特点。结果表明:供试土壤团聚体的组成均以2~20μm粒径为主,其次为<2μm和20~50μm粒径,<50μm粒径团聚体的含量占团聚体总量的80.8%~94.1%。不同利用方式下有机碳含量的峰值均出现在200~2000μm团聚体中,且>50μm粒径团聚体中有机碳的含量比<50μm粒径的高;但69.8%~86.6%的有机碳分布在<50μm粒径团聚体中,其中以2~20μm团聚体中有机碳所占的比例最大(35.2%~45.9%),细微团聚体固碳能力较强,而粗粒径团聚体中的有机碳对土地利用方式的变化较为敏感。土壤团聚体中的活性有机碳以2~20μm粒径的最低,<2μm和20~50μm中有机碳的活性相差不大;不同粒径的团聚体中均为水耕利用方式下(水田和水旱轮作)土壤活性有机碳的含量比旱耕利用方式下(果园和旱地)的高,但随着土壤团聚体粒径的增加,由水耕利用方式下活性有机碳所占的比例较大逐渐过渡到以旱耕利用方式下活性有机碳的比例较大。由于供试样品中2~20μm团聚体中有机碳积累最大、固定的有机碳最多,可以考虑将2~20μm团聚体作为土壤固定有机碳的特征团聚体。这些结果可为我国区域土壤有机碳的循环提供科学数据。 相似文献
18.
研究碳储量与土地利用变化的响应关系及空间分布特征,预测未来土地利用类型变化所导致的碳储量变化趋势,可为流域政策制定、土地利用结构调整和“双碳”目标的实现提供一定的借鉴. 基于2000年、2010年和2020年三期土地利用数据,运用InVEST模型和PLUS模型,开展石羊河流域2000~2020年间和2030年自然发展、城镇发展和生态保护这3种情景下土地利用变化及其对碳储量的影响研究. 研究发现:①2000~2020年石羊河流域主要土地利用类型是耕地、草地和未利用地,且耕地、水域和建设用地的面积呈增加趋势,其中建设用地面积增幅最大. ②较2020年,2030年自然发展情景下,耕地、水域和建设用地面积均有所增加,分别增加6.15%、9.56%和29.9%;在城镇发展情景下,建设用地面积增加最多;相比其他两种情景,在生态保护情景下林地和草地面积出现了增加. ③石羊河流域2000~2020年碳储量呈平稳增加的趋势,20年间增加了0.035×108 t,主要源于耕地面积的增加. ④2030年自然发展、城镇发展和生态保护3种情景下石羊河流域的碳储量分别为5.65×108、5.64×108和5.73×108 t,较2020年均有增加,其中生态保护情景下碳储量增加最多,主要是源于草地和林地面积的增加. 研究结果表明建设用地的扩张是造成碳储量流失的主要原因,若采取有效的生态保护措施将有助提高流域碳储量,可以解决由于经济发展而导致的碳储量流失问题. 相似文献
19.
缙云山不同土地利用方式下土壤团聚体中活性有机碳分布特征 总被引:5,自引:4,他引:5
于缙云山阳坡同一海拔高度处选择了亚热带常绿阔叶林(简称林地)、荒地、坡耕地和果园4种土地利用方式,在0~60 cm的土壤深度内每隔10 cm采集一个土壤样品,测定大团聚体(2 mm)、中间团聚体(0.25~2 mm)、微团聚体(0.053~0.25 mm)以及粉+黏团聚体(0.053 mm)这4种粒径团聚体内的土壤活性有机碳(labile organic carbon,LOC)的含量,分析缙云山不同土地利用方式对团聚体LOC的影响.结果表明,各粒径团聚体中LOC含量均随土壤深度的增加而显著降低,呈现出明显的垂直递减性;在0~60 cm土壤深度的各土层上,基本上均表现为林地和撂荒地各粒径团聚体中LOC含量高于坡耕地和果园.采用土壤等质量方法计算LOC储量,显示大团聚体LOC储量为林地(3.68 Mg·hm-2)撂荒地(1.73 Mg·hm-2)果园(1.43 Mg·hm-2)坡耕地(0.54 Mg·hm-2);中间和微团聚体LOC储量为撂荒地(7.77 Mg·hm-2和5.01 Mg·hm-2)林地(4.96 Mg·hm-2和2.71 Mg·hm-2)果园(3.55 Mg·hm-2和2.10 Mg·hm-2)坡耕地(1.68 Mg·hm-2和1.35 Mg·hm-2);粉+黏团聚体LOC储量为撂荒地(4.32 Mg·hm-2)果园(4.00 Mg·hm-2)林地(3.22 Mg·hm-2)坡耕地(2.37Mg·hm-2).除粉+黏团聚体LOC储量略低于果园外,林地和撂荒地其他粒径团聚体LOC储量均高于果园和坡耕地,表明林地开垦为果园和坡耕地会导致LOC的降低,而坡耕地撂荒则会促进LOC的增加.林地和荒地LOC主要分布在中间团聚体,而果园和坡耕地则为粉+黏团聚体内LOC储量最高,表明在土地利用的转变过程中,粒径较大的团聚体更容易积累或损失LOC.4种土地方式下各粒径团聚体中LOC分配比例随土壤深度的增加而降低,果园和坡耕地各粒径团聚体内LOC分配比例略高于林地和撂荒地,表明林地和撂荒地土壤有机碳(soil organic carbon,SOC)性质更稳定,更有利于碳在土壤中的留存,从而减少SOC矿化分解向大气的释放.相关分析表明,土壤团聚体LOC含量与土壤团聚体总有机碳含量呈极显著正相关关系,表明团聚体LOC可以作为衡量西南地区山地土壤团聚体有机碳动态的一个敏感性指标. 相似文献
20.
缙云山不同土地利用方式下土壤植硅体碳的含量特征 总被引:1,自引:0,他引:1
植硅体碳是长期封存土壤有机碳的一种形式,对土壤固碳有重要意义.以西南地区常见的6种土地利用方式(针阔叶混交林、竹林、果园、旱地、水田和荒草地)为研究对象,探讨了不同土地利用方式下植硅体碳含量在不同剖面上(0~20、20~40、40~60和60~100 cm)的分布规律,并估算了植硅体碳储量,分析了陆地生态系统碳汇特征.结果表明,在6种土地利用方式中,竹林土壤有机碳和植硅体含量在土壤剖面上的平均值均为最高,分别为16. 75 g·kg-1和59. 66 g·kg-1.在4个土层,竹林土壤植硅体含量均显著高于其他土地利用方式(P 0. 05).对植硅体碳而言,6种土地利用方式下的土壤植硅体碳平均含量变化范围在0. 55~1. 96 g·kg-1,其中竹林各土层的植硅体碳含量都高于其他土地利用方式.竹林土壤植硅体碳总储量(23. 45 t·hm-2)显著高于其他土地利用方式土壤植硅体碳总储量(P 0. 05).统计分析表明,土壤全硅与土壤植硅体、土壤植硅体碳均表现出极显著的正相关关系(P 0. 01).不同土地利用方式下土壤植硅体与植硅体碳的含量总体表现为随着土层深度的增加而下降,存在一定的表层富集现象. 相似文献